
Buchner and Zanghellini Page 1 of 5

Supplementary material
EFMlrs

Compressions
The compression algorithms used by EFMlrs are already known in the metabolic modeling community, have been discussed e.g. by Gagneur et al. [22] and
have been implemented in e.g. efmtool [12]. Table S1 compares the compression results of EFMlrs and efmtool. Since the compressions of both tools are
based on the same algorithms, their results are very similar as well. However, for 3 out of 4 models (Table 1) used in this paper, EFMlrs could achieve a
stronger compression and efmtool was not able to further compress any models compressed by EFMlrs. Only for the EColiCore2 [29] model the
compression results of both tools were equivalent. A compression comparison the other way round - first compressions by efmtool and then by EFMlrs

could not be done, since efmtool does not output the compressed files needed for this.

a) Example model before EFMlrs compressions

b) Example model after EFMlrs compressions

Figure S1 Example of a metabolic network. Figure S1 a shows the original network without any compressions. Figure S1 b shows the
network after loss-free compressions were applied using EFMlrs. The original (uncompressed) model consists of 22 reactions (2
reversible) and 16 metabolites. The compressed model accommodates 8 reactions (1 reversible) and 3 metabolites.

We attribute the slightly di↵erent compression results to the di↵erent order and amount of iteration steps found in the respective implementations of the
compression algorithms. However, at this moment the exact reason is unknown and subject of future investigations. It should be noted that the stronger
compressions of EFMlrs together with the implementation in Python and the usage of SymPy lead to longer compression times compared to efmtool [12]
which is implemented in Java - a statically typed and compiled and therefore faster programming language compared to Python. However, since in contrast
to efmtool the compressions of EFMlrs are not directly coupled with the following calculations and the compressions have to be done only once, the overall
time loss is not a big factor when calculating large models. For a detailed description of EFMlrs workflow and the compression algorithms see the
supplementary material.

EFMlrs workflow
pre-processing
The EFMlrs workflow begins with parsing a sbml input file that contains the model of interest. Therefore, EFMlrs utilizes COBRApy functions for parsing
and preparing metabolic models and thereby features model editing if necessary or desired e.g. excluding specific compartments or specifying if non-default
reaction bounds should be taken into account, thus resulting in computing EFVs instead of EFMs.

Buchner and Zanghellini Page 2 of 5

Table S1 Compression comparison of EFMlrs versus efmtool. Values in table are reactions (reversible reactions) / metabolites.

uncompressed model EFMlrs compressions efmtool compressions
EColiCentral [28] 71 (15) / 53 44 (11) / 21 44 (11) / 26
EColiCore2 [29] 82 (22) / 54 58 (18) / 30 58 (18) / 30
iPS189 [30] 277 (21) / 271 63 (13) / 35 67 (13) / 42
JCVI-syn3A [31] 316 (8) / 286 100 (7) / 48 100 (7) / 50

loss-free compressions of N

Parsing the model is followed by the most important step during pre-processing – the loss-free compression of the stoichiometric matrix N . Iteratively, four
di↵erent loss-free compressions are applied on N . All compression steps are executed one after another in a large outer loop, with each compression step
itself being executed within a smaller loop. The inner loops of the single compression steps are executed until no more redundancies are found during this
step. Only then the next compression step starts. After all compression steps have been run through, the large outer loop starts again until no redundancies
can be found during any compression step. The complete sequence of pre-processing is illustrated in the top part of Figure 3. A pseudo-code snippet for
each compression step is shown in the Algorithms 1, 2, 3 and 4.

The targets of the first compression step (Algorithm 1) are so-called dead-end metabolites. The metabolites D, G and P in Figure S1 a are examples for
such metabolites. They can be identified by analyzing the rows of the stoichiometric matrix N . Rows that contain only values with the same sign, indicate
that the corresponding metabolites are only produced (positive values) respectively consumed (negative values). Therefore they can not be in a steady-state
and consequently, they, as well as their contributing, irreversible reactions, can be removed from the network [12]. Thus the metabolites D, G and P
together with their corresponding reactions can be removed from the metabolic network.

