Overexpression of an oxidoreductase YghA confers tolerance against furfural in ethanologenic *Escherichia coli* strain SSK42

TABLE S1: List of plasmids and strains used in the study.

TABLE S2: Percent COV observed in first screen of *E. coli* BW25113 mutant strains at 3h and 6h of cultivation.

TABLE S3: The maximum specific ethanol productivity values of SSK42 (pTrcHisA) and SSK42 (pTrcHisA-*yghA*) strains at 5% and 10% xylose concentration

Figure S1: LD₅₀ values of parent *E. coli* BW25113 strain towards furfural in media containing 0.2% (wt/vol) of either glucose (A) or xylose (B) as sole carbon source.

Figure S2: First screening of *E. coli* BW25113 derived mutant strains. Cultivation was performed in media containing 0.2% (wt/vol) xylose and 0.25 g L⁻¹ furfural.

Figure S3: Second screening of selected *E. coli* BW25113 mutant strains in AM1 media containing 5% (wt/vol) xylose and 1 g L^{-1} furfural.

Figure S4: Transformation of *yghA* gene in *E. coli* BW25113∆*yghA* genetic background.

Figure S5: Influence of carbon source in promoting biomass formation in *E. coli* SSK42 host with either pTrcHisA (dark gery) or with pTrcHisA-*yghA* (light grey).

Figure S6: Overexpression of YghA also leads to metabolism of 1 g L⁻¹ 5-HMF from media containing 5% (wt/vol) xylose and 0.1 mM IPTG.

Figure S7: Influence of IPTG concentration on furfural metabolism in SSK42 harboring either pTrcHisA (dark grey) or pTrcHisA-*yghA* (light grey).

Figure S8: Furfural concentration in bioreactor containing 5% xylose (wt/vol) and 1 g $\rm L^{-1}$ furfural.

Plasmid/Strain	Description	Source/Reference			
Plasmid					
pTrcHisA	Ptrc bla oriR rrnB lacI ^q 6XHis	Invitrogen			
pTrcHisA-yghA	yghA ORF cloned into pTrcHisA	This study			
pCP20	<i>bla</i> , <i>flp</i> , temperature-conditional replicon	CGSC #7629			
Strain					
SSK42	<i>E. coli</i> B P_{gapA} PDH $\Delta ldh \Delta frdA \Delta pflB$	Jilani SB, Venigalla SSK,			
	undergone evolutionary adaptation.	Mattam AJ, Dev C, Yazdani			
		SS. J Ind Microbiol Biotechnol			
		44:1375–1384 (2017)			
BW25113	BW25113, $\Delta yghA$:: FRT-kan-FRT -	This study			
(pTrcHisA)	pTrcHisA				
BW25113	BW25113, <i>ΔyghA</i> :: FRT-kan-FRT -	This study			
(pTrcHisA-yghA)	pTrcHisA-yghA				
SSK42	SSK42 harboring pTrcHisA	This study			
(pTrcHisA)					
SSK42	SSK42 harboring pTrcHisA-yghA	This study			
(pTrcHisA-yghA)					
BW25113	F_, DE(<i>araD</i> -	CGSC#7636			
	<i>araB</i>)567, <i>lacZ</i> 4787(del):: <i>rrnB</i> _3, LAM-,				
	<i>rph_</i> 1, DE(<i>rhaD-rhaB</i>) 568, <i>hsdR</i> 514				
∆adhP	BW25113, <i>∆adhP</i> :: FRT-kan-FRT	CGSC#9282			
∆aldB	BW25113, <i>∆aldB</i> :: FRT-kan-FRT	CGSC#10626			
∆aldA	BW25113, <i>∆aldA</i> :: FRT-kan-FRT	CGSC#9239			
∆astD	BW25113, <i>∆astD</i> :: FRT-kan-FRT	CGSC#11289			
∆betB	BW25113, <i>∆betB</i> :: FRT-kan-FRT	CGSC#8504			
∆dkgA	BW25113, <i>∆dkgA</i> :: FRT-kan-FRT	CGSC#11427			
∆dkgB	BW25113, <i>∆dkgB</i> :: FRT-kan-FRT	CGSC#12026			
∆eutG	BW25113, <i>∆eutG</i> :: FRT-kan-FRT	CGSC#9943			
∆feaB	BW25113, <i>∆feaB</i> :: FRT-kan-FRT	CGSC#9220			
∆frmA	BW25113, <i>∆frmA</i> :: FRT-kan-FRT	CGSC#8536			
∆fucO	BW25113, <i>∆fucO</i> :: FRT-kan-FRT	CGSC#11871			
∆gabD	BW25113, <i>∆gabD</i> :: FRT-kan-FRT	CGSC#10077			
∆gldA	BW25113, <i>∆gldA</i> :: FRT-kan-FRT	CGSC#11940			
$\Delta hdhA$	BW25113, <i>∆hdhA</i> :: FRT-kan-FRT	CGSC#9372			
∆таоC	BW25113, <i>∆maoC</i> :: FRT-kan-FRT	CGSC#9222			
$\Delta mhpF$	BW25113, <i>∆mhpF</i> :: FRT-kan-FRT	CGSC#8532			
∆pgi	BW25113, <i>∆pgi</i> :: FRT-kan-FRT	CGSC#10867			
∆prr	BW25113, <i>∆prr</i> :: FRT-kan-FRT	CGSC#9259			
ДрииС	BW25113, <i>∆рииС</i> :: FRT-kan-FRT	CGSC#11640			
∆rspB	BW25113, <i>∆rspB</i> :: FRT-kan-FRT	CGSC#9342			
∆sad	BW25113, <i>Asad</i> :: FRT-kan-FRT	CGSC#11267			

