Supporting information for:

Synthesis and Electronic Structure Analysis of the Actinide Allenylidenes, [{(NR2)3}An(CCCPh2)]⁻ (An = U, Th; R = SiMe3)

Greggory T. Kent^{†#}, Xiaojuan Yu^{‡#}, Guang Wu[†], Jochen Autschbach[‡]*, Trevor W. Hayton[†]*

[†]Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa

Barbara, CA 93106, United States

[‡]Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260

*To whom correspondence should be addressed. Email: hayton@chem.ucsb.edu,

jochena@buffalo.edu

[#]These authors contributed equally

Table of Contents

Experimental Details	S2
Computational Details	S7
NMR Spectra	S15
X-ray Crystallographic Data	S23
UV–Vis Spectra	S24
IR Spectra	S25
Cartesian Coordinates	S29
References	S38

Experimental

General. All reactions and subsequent manipulations were performed under anaerobic and anhydrous conditions under an atmosphere of dinitrogen. Diethyl ether (Et₂O), pentane and hexanes were dried using a Vacuum Atmospheres DRI-SOLV Solvent Purification system and stored over 3Å sieves for 24 h prior to use. Tetrahydrofuran (THF) was distilled over calcium hydride then distilled over sodium benzophenone, collected, and stored over 3Å sieves for 24 h prior to use. Isooctane was distilled over sodium benzophenone, collected, and stored over 3Å sieves for 24 h prior to use. THF-*d*₈ and C₆D₆ were stored over 3Å sieves for 24 h prior to use. [UCl(NR₂)₃] (R = SiMe₃), [ThCl(NR₂)₃], LDA, and 3,3-diphenylcyclopropene were synthesized according to previously reported literature procedures.¹⁻⁴ All other reagents were purchased from commercial vendors and used as received.

¹H, ¹³C{¹H}, and ⁷Li{¹H} NMR spectra were recorded on a Varian UNITY INOVA 400 MHz or a Varian UNITY INOVA 500 MHz spectrometer. ¹H and ¹³C{¹H} NMR spectra were referenced to external SiMe₄ using the residual protio solvent peaks as internal standards.^{5, 6} ⁷Li{¹H} spectra were referenced to a saturated LiCl solution in D₂O. IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer with a NXR FT Raman Module. Electronic absorption spectra were recorded on a Shimadzu UV3600 UV-NIR Spectrometer. Elemental analyses were performed by the Microanalytical Laboratory at University of California (Berkeley, CA).

Caution! Depleted uranium (isotope ²³⁸U) and natural thorium are weak alpha emitters with a half-life of 4.47×10^9 years and 1.41×10^{10} years, respectively. Manipulations and reactions should be carried out in a fume hood or inert atmosphere glovebox in a laboratory equipped with α - and β -counting equipment.

X-ray Crystallography: Data for complexes **1** - **4**•C₅H₁₂ were collected on a Bruker KAPPA APEX II diffractometer equipped with an APEX II CCD detector using a TRIUMPH monochromater with a Mo K α X-ray source ($\alpha = 0.71073$ Å). The crystals were mounted on a cryoloop under Paratone-N oil, and data were collected at 110(2) K using an Oxford nitrogen gas cryostream system. X-ray data for **1**, **2**, **3**•C₅H₁₂, and **4**•C₅H₁₂ were collected utilizing frame exposures of 5, 10, 10, and 20 s, respectively. Data collection and cell parameter determination were conducted using the SMART program.⁷ Integration of the data frames and final cell parameter refinement were performed using SAINT software.⁸ Absorption corrections of the data

were carried out using the multi-scan method SADABS.⁹ Subsequent calculations were carried out using SHELXTL.¹⁰ Structure determination was done using direct or Patterson methods and difference Fourier techniques. All hydrogen atom positions were idealized, and rode on the atom of attachment. Structure solution, refinement, graphics, and creation of publication materials were performed using SHELXTL.¹⁰

The pentane solvate molecule in $3 \cdot C_5 H_{12}$ exhibited positional disorder, as a result the pentane carbon atoms were constrained using the SADI and EADP commands and refined isotopically. The cryptand ligand in $3 \cdot C_5 H_{12}$ also contained slight positional disorder and as a result the temperature factors of the carbon and nitrogen atoms were constrained using the EADP command. The pentane solvate in $4 \cdot C_5 H_{12}$ contained more severe disorder, as a result it was constrained using the SADI and EADP commands, refined isotopically and hydrogen atoms were not assigned. The cryptand moiety in $4 \cdot C_5 H_{12}$ contained unresolved positional disorder, as a result carbon and oxygen atom temperature factors were constrained using the EADP command, and the lithium and nitrogen atoms were refined isotopically. Bond distances on the cryptand moiety were constrained using SADI command and three hydrogen-hydrogen distances were constrained, using the DFIX command, to a distance of 1.99 Å.

Further crystallographic details can be found in Tables S8. Complexes **1**-**4** have been deposited in the Cambridge Structural Database (**1**: CCDC 2098903; **2**: CCDC 2098904; **3**·C₅H₁₂: CCDC 2098905; **4**·C₅H₁₂: CCDC 2098906).