Algorithm 1 Pseudo-code snippet: deadend

1: function finds and removes redundancies due to deadend metabolites(Nm,n, rev)
. finds and removes deadend metabolites and corresponding irreversible reactions from N

. N is the stoichiometric matrix that denotes m⇥ n

. rev is a vector containing the reaction reversibilities
2: for m 2N do
3: if all n 2m � 0 then
4: if all revi2ni>0 = False then
5: remove m from N

6: end if
7: else if all n 2m 0 then
8: if all revi2ni<0 = False then
9: remove m from N

10: end if
11: end if
12: end for
13: for n 2N do
14: if |n| = 0 then
15: remove n from N

16: remove revn from rev

17: end if
18: end for
19: return �N , �rev

20: end function

The next compression step (Algorithm 2) is called many2one as during this step, reactions with unique fluxes are merged together. To further illustrate
what unique fluxes mean, let’s have a look at metabolite F in Figure S1 a. F is only produced by reaction R8 and afterward consumed by the reactions
9, 11, 12 (note that R10 has already been removed during dead-end compression). So unique fluxes can easily be identified by analyzing the rows of N .
Thus the rows corresponding to uniquely produced (respectively consumed) metabolites have one positive entry and otherwise only negative entries,
respectively one negative entry and otherwise only positive entries. Since we operate under steady-state conditions, R8 has to carry a non-zero flux,
whenever the consuming reactions of F are active. Hence, it’s possible to merge the sequential consuming (respectively producing) reactions and thereby
further decrease the dimensions of the stoichiometric matrix N [22]. So, during a first iteration step of the many2one compression, we can lump the
reactions R8 + R11, R8 + R12 and R8 + R9 together and remove the metabolite F . Note that this procedure is executed in loops and already merged
reactions can be merged further with other reactions if during a next iteration further redundancies are found and the preconditions for the compressions are
met. This applies to all compression steps.

Redundancies that only can be detected by analyzing the kernel K of the stoichiometric matrix N are the targets of the next compression step (Algorithm
3), the nullspace compression. If two rows in the kernel matrix K only di↵er from each other by a constant factor, also their fluxes only di↵er by this factor.
If there is a flux through one of these reactions, there has to be a flux through the other, respectively if one reaction has no flux the other reaction is also
passive. In Figure S1 a R2 and R3 are examples for such reactions that are called coupled reactions as they are co-regulated [12, 35]. Thus they are forced

Buchner and Zanghellini Page 3 of 5

Algorithm 2 Pseudo-code snippet: many2one

1: function finds redundancies due to unique fluxes(Nm,n, rev)
. finds and merges reactions with unique fluxes in N

. N is the stoichiometric matrix that denotes m⇥ n

. rev is a vector containing the reaction reversibilities
2: for m 2N do
3: skip False
4: for n 2m do
5: if n 6= 0 and revn = 1 then
6: skip True
7: end if
8: end for
9: if skip = False then

10: for n 2m do
11: if n � 0 then
12: a a append n
13: else
14: b b append n
15: end if
16: end for
17: pos |a|
18: neg |b|
19: if (neg = 1 or pos = 1) and

(neg + pos � 2) then
20: if neg = 1 then
21: swap a, b
22: end if
23: for i 2 b do
24: na ni / |i| + na / |a|
25: end for
26: remove na from N

27: remove reva from rev

28: for m 2N do
29: if |m| = 0 then
30: remove m from N

31: end if
32: end for
33: end if
34: end if
35: end for
36: return �N , �rev

37: end function

Buchner and Zanghellini Page 4 of 5

to work together, they can also be lumped into one reaction by applying their coupling factor. In the example network (S1 a), we can merge R2 and R3
into one single reaction and thereby remove one reaction and the metabolite B from the network.