TABLE S1. List of plasmids and strains used in the study

∆tas	BW25113, <i>∆tas</i> :: FRT-kan-FRT	CGSC#10189
∆usg	BW25113, ⊿usg ::FRT-kan-FRT	CGSC#9858
<i>ДисрА</i>	BW25113, <i>∆ucpA</i> :: FRT-kan-FRT	CGSC#11361
∆yahK	BW25113, <i>∆yahK</i> :: FRT-kan-FRT	CGSC#8516
∆yajO	BW25113, <i>∆yajO</i> :: FRT-kan-FRT	CGSC#8578
∆yagR	BW25113, <i>∆yagR</i> :: FRT-kan-FRT	CGSC#8491
∆yagS	BW25113, <i>∆yagS</i> :: FRT-kan-FRT	CGSC#8492
$\Delta ybdR$	BW25113, <i>∆ybdR</i> :: FRT-kan-FRT	CGSC#8716
∆ycjQ	BW25113, <i>∆ycjQ</i> :: FRT-kan-FRT	CGSC#9171
$\Delta y c j S$	BW25113, <i>∆ycjS</i> :: FRT-kan-FRT	CGSC#9172
∆yciK	BW25113, <i>∆yciK</i> :: FRT-kan-FRT	CGSC#9138
∆ydfG	BW25113, <i>∆ydfG</i> :: FRT-kan-FRT	CGSC#9318
$\Delta y dh E$	BW25113, <i>∆ydhE</i> :: FRT-kan-FRT	CGSC#9408
∆ydjL	BW25113, <i>∆ydjL</i> :: FRT-kan-FRT	CGSC#9483
∆yeaE	BW25113, <i>∆yeaE</i> :: FRT-kan-FRT	CGSC#9486
∆ygbJ	BW25113, <i>∆ygbJ</i> :: FRT-kan-FRT	CGSC#10129
∆ygfF	BW25113, <i>∆ygfF</i> :: FRT-kan-FRT	CGSC#10226
∆yghA	BW25113, <i>∆yghA</i> :: FRT-kan-FRT	CGSC#10283
∆yghZ	BW25113, <i>∆yghZ</i> :: FRT-kan-FRT	CGSC#10282
∆yggP	BW25113, <i>∆yggP</i> :: FRT-kan-FRT	CGSC#11416
∆ygiB	BW25113, <i>∆ygiB</i> :: FRT-kan-FRT	CGSC#11658
∆ygjR	BW25113, <i>∆ygjR</i> :: FRT-kan-FRT	CGSC#10334
∆yhdH	BW25113, <i>∆yhdH</i> :: FRT-kan-FRT	CGSC#10438
$\Delta yhhX$	BW25113, <i>∆yhhX</i> :: FRT-kan-FRT	CGSC#10532
∆yhiN	BW25113, <i>∆yhiN</i> :: FRT-kan-FRT	CGSC#10562
$\Delta yiaY$	BW25113, <i>∆yiaY</i> :: FRT-kan-FRT	CGSC#11499
$\Delta yihU$	BW25113, <i>∆yihU</i> :: FRT-kan-FRT	CGSC#10784
∆yjgB	BW25113, <i>∆yjgB</i> :: FRT-kan-FRT	CGSC#11992
$\Delta y kg E$	BW25113, <i>∆ykgE</i> :: FRT-kan-FRT	CGSC#11999
$\Delta yohF$	BW25113, <i>∆yohF</i> :: FRT-kan-FRT	CGSC#9723
$\Delta yphC$	BW25113, <i>∆yphC</i> :: FRT-kan-FRT	CGSC#12007
∆yqhD	BW25113, <i>∆yqhD</i> :: FRT-kan-FRT	CGSC#10288

	3h	6h
WT		
BW25113	0	4
yiaY	7	27
yjgB	1	6
feaB	13	35
eutG	3	7
ybdR	12	71
ycjQ	8	47
ycjS	3	4
rspB	3	35
ygfF	4	7
исрА	6	14
ydjL	3	20
pgi	12	13
yghZ	14	8
ydfG	3	7
ygiB	1	14
hdhA	3	6
ygjR	5	15
ykgE	4	18
yhdH	4	8
yhhX	5	5
ydhE	7	16
tas	3	7
yeaE	1	10
aldB	2	7
maoC	8	27
yagR	2	15
gabD	1	13
prr	6	21
yagS	5	26
dkgB	3	19
dkgA	7	15
<i>betB</i>	1	3
sad	8	25
yhiN	6	15
<i>yphC</i>	0	0
yajO	6	12