Synthesis of [{(NR₂)₃}U(CH=C=CPh₂)] (1). To a cold (-25 °C), colorless Et₂O solution (0.5 mL) of 3,3-diphenylcyclopropene (42.1 mg, 0.0.219 mmol) was added quickly a cold (-25 °C), colorless Et₂O solution (0.5 mL) of LDA (22.3 mg, 0.208 mmol). Immediately, the solution turned light yellow. This solution was then added drop wise to a cold (-25 °C) stirring pink slurry of [UCl(NR₂)₃] (157.2 mg, 0.208 mmol) in Et₂O (3 mL). The stirring solution immediately turned red-brown concomitant with the deposition of a light tan precipitate. After stirring for 45 min the resulting brown solution was filtered through a Celite column supported on glass wool (0.5 cm × 2 cm) and the volatiles were removed from the filtrate *in vacuo*. The resulting brown oil was extracted into pentane (4 mL), filtered through a Celite column supported on glass wool (0.5 cm ×

2 cm) and the volatiles were removed from the filtrate *in vacuo*, yielding a brown solid. The resulting brown powder was extracted again into pentane (2 mL), filtered through a Celite column supported on glass wool (0.5 cm × 2 cm) and transferred to a 4 mL scintillation vial. This vial was placed into a 20 mL scintillation vial and the solution was concentrated to 0.5 mL. Isooctane (2 mL) was added to the outer vial and storage of this two-vial system at -25 °C for 24 h resulted in the deposition of brown blocks. Decanting the supernatant, rinsing the crystals with cold (-25 °C) pentane (2 mL), and drying *in vacuo* afforded **1** (137.3 mg, 72.4 % yield) Anal. Calcd for UN₃Si₆C₃₃H₆₅: C, 43.53; H, 7.20; N, 4.62. Found: C, 43.34; H, 7.03; N, 4.68. ¹H NMR (C₆D₆/THF-*d*₈, 298 K, 500 MHz): δ 3.34 (t, *J* = 7.1 Hz, 4H, *m*-CH), 3.03 (t, *J* = 7.2 Hz, 2H, *p*-CH), -1.84 (br. s, 54H, CH₃), -9.13 (d, *J* = 7.1 Hz, 4H, *o*-CH), -174.80 (s, 1H, *α*-CH). IR (KBr pellet, cm⁻¹): 2954 (m), 2897 (w), 1936 (w, C_α-C_β stretch), 1871 (w, C_β-C_γ stretch), 1400 (w), 1250 (s), 1182 (w), 904 (s), 847 (s), 769 (m), 681 (w), 656 (w), 611 (m).

Synthesis of [{(NR₂)₃}Th(CH=C=CPh₂)] (2). To a cold (-25 °C), colorless Et₂O solution (0.5 mL) of 3,3-diphenylcyclopropene (40.5 mg, 0.211 mmol) was added quickly a cold (-25 °C), colorless Et₂O solution (0.5 mL) of LDA (21.4 mg, 0.200 mmol). Immediately, the solution turned light yellow. This solution was then added drop wise to a cold (-25 °C) stirring colorless slurry of [Th(Cl)(NR₂)₃] (150.2 mg, 0.200 mmol) in Et₂O (3 mL). The stirring solution immediately turned yellow-orange concomitant with the deposition of a light tan precipitate. After stirring for 45 min the resulting orange suspension was filtered through a Celite column supported on glass wool (0.5 cm \times 2 cm) and the volatiles were removed from the filtrate *in* vacuo. The resulting orange oil was extracted into pentane (4 mL), filtered through a Celite column supported on glass wool (0.5 cm \times 2 cm) and the volatiles were removed from the filtrate in vacuo, yielding a brown solid. The resulting orange oil was extracted again into pentane (2 mL), filtered through a Celite column supported on glass wool (0.5 cm \times 2 cm) and transferred to a 4 mL scintillation vial. This vial was placed into a 20 mL scintillation vial and the solution was concentrated to 0.5 mL. Isooctane (2 mL) was added to the outer vial and storage of this two-vial system at -25 °C for 24 h resulted in the deposition of off-white blocks. Decanting the supernatant, rinsing the crystals with cold (-25 °C) pentane (2 mL), and drying in vacuo afforded 2 (112.0 mg, 61.7 % yield) Anal. Calcd for ThN₃Si₆C₃₃H₆₅: C, 43.82; H, 7.24; N, 4.65. Found: C, 43.71; H, 7.03; N, 4.57. ¹H NMR (C₆D₆/THF- d_8 , 298 K, 500 MHz): $\delta = 7.42$ (d, J = 7.3 Hz, 4H,

o-CH), 7.17 (t, J = 7.7 Hz, 4H, *m*-CH), 6.96 (d, J = 7.4 Hz, 2H, *p*-CH), 5.77 (s, 1H, α-CH), 0.27 (s, 54H, CH₃). ¹³C{¹H} NMR (C₆D₆/THF-*d*₈, 298 K, 126 MHz) δ 204.67 (C_β), 150.63 (C_{ipso}), 139.38 (C_α), 128.89 (C_{ortho}), 128.39 (C_{meta}), 125.63 (C_{para}), 96.72 (C_γ), 4.57. IR (KBr pellet, cm⁻¹): 2953 (m), 2895 (w), 1934 (w, C_α-C_β stretch), 1869 (m, C_β-C_γ stretch), 1597 (m), 1491 (m), 1450 (m), 1252 (s), 1182 (m), 1113 (w), 1072 (w), 1030 (w), 931 (s), 847 (s), 768 (s), 696 (s), 658 (w), 640 (w), 609 (m).