Algorithm 3 Pseudo-code snippet:nullspace

1: function finds and removes redundancies due to coupled reactions(Nm,n, rev)
. finds coupled reactions in K and merges them in N

. N is the stoichiometric matrix that denotes m⇥ n

. rev is a vector containing the reaction reversibilities
2: Ki,j kernel matrix of N
3: for i1 2K do
4: for i2i+1 2K do
5: factor i1 / i2i+1

6: if factor 6= None then
7: ni1 ni1 + ni2 / factor
8: if revi2 = False then
9: revi1 False

10: end if
11: remove ni2 from N

12: remove revi2 from rev

13: remove i2 from K

14: end if
15: end for
16: end for
17: for m 2N do
18: if |m| = 0 then
19: remove m from N

20: end if
21: end for
22: return �N , �rev

23: end function

The last compression step (Algorithm 4) is called echelon compression, as the redundancies it targets can be identified by analyzing the reduced row
echelon form of the stoichiometric matrix N . These redundancies are caused by metabolites that are in a so-called conservative relation with each other,
meaning that there is a linear dependency between them [22]. Such linear dependencies show in the transposed reduced echelon form as a column that
breaks the diagonal pattern of ones. In Figure S1 a the metabolites K and J are linearly dependent on each other and thereby build a conservative relation.
K can only be produced if J is produced. However, J as well can only be produced while K is being produced. Therefore the reactions R14 and R15 are
strongly linked thus any change in the concentration of the metabolite J leads to the same change in the concentration of the metabolite K. Hence, one of
the two metabolite, in this case K, can be removed from the stoichiometric matrix N without losing any necessary information.
If no more redundancies can be found during any compression step, the flux cone (9) is reconfigured by splitting all reversible reactions into two – a forward
and a backward reaction. Thereby the flux cone is transformed for calculations with mplrs. Afterwards, the compressed input files for mplrs and efmtool,
as well as a log file and an info file, concerning the performed compressions and later needed for decompressions, are created. Now, the computations using
either mplrs or efmtool can be started.

post-processing
When calculating EFM/Vs from a loss-free compressed network the number of resulting EFM/Vs is the same as if the calculations were done with the
original network. However, the EFM/Vs are compressed and are still containing the merged reactions. Additionally, mplrs’ output files also contain the
previously split reversible reactions which need to be lumped together again. Thus, post-processing and decompression are needed to get the full set of
EFM/Vs.
The bottom part of Figure 3 shows the main steps during post-processing. First, the info file, containing all information on the previously applied
compressions, and the mplrs, respectively, efmtool’s output files are read. Since mplrs’ output besides the calculated modes also includes the split
reactions, as well as additional information, it requires additional steps before decompressions can be started. Therefore users need to specify whether
mplrs’ or efmtool’s output is to be decompressed. After parsing all input files a reverse decompression stack is built and each EFM, respectively EFV, is
being decompressed one after the other in reverse order of the previously applied compressions until all modes are decompressed and written to a specified
output. The resulting decompressed EFMs now contain all reactions as the original, uncompressed model and are ready for further analysis.

Buchner and Zanghellini Page 5 of 5

Algorithm 4 Pseudo-code snippet: echelon

1: function finds and removes redundancies due to conservative relations(Nm,n)
. finds conservative relations and removes redundant metabolites from N

. N is the stoichiometric matrix that denotes m⇥ n

2: Ei,j reduced row echelon form of N
3: k 0
4: for i 2 E do
5: while ik 6= 1 do
6: v v append k
7: k k + 1
8: end while
9: k k + 1

10: end for
11: remove all m 2 v from N

12: return �N

13: end function

a) Run times of di↵erent geometric formulations (FC, PC
and P) calculated with mplrs

b) Comparison of the amount of EFVs found in the cone
shapes (FC, PC) versus in a general polyhedron (P)

Figure S2 Figure S2 a shows the run times for the EColiCore2 [29] using di↵erent geometric formulations: flux cone FC (9) (in light
blue, first column), polyhedral cone PC (7) (blue, second column) and general polyhedron P (5) (dark blue, third column);
calculated with mplrs [1] with di↵erent reactions bounds applied, see Table 2. The y-axis shows the wall time in seconds (as 10 to
the power of 3) and the headers indicate the applied reaction bounds. In 6 out of 7 cases using a cone results in faster run times
compared to the general polyhedron. In a polyhedron all EFM/Vs get enumerated, however, some are listed multiple times [27]. A
comparison of the amount of EFVs found in the cone shapes FC and PCcompared to the amount of EFVs found in the general
polyhedron P is shown in Figures S2 b. The y-axis shows the number of EFVs as 10 to the power of 7. Interestingly, although the
scenario with the reaction bound on ATPM contains 30% more results when calculated in a general polyhedron, it is still faster than
the cone formulations.