TABLE S2: Percent Coefficient of Variation (COV) observed in first screen of *E. coli*BW25113 mutant strains at 3 and 6 h of cultivation.*

frmA	1	13
yahK	1	15
yciK	0	6
yqhD	6	29
mhpF	0	9
adhP	9	26
aldA	5	10
fucO	8	9
yggP	12	26
ycjS	4	17
ygbJ	2	9
yohF	4	25
usg	2	10
gldA	4	14
yihU	3	14
astD	4	39
рииС	5	10
yghA	3	5

*Strains having COV equal to or less than 5 at both 3 h and 6 h time points were considered for further experiment and have been highlighted in green.

TABLE S3: The maximum specific ethanol productivity values of SSK42 (pTrcHisA) andSSK42 (pTrcHisA-yghA) strains at 5% and 10% xylose concentration

		5% xylose		10% xylose	
Strain	Furfural Concn	Sp ethanol	Time period	Sp ethanol	Time period
	$(g L^{-1})$	productivity	(h)	productivity	(h)
		$(g g^{-1} h^{-1})$		$(g g^{-1} h^{-1})$	
SSK42	0	0.56	0-24	0.51	0-24
(pTrcHisA)	0				
SSK42		0.41	0-24	0.51	0-24
(pTrcHisA-	0				
yghA)					
SSK42	1	0.35	72-96	0.34	96-120
(pTrcHisA)	1				
SSK42		0.4	24-48	0.39	48-72
(pTrcHisA-	1				
yghA)					

Figure S1: LD₅₀ values of parent *E. coli* BW25113 strain towards furfural in media containing 0.2% (wt/vol) of either glucose (A) or xylose (B) as sole carbon source. The observations were recorded at 3 h and LD₅₀ values of the BW25113 strain against furfural for either carbon source was determined to be 0.25 g L⁻¹. Values are average of n=2 independent experiments. Error bars represent SD of the mean.

Figure S2: First screening of *E. coli* BW25113 derived mutant strains. Cultivation was performed in media containing 0.2% (wt/vol) xylose and 0.25 g L⁻¹ furfural. Cultures were seeded at $OD_{600}=0.1$ and observations recorded at 3 h and 6 h.Values are average of at least n=2 independent experiments. Error bars represent SD of the mean.

Figure S3: Second screening of selected *E. coli* BW25113 mutant strains in AM1 media containing 5% (wt/vol) xylose and 1 g L⁻¹ furfural. Cultures were seeded at $OD_{600}=0.1$ and growth recorded at 48 h. Values represent outcome of one observation.

Figure S4: Transformation of *yghA* gene in *E. coli* BW25113 Δ *yghA* genetic background. Strain harbored either empty plasmid as a control (pTrcHisA) or cloned *yghA* gene (pTrcHisA-*yghA*). Cultures were grown in media containing 5% (wt/vol) xylose and 0.5 g L⁻¹ furfural. OD₆₀₀ was recorded at 24 h. Values are average of n=2 independent experiments. Error bars represent SD of the mean.

Figure S5: Influence of carbon source in promoting biomass formation in *E. coli* SSK42 host with either pTrcHisA (dark grey) or with pTrcHisA-*yghA* (light grey). Media consisted of 1 g L⁻¹ furfural, 0.1 mM IPTG and either 5% (wt/vol) glucose (A) or xylose (B) as carbon source. OD_{600} was recorded at 48 h. (C) Furfural concentration was measured at 48 h of cultivation. Values are average of n=2 independent experiments. Error bars represent SD of the mean.

Figure S6: Overexpression of YghA also leads to metabolism of 1 g L^{-1} 5-HMF from media containing 5% (wt/vol) xylose and 0.1 mM IPTG. OD₆₀₀ (A) and concentration of 5-HMF (B) was recorded at 24 h and 48 h. Values are average of n=2 independent experiments. Error bars represent SD of the mean.

Figure S7: Influence of IPTG concentration on furfural metabolism in SSK42 harboring either pTrcHisA (dark grey) or pTrcHisA-yghA (light grey). Strains were seeded at OD_{600} of 2.0 in media containing 5% (wt/vol) xylose and 2.0 g L⁻¹ furfural. Concentration of IPTG used was 0, 0.01 and 0.1 mM. Concentration of furfural was measured at 2, 4 and 6 h of growth. Values are average of n=2 independent experiments. Error bars represent SD of the mean.

Figure S8: Furfural concentration in bioreactor containing 5% xylose (wt/vol) and 1 g L⁻¹ furfural. Samples were analyzed immediately after extraction at indicated time points. Values represent outcome of one experimental observation.