Synthesis of [Li(2.2.2-Cryptand)][{(NR₂)₃}U(CCCPh₂)] (3). To a cold (-25 °C), dark brown Et₂O solution (3 mL) of **1** (65.8 mg, 0.072 mmol) and 2.2.2-cryptand (27.2 mg, 0.072 mmol) was added dropwise a cold (-25 °C), colorless Et₂O solution (0.5 mL) of LDA (7.74 mg, 0.072 mmol). Upon addition, the solution turned dark purple-red. After 2 min, the solution was concentrated *in vacuo* to 0.5 mL and filtered through a Celite column supported on glass wool $(0.5 \text{ cm} \times 2 \text{ cm})$ into a 4 mL scintillation vial. This vial was placed into a 20 mL scintillation vial and isooctane (2 mL) was added to the outer vial. Storage of this two-vial system at -25 °C for 48 h resulted in the deposition of dark purple solid. Decanting off the supernatant, rinsing with pentane (2 mL), and drying in vacuo afforded 3 as an analytically pure dark purple solid (50.0 mg, 53.5 % yield). X-ray quality crystals of **3** were grown by dissolving 40 mg of this material in THF:pentane (0.25:2.5 mL). Storage of this solution at -25 °C for 24 h resulted in the deposition of dark purple needles. Anal. Calcd for C₅₁H₁₀₀LiN₅O₆Si₆U: C, 47.38; H, 7.80; N, 5.42. Found: C, 47.33; H, 7.59; N, 5.04. ¹H NMR (C₆D₆/THF-*d*₈, 298 K, 500 MHz,) δ 2.78 (br s, 12H, CH₂), 2.59 (br s, 12H, CH₂), 2.07 (t, J = 8.3 Hz, 4H, *m*-CH), 1.86 (br s, 12H, CH₂), -1.60 (br s, 54H, CH₃), -1.74 (t, J = 8.3 Hz, 2H, p-CH), -12.89 (d, J = 8.8 Hz, 4H, o-CH). ⁷Li{¹H} NMR (C₆D₆/THF-d₈, 25 °C, 155 MHz): δ –1.59. IR (KBr pellet, cm⁻¹): 2954 (m), 2887 (m), 2862 (w), 2050 (w, C_{α} - C_{β} stretch), 1911 (w, C_{β} - C_{γ} stretch), 1514 (w), 1477 (m), 1385 (m), 1356 (s), 1263 (m), 1255 (s), 1136 (m), 1101 (s), 1088 (w), 933 (s), 862 (w), 841 (s), 894 (w), 694 (w).

Synthesis of [Li(2.2.2-cryptand)][{(NR₂)₃}Th(CCCPh₂)] (4). To a cold (-25 °C), dark brown Et₂O solution (3 mL) of **2** (82.1 mg, 0.091 mmol) and 2.2.2-cryptand (29.0 mg, 0.091 mmol) was added dropwise a cold (-25 °C), colorless Et₂O solution (0.5 mL) of LDA (9.7 mg, 0.091 mmol). Upon addition, the solution turned dark red-orange. After 2 min, the solution was concentrated *in vacuo* to 0.5 mL and filtered through a Celite column supported on glass wool (0.5 cm × 2 cm) into a 4 mL scintillation vial. This vial was placed into a 20 mL scintillation vial and isooctane (2

mL) was added to the outer vial. Storage of this two-vial system at -25 °C for 48 h resulted in the deposition of dark orange blocks. Decanting off the supernatant, rinsing with pentane (2 mL), and drying *in vacuo* afforded **4** as an analytically pure dark orange solid (53.4 mg, 45.7 % yield). X-ray quality crystals of 4 were grown by dissolving 36 mg of this material into THF:pentane (0.25:2.5 mL). Storage of this vial at -25 °C for 24 h resulted in the deposition of orange needles. Anal. Calcd for C₅₁H₁₀₀LiN₅O₆Si₆Th: C, 47.60; H, 7.83; N, 5.44. Found: C, 47.30; H, 7.46; N, 5.14. ¹H NMR (C₆D₆/THF- d_8 , 298 K, 500 MHz): δ 7.85 (d, J = 8.3 Hz, 4H, o-CH), 7.09 (t, J =7.7 Hz, 4H, *m*-CH), 6.45 (t, J = 7.0 Hz, 2H, *p*-CH), 3.08 (m, 12H, CH₂), 3.03 (t, J = 5.0 Hz, 12H, CH₂), 2.08 (t, J = 5.0 Hz, 12H, CH₂), 0.53 (s, 54H, CH₃). ⁷Li{¹H} NMR (C₆D₆/THF- d_8 , 25 °C, 155 MHz): δ –1.81. ¹³C{¹H} NMR (C₆D₆/THF-*d*₈, 298 K, 126 MHz) δ: 205.40 (C_α), 145.79 (C_{ipso}), 128.49 (C_β), 127.04 (C_{ortho}), 122.53 (C_{meta}), 114.29 (C_{para}), 70.58 (C_γ), 67.87 (C_{cryptand}), 67.84 (C_{cryptand}), 53.07 (C_{cryptand}), 4.70 (CH₃). UV-Vis/NIR (C₆H₆, 0.263 mM, 25 °C, L·mol⁻ ¹·cm⁻¹): 403 nm (ε = 8310) 537 nm (ε = 15,030). IR (KBr pellet, cm⁻¹): 2954 (m), 2883 (m), 2816 (w), 2044 (m, C_{α} - C_{β} stretch), 1921 (s, C_{β} - C_{γ} stretch), 1585(w), 1479 (m), 1444 (w), 1356 (m), 1296 (w), 1250 (s), 1144 (w), 1115 (m), 1101 (s), 933 (s), 837 (s), 771 (m), 696 (w), 663 (w), 607 (w).

Computational Details.

Kohn-Sham density functional calculations were employed for **1-4** with the Gaussian 16 package.¹¹ The crystal structure coordinates were optimized for hydrogen positions using the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional.¹² Small-core Stuttgart energy-consistent relativistic pseudopotentials, ECP60MWB for Th and U, were utilized with matching valence basis sets.¹³ The 6-31G(d) basis set was used for the Si, C, N, and H atoms.¹⁴ Atom-pairwise corrections for dispersion forces were considered via Grimme's D3 model augmented with the Becke-Johnson (BJ) damping.¹⁵ To quantify the compositions of the chemical bonds of interest, natural localized molecular orbital (NLMO) analyses were carried out with the NBO program, version 6.0.¹⁶ The quantum theory of atoms in molecules (QTAIM) analysis was performed with Multiwfn 3.6.¹⁷

NMR shielding constants (σ , ppm) for **2** and **4** were calculated with the NMR module of the ADF package (version 2017),¹⁸ using the scalar relativistic and spin-orbit all electron Zeroth-Order Regular Approximation (ZORA) Hamiltonian,¹⁹ in conjunction with all-electron doubly polarized triple- ξ (TZ2P)²⁰ Slater-type basis set. The conductor-like screening model (COSMO) was used to describe solvent effect (tetrahydrofuran).²¹ Functionals used for the NMR calculations were BP86, PBE, PBE0 (25% exact exchange), and PBE0 (40% exact exchange) The ¹³C chemical shifts (δ , ppm) were obtained by subtracting the C_{α}, C_{β}, C_{γ} nuclear magnetic shielding of interest from the reference compound (Tetramethylsilane, TMS), with the latter calculated at the same level of theory. The localized molecular orbital (LMO) analysis of the NMR shielding and the character of specific chemical bonds quantified on the basis of orbital localizations were described elsewhere.^{22, 23} It helps to provide useful information on how spin-orbit coupling affects the chemical shifts. Note that the NLMOs produced from ECP60MWB valence basis set and Slater-type basis set (TZ2P) are qualitatively comparable to each other.

Complex	Orbital	Total C_{α}	2s	2p	Total C _β	2s	2p	Total An	7s	7p	6d	5f
1	σ(U-C)	75	31	69	4	0	100	16	12	1	69	18
	π(U-C)	50	0	100	44	0	100	4	0	0	53	47
2	σ(Th-C)	77	30	70	5	0	100	14	13	1	73	13
	π (Th-C)	50	0	100	44	0	100	4	0	0	53	47
3	σ(U-C)	78	47	53	0	0	0	20	16	1	67	16
	π(U-C)	47	0	100	47	0	100	5	0	0	55	45
	π(U-C)	31	0	100	28	0	100	11	0	0	32	68
4	σ(Th-C)	80	47	53	0	0	0	18	16	1	71	12
	π (Th-C)	48	0	100	45	0	100	5	0	0	60	40
	π (Th-C)	53	0	100	37	0	100	7	0	0	62	38

Table S1. % compositions of the An-C (An = Th, U) bonding NLMOs in 1-4.

Table S2. The Wiberg Bond Orders for the selected bonds in **1-4** and $[An(C=CH)(NR_2)_3]$ (An = U or Th) complexes.

Complexes	An-C _α	Cα-Cβ	C _β -Cγ
1	0.597	2.005	1.638
2	0.565	2.003	1.634
3	0.983	2.401	1.281
4	0.912	2.355	1.305
$[U(C \equiv CH)(NR_2)_3]^{24}$	0.709		
$[Th(C \equiv CH)(NR_2)_3]^{24}$	0.674		

Table S3. Calculated carbon shielding (σ) and chemical shift (δ) for TMS, Allene, Acetylene, and the C_{α}, C_{β}, and C_{γ} nuclei of **2** and **4** using various functionals.

Complex	Method	σ _{calc} (ppm)	δ _{calc} (ppm)	Δso(ppm)	δ _{expt} (ppm)
	PB86/SO-BP86	186.9 / 187.8			
TMS	PBE/SO-PBE	187.5 / 188.4			
1 1/15	PBE0/SO-PBE0 (25%) ^a	192.2 / 193.0			
	PBE0/SO-PBE0 (40%)	194.7 / 195.5			
Allono	DRE/SO DRE	107.9, -41.1, 107.9 /	79.6, 228.6, 79.6 /	030203	
Allelle	rde/SO-rde	108.5, -40.4, 108.5	79.9, 228.8, 79.9	0.5, 0.2, 0.5	
	MPW1PW91	109, -41, 109 ^b			73.9, 208.5, 73.9 ^c
Acetylene	PBE/SO-PBE	108.3 / 108.9	79.2 / 79.5	0.3	
	PB86/SO-BP86	69.9, -23.4, 82.2 /	117.0, 210.3, 104.7 /	2713703	
	1 000/00-01 00	43.7, -26.2, 82.8	144.1, 214.0, 105.0	27.1, 5.7, 0.5	
	PBE/SO-PBE	70.4, -22.9, 82.8 /	117.1, 210.4, 104.7 /	26.8. 3.7. 0.3	
2^{d}		44.5, -25.7, 83.4	143.9, 214.1, 105.0	20.0, 3.7, 0.3	139.4. 204.7. 96.7
_	PBF0/SO-PBF0 (25%)	75.3, -26.5, 88.7 /	116.9, 218.7, 103.6 /	29.9.3.1.0.3	10,11,20, , , 0
	1220,50 1220 (20,0)	46.2, -28.8, 89.1	146.8, 221.8, 103.9	2777, 011, 010	
	PBE0/SO-PBE0 (40%)	78.5, -27.5, 91.8 /	116.2, 222.2, 102.9	32.1, 2.7, 0.6	
		47.2, -29.4, 92.0	148.3, 224.9, 103.5		
	PB86/SO-BP86	12.3, 59.3, 104.3 /	174.6, 127.6, 82.6 /	36.4, 9.0, 0.0	
		-23.2, 51.2, 105.2	211.0, 136.6, 82.0	· · · - · - · - · -	
	PBE/SO-PBE	12.6, 59.6, 104.8 /	174.9, 127.9, 82.7 /	36.2. 9.10.1	
4		-22.7, 51.4, 105.8	211.1, 137.0, 82.6		205.4. 128.5. 70.6
-	PBE0/SO-PBE0 (25%)	19.4, 62.8, 115.1 /	172.8, 129.4, 77.1/	39.5.8.5.0.4	2001, 12010, 7010
	1 BE0/50 1 BE0 (2570)	-19.3, 55.1, 115.5	212.3, 137.9, 77.5	59.5, 6.5, 6.1	
	PBE0/SO-PBE0 (40%)	23.7, 65.0, 120.4/	171.0, 129.7, 74.3/	4138406	
	PBE0/SO-PBE0 (40%)	-16.8, 57.4, 120.6	212.3, 138.1, 74.9	+1.5, 5.4, 0.0	

^a Fraction of exact exchange in the functional in parentheses.

^b Values taken from Ref 25.

^c Values taken from Ref 26.

^d The shielding and chemical shifts are averaged from two experimental geometries.

Table S4. QTAIM analy	is of the complexes 3 and 4 .
-----------------------	---

Complex	BCP ^a	$\rho(r)^{b}$	$\nabla^2 \rho(r)^c$	$\mathbf{H}(r)^{\mathrm{d}}$	ε (r) ^e
3	U-Ca	0.102	0.147	-0.038	0.300
	C_{α} - C_{β}	0.399	0.939	-0.693	0.026
	$C_{\beta}-C_{\gamma}$	0.295	0.751	-0.293	0.201
4	Th-Ca	0.093	0.116	-0.033	0.193
	C_{α} - C_{β}	0.388	0.958	-0.662	0.012
	$C_{\beta}-C_{\gamma}$	0.292	0.739	-0.293	0.229

^a The bond critical points.

^a The bond critical points. ^b The electron density ($\rho(\mathbf{r})$, au). ^c Laplacian of electron density ($\nabla^2 \rho(\mathbf{r})$, au). ^d Total electronic energy density ($H(\mathbf{r})$, au). ^e Ellipticity of electron density ($\epsilon(\mathbf{r})$, au).

LMO type	SR/	SOC/	SR/	SOC/	SR/	SOC/
	$C_{\alpha}(L+NL)$	$C_{\alpha}(L+NL)$	$C_{\beta}(L+NL)$	$C_{\beta}(L+NL)$	C _Y (L+NL)	C _y (L+NL)
$\sigma(C_{\alpha}-C_{\beta})$	-57.9	-57.9	-77.1	-77.1	-6.3	-6.3
$\pi(C_{\alpha}-C_{\beta})$	32.2	32.2	-40.7	-40.8	2.0	2.0
$\sigma(C_{\alpha}-H_1)$	-32.1	-32.1	-2.0	-2.0	-0.6	-0.5
$\sigma(C_{\alpha}-H_2)$	-32.1	-32.1	-2.0	-2.0	-0.6	-0.5
$\sigma(C_{\beta}-C_{\gamma})$	-6.3	-6.3	-77.1	-77.1	-57.9	-57.9
$\pi(C_{\beta}-C_{\gamma})$	2.0	2.0	-40.7	-40.7	32.2	32.2
C _a (core)	203.4	204.1	-0.6	-0.6	-0.1	-0.1
C _β (core)	-0.1	-0.1	203.6	204.4	-0.1	-0.1
C _γ (core)	-0.1	-0.1	-0.6	-0.6	203.4	204.1
$\sigma(C_{\alpha}-H_3)$	-0.6	-0.5	-2.0	-2.0	-32.1	-32.1
$\sigma(C_{\alpha}-H_4)$	-0.6	-0.5	-2.0	-2.0	-32.1	-32.1
∑other	0.0	-0.2	0.0	0.1	0.0	-0.2
Total calc.	107.9	108.5	-41.1	-40.4	107.9	108.5

 Table S5.
 Localized Molecular Orbital(LMO) Analysis of NMR Shielding for allene.

LMO type	SR/	SOC/	$\Delta^{SO}/$	SR/	SOC/	Δ ^{SO} /	SR/	SOC/	$\Delta^{SO}/$
	$C_{\alpha}(L+NL)$	C _a (L+NL)	Cα	$C_{\beta}(L+NL)$	$C_{\beta}(L+NL)$	Cβ	C _Y (L+NL)	C _y (L+NL)	Cγ
$\sigma(C_{\alpha}-C_{\beta})$	-49.2	-48.3	0.9	-85.8	-86.3	-0.5	-6.0	-6.0	0.0
$\pi(C_{\alpha}-C_{\beta})/$	26.3	26.4	0.1	-15.7	-15.8	-0.1	1.6	1.6	0.0
π (Th-C)									
$\sigma(C_{\alpha}-H)$	-48.1	-46.9	1.2	-4.2	-4.1	0.1	0.4	0.4	0.0
$\sigma(C_{\beta}-C_{\gamma})$	-6.6	-6.6	0.0	-89.6	-89.7	-0.1	-37.3	-37.3	0.0
$\pi(C_{\beta}-C_{\gamma})$	0.2	0.2	0.0	-29.9	-29.8	0.1	5.6	5.5	-0.1
$\sigma(C_{\gamma}-C_{ipso1})$	-0.3	-0.3	0.0	1.0	1.1	0.1	-38.1	-38.1	0.0
$\sigma(C_{\gamma}-C_{ipso2})$	-0.3	-0.3	0.0	0.5	0.5	0.0	-35.4	-35.4	0.0
C _α (core)	203.6	189.5	-14.1	-0.5	-0.5	0.0	-0.1	-0.1	0.0
$C_{\beta}(core)$	-0.3	-0.3	0.0	203.7	203.1	-0.6	0.0	0.0	0.0
C _γ (core)	-0.2	-0.2	0.0	-1.0	-1.0	0.0	203.3	204.0	0.7
$\sigma(\text{Th-C}_{\alpha})$	-50.1	-61.0	-10.9	2.7	1.5	-1.2	2.0	2.0	0.0
Th(core)	-1.9	-3.9	-2.0	-0.4	-0.3	0.1	-0.1	-0.1	0.0
∑other	-3.1	-3.5	-0.4	-5.4	-6.1	-0.7	-13.1	-13.1	0.0
Total calc.	70.0	44.8	-25.2	-24.6	-27.4	-2.8	82.8	83.4	0.6

 Table S6.
 Localized Molecular Orbital(LMO) Analysis of NMR Shielding for complex 2.

LMO type	SR/	SOC/	Δ ^{SO} /	SR/	SOC/	Δ ^{SO} /	SR/	SOC/	Δ ^{SO} /
	$C_{\alpha}(L+NL)$	$C_{\alpha}(L+NL)$	Cα	$C_{\beta}(L+NL)$	$C_{\beta}(L+NL)$	Cβ	C _y (L+NL)	C _y (L+NL)	Cγ
$\sigma(C_{\alpha}-C_{\beta})$	-69.2	-68.0	1.2	-68.5	-69.1	-0.6	-2.6	-2.7	-0.1
$\pi(C_{\alpha}-C_{\beta})$	-2.2	-1.8	0.4	13.4	13.0	-0.4	1.7	1.7	0.0
$\pi(C_{\alpha}-C_{\beta})$	-12.5	-12.3	0.2	37.6	37.5	-0.1	-0.4	-0.5	-0.1
$\sigma(C_{\beta}-C_{\gamma})$	-7.7	-8.0	-0.3	-72.1	-72.6	-0.5	-26.5	-26.4	0.1
$\sigma(C_{\gamma}-C_{ipso1})$	-1.0	-1.0	0.0	0.5	0.5	0.0	-37.7	-37.8	-0.1
$\sigma(C_{\gamma}-C_{ipso2})$	-0.9	-0.9	0.0	0.1	0.0	-0.1	-37.6	-37.8	-0.2
C _α (core)	203.7	183.4	-20.3	-0.5	-0.4	0.1	-0.1	-0.1	0.0
C _β (core)	-0.7	-0.6	0.0	203.6	201.1	-2.5	0.2	0.2	0.0
C _γ (core)	-0.2	-0.2	0.0	-0.7	-0.7	0.0	203.3	204.1	0.8
$\sigma(\text{Th-C}_{\alpha})$	-81.4	-95.2	-13.8	-12.9	-15.9	-3.0	2.0	2.0	0.0
$C_{\gamma}LP$	-7.6	-7.6	0.0	-27.9	-28.1	-0.2	17.9	18.2	0.3
Th(core)	-4.5	-6.9	-2.4	-1.2	-1.6	-0.4	-0.3	-0.2	0.1
∑other	-3.2	-3.6	-0.4	-11.8	-12.3	-0.5	-15.1	-14.9	0.2
Total calc.	12.6	-22.7	-35.3	59.6	51.4	-8.2	104.8	105.8	1.0

 Table S7.
 Localized Molecular Orbital(LMO) Analysis of NMR Shielding for complex 4

Figure S1. Isosurfaces (±0.03 a.u.) of representative bonding NLMOs in allene.

Figure S2. Isosurfaces (±0.03 a.u.) of two bonding NLMOs in complex **2**, along with weight-% metal and ligand character and 6d vs. 5f contributions at the metal.

Figure S3. Isosurfaces (± 0.03 a.u.) of representative π -LP(C_{γ}) bonding NLMO in **3** (left) and **4** (right) along with weight-% metal and ligand character and 6d vs. 5f contributions at the metal.

Figure S4. ¹H NMR spectrum of $[{(NR_2)_3}U(CH=C=CPh_2)]$ (1) in a 10:1 mixture of C₆D₆ and THF-*d*₈ at room temperature.

Figure S5. ¹H NMR spectrum of $[{(NR_2)_3}Th(CH=C=CPh_2)]$ (**2**) in a 10:1 mixture of C₆D₆ and THF-*d*₈ at room temperature.

Figure S6. ¹³C{¹H} NMR spectrum of [{(NR₂)₃}Th(CH=C=CPh₂)] (**2**) in a 10:1 mixture of C₆D₆ and THF- d_8 at room temperature.

Figure S7. ¹H NMR spectrum of $[Li(2.2.2-Cryptand)][\{(NR_2)_3\}U(CCCPh_2)]$ (**3**) in a 10:1 mixture of C₆D₆ and THF-*d*₈ at room temperature. (*) indicates free HN(SiMe_3)₂, (#) indicates an unidentified impurity. (!) indicates pentane.

Figure S8. ⁷Li{¹H} NMR spectrum of [Li(2.2.2-Cryptand)][{(NR₂)₃}U(CCCPh₂)] (**3**) in a 10:1 mixture of C_6D_6 and THF- d_8 at room temperature.

Figure S9. ¹H NMR spectrum of $[Li(2.2.2-Cryptand)][\{(NR_2)_3\}Th(CCCPh_2)]$ (4) in a 10:1 mixture of C₆D₆ and THF-*d*₈ at room temperature.

Figure S10. ⁷Li{¹H} NMR spectrum of [Li(2.2.2-Cryptand)][{(NR₂)₃}Th(CCCPh₂)] (**4**) in a 10:1 mixture of C_6D_6 and THF- d_8 at room temperature.

Figure S11. ¹³C{¹H} NMR spectrum of [Li(2.2.2-Cryptand)][{(NR₂)₃}Th(CCCPh₂)] (**4**) in a 10:1 mixture of C_6D_6 and THF- d_8 at room temperature. (*) indicates pentane.

	1	2	$3 \cdot C_5 H_{12}$	$4 \cdot C_5 H_{12}$
empirical formula	C33H65N3Si6U	C33H65N3Si6Th	C56H112LiN5O6Si6U	C56H112LiN5O6Si6Th
Crystal habit, color	Block, Brown	Block, Colorless	Needle, Dark-purple	Needle, Orange
crystal size (mm)	$0.30 \times 0.20 \times 0.10$	$0.30 \times 0.20 \times 0.10$	$0.40\times~0.10\times0.05$	$0.40\times~0.10\times0.05$
crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic
space group	P-1	P-1	$P2_1$	$P2_1$
vol (Å ³)	2162.2(9)	4339.3(18)	3449.1(13)	3520.1(16)
a (Å)	11.486(3)	11.816(3)	12.471(3)	12.595(3)
b (Å)	11.561(3)	19.383(5)	10.829(2)	10.892(3)
c (Å)	18.978(5)	19.538(5)	25.657(6)	25.756(7)
α (deg)	77.340(4)	97.533(3)	90.00	90.00
β (deg)	80.647(4)	101.555(3)	95.484(3)	94.977(4)
γ (deg)	61.820(4)	91.603(3)	90.00	90.00
Z	2	4	2	2
fw (g/mol)	910.45	904.46	1365.01	1359.02
density (calcd)	1.398	1.384	1.314	1.282
(Mg/m^3)				
abs coeff (mm ⁻¹)	3.944	3.626	2.503	2.265
F_{000}	920	1832	1420	1416
Total no. reflections	23271	43276	36346	28848
Unique reflections	9281	18382	14410	14458
R _{int}	0.0399	0.0376	0.0343	0.0444
final R indices $[I >$	$R_1 = 0.0237$	$R_1 = 0.0381$	$R_1 = 0.0404,$	$R_1 = 0.0623,$
$2\sigma(I)$]	$wR_2 = 0.0556$	$wR_2 = 0.0810$	$wR_2 = 0.1001$	$wR_2 = 0.1615$
largest diff peak and	1.235 and -0.448	6.071 and -1.692	1.180 and -0.840	1.859 and -1.978
hole (e ⁻ Å ⁻³)				
GOF	1.149	1.005	1.012	1.049

Table S8. X-ray Crystallographic Data for Complexes 1, 2, $3 \cdot C_5 H_{12}$, and $4 \cdot C_5 H_{12}$

Figure S13. IR spectrum of 1 (KBr Pellet).

Figure S14. IR spectrum of 2 (KBr Pellet).

Figure S15. IR spectrum of 3 (KBr Pellet).

Figure S16. IR spectrum of 4 (KBr Pellet).

Cartesian Coordinates (unit: angstrom)

Compound 1

U	0.00000000	0.00000000	2.45728744
С	0.00000000	0.00000000	0.00000000
С	-0.94729212	0.00067491	-0.88888076
С	-1.95677151	0.06762573	-1.75096813
Н	1.02426414	0.16068345	-0.39023598
Si	-2.82509481	0.15671689	4.58269330
Si	-2.71430029	-1.95642368	2.40080172
Si	2.98538026	-1.44081347	1.62519121
Si	-0.40475195	3.24212554	1.72209668
Si	1.75985096	-2.50481724	4.17161513
Si	1.71589791	2.79481333	3.82169218
Ν	0.49052334	2.15684460	2.75974148
Ν	1.71581054	-1.38471360	2.83812883
Ν	-2.00027299	-0.62229209	3.26078731
С	-2.56752014	1.40934869	-1.96568001
С	-2.08026338	2.48355952	1.37372565
Н	-2.11579304	1.42540474	1.06042029
Н	-2.55519099	3.04070184	0.54604652
Н	-2.72636459	2.58934850	2.26168686
С	-2.43508037	-1.11470577	-2.48923794
С	3.33918261	0.29048778	1.00376177
Н	2.49027627	0.99681958	1.01130930
Н	3.72160710	0.26198790	-0.03309476
Н	4.12416456	0.75180852	1.63019883
С	-2.03530220	-2.40012237	-2.12702212
Н	-1.39242741	-2.53202451	-1.25101770
С	-1.76935733	1.53744290	5.25309688
Н	-0.80235067	1.16891141	5.64524638
Н	-2.29282407	2.01047625	6.10461440
Н	-1.54114254	2.32752142	4.52074412
С	-1.77315451	2.51657278	-2.19145762
Н	-0.69081763	2.37639652	-2.27806421
С	0.55281603	3.60523784	0.16627748
Н	1.51264874	4.09794777	0.39892100
Н	-0.01584752	4.27225849	-0.50477735
Н	0.77565188	2.68056529	-0.39138182
С	-1.31640753	-2.90522036	1.57815470
Н	-0.62454100	-2.32048210	0.94319080
Н	-1.77121675	-3.64845830	0.89715101
Н	-0.71382762	-3.46225850	2.31389789
С	-3.25098740	-0.99523853	-3.62721754
Н	-3.56920293	0.00021310	-3.95285072
С	-3.95291715	1.59459313	-1.87666510
Н	-4.59608557	0.72726170	-1.69086882
С	0.20234388	-2.33110030	5.18419256
Н	0.07521232	-1.31452805	5.60295492

Η	0.27156810	-3.01519930	6.05073808
Η	-0.72390382	-2.57447587	4.64241451
С	2.48803602	-2.57864208	0.22830948
Η	2.28701104	-3.59354518	0.61472475
Η	3.28752350	-2.66272364	-0.53036329
Η	1.57336669	-2.23495734	-0.28462171
С	-2.31432090	3.78884653	-2.28267941
Η	-1.66265876	4.65262403	-2.45378579
С	-3.92813474	-1.40024259	1.10769340
Η	-4.80565966	-0.90373646	1.55708189
Η	-4.29169448	-2.25498148	0.50903209
Η	-3.46540072	-0.68674451	0.40360400
С	3.16084666	-2.22253832	5.37524480
Η	4.15086118	-2.47144366	4.96072712
Η	3.00673678	-2.86572685	6.26151517
Н	3.20081992	-1.17832754	5.72861181
С	-4.46254843	0.83628179	4.03636968
Н	-4.38108223	1.45813650	3.12897007
Η	-4.91993457	1.45485338	4.83014422
Η	-5.17632924	0.02358891	3.80971282
С	4.62740980	-2.06730481	2.26868528
Η	5.02531928	-1.44082211	3.08545566
Η	5.35916065	-2.02775638	1.44009729
Η	4.59779448	-3.11093637	2.62365078
С	-3.68519343	3.94804101	-2.18890048
Η	-4.12527156	4.94877154	-2.27094113
С	-3.15083806	-0.94915158	6.06675983
Η	-3.89021711	-1.74192798	5.86976634
Η	-3.54690577	-0.32712108	6.89080442
Η	-2.23090202	-1.43591180	6.43306660
С	-2.42539641	-3.50566026	-2.86758913
Η	-2.09043584	-4.50202781	-2.55593366
С	-3.58103389	-3.20027713	3.50482898
Η	-2.95100769	-3.54010272	4.34478319
Η	-3.84726338	-4.09038876	2.90541594
Η	-4.51973956	-2.80219502	3.92769347
С	-4.49784225	2.85648371	-1.98797656
Η	-5.58304770	2.98672076	-1.90718200
С	1.85828587	-4.26883245	3.61189385
Η	1.03567190	-4.54400907	2.92916459
Η	1.80413573	-4.94783468	4.48274410
Η	2.80234736	-4.49550317	3.08596531
С	-3.63088117	-2.10375856	-4.36170143
Н	-4.25823506	-1.96723999	-5.25001864
С	2.58021061	1.39450121	4.70686267
H	1.87934792	0.81109029	5.33371500
Н	3.34318691	1.81144089	5.38972790
Η	3.08261011	0.68249029	4.03295292
С	1.06252693	3.88958065	5.19563166

Η	0.66011241	4.85196700	4.84221492
Η	1.89528168	4.11708616	5.88706582
Η	0.27288666	3.39382708	5.78495068
С	-0.79374027	4.88568811	2.51495717
Н	-1.32247392	4.77963891	3.47796298
Н	-1.45755546	5.45246547	1.83573161
Н	0.10138324	5.50815646	2.68603009
С	2.98801907	3.78531176	2.89543571
Н	3.43663362	3.21426373	2.06397580
Н	3.80702950	4.08763901	3.57354232
Н	2.56299679	4.71145130	2.46968655
С	-3.21793336	-3.36055309	-3.98870166
Н	-3.51732002	-4.23969060	-4.57022724
Con	npound 2		
Th	0.00000000	0.00000000	2.52835735
С	-0.00000000	0.00000000	0.00000000
С	0.33030625	-0.90060817	-0.86551977
С	0.65710632	-1.89596474	-1.67909978
Н	-0.29854831	0.81636964	-0.38607021
Si	-2.86057349	-0.45218505	4.52234631
Si	0 70867323	-3 30941995	2 56062547
Si	2 42048980	-1 78122193	4 53812057
Si	-3 30971938	0 75964206	1 76194118
Si	0 54263407	3 39981979	3 68123742
Si	2 49226541	2 20280657	1 75013/13
N	2.47220541	0.14807475	3 00596917
N	1 15640247	1 81785636	3 33882160
N	1.05341604	2 03186860	2 73305043
C	0.05432542	2.03180800	2.73393043
с u	-0.93432342	-3.02732330	2 28860010
п u	-1.02490793	-2.76474701	2.38809919
п u	-1.23246023	-3.64904039	1.23991697
п	-0.8/100/31	-2.30190377	1.00199327
U U	-0.00848052	-4.28/091/3	-2.02020431
н	0.83388108	-4.303//03/	-1.92150451
C H	-2.51699642	2.28396900	0.98208319
H	-2.73742707	3.07627035	1.51500044
H	-2.85676432	2.39947782	0.06860113
H	-1.54322261	2.16879292	0.95499284
С	-3.60889123	-0.54588670	0.46013008
Н	-2.75786701	-0.78862363	0.03992047
H	-4.22121558	-0.19355631	-0.21920377
Н	-4.00622030	-1.33749246	0.87776442
С	-0.38665030	-2.92456686	-1.96151019
С	1.92610462	-3.83189236	1.25074403
Η	2.08195801	-3.08606806	0.63498981
Η	1.56519126	-4.59529887	0.75472508
Η	2.77174184	-4.08756966	1.67490135
С	-1.72554120	-2.56067474	-2.09139695

Η	-1.96574828	-1.64298339	-2.04264368
С	3.26908009	0.50497175	1.49498703
Н	3.80635609	0.26773207	2.27963515
Н	3.84170648	0.52790277	0.70011269
Н	2.56207577	-0.16074312	1.36925778
С	-3.85605290	0.75770371	5.54266347
Η	-3.38959363	1.61905963	5.57704608
Η	-3.96269327	0.40683336	6.45118482
Η	-4.73892625	0.88133689	5.13361372
С	-1.06132874	-5.23607877	-2.23923435
Н	-0.82583806	-6.15532824	-2.29665410
С	-4.97068850	1.32563426	2.39646913
Η	-5.42033487	0.57945704	2.84495989
Н	-5.51974317	1.63399216	1.64496860
Η	-4.84398079	2.06247004	3.03059225
С	-2.71902583	-3.51712807	-2.29053000
Η	-3.62761007	-3.25026189	-2.37249194
С	0.48073313	-4.73447486	3.74393242
Η	1.34732790	-4.97684695	4.13428306
Н	0.11092438	-5.50251265	3.26357500
Н	-0.13468825	-4.46873339	4.45886255
С	2.01054481	-2.69918666	6.12811578
Н	1.22673755	-2.28821115	6.54937703
Н	2.77346789	-2.65058290	6.74147907
Н	1.81686831	-3.63736283	5.92430363
С	-1.15686632	3.14007374	4.39635850
Η	-1.78169717	2.90507060	3.67966866
Η	-1.45754182	3.96624460	4.83232916
Η	-1.12674041	2.41647658	5.05570426
С	2.27002039	-2.73542561	-3.42133797
Н	1.57440745	-3.25517428	-3.80716904
С	-3.92379910	-1.97361141	4.31420218
Н	-4.62950008	-1.79258930	3.65907750
Н	-4.32962596	-2.20872345	5.17435308
Η	-3.37012823	-2.71977849	4.00155822
С	2.00395922	-1.96685595	-2.30499840
С	-2.38195736	-4.86634829	-2.36742018
Η	-3.05476476	-5.52262174	-2.50673361
С	-1.35684294	-0.86733448	5.57155492
Η	-0.91187935	-1.66027916	5.20596692
Η	-1.64033943	-1.04557186	6.49125300
Η	-0.73402124	-0.11089686	5.56204275
С	2.67020145	-0.01503601	5.11643615
Η	2.87506924	0.55425114	4.34736164
Η	3.41440829	0.01738373	5.75349184
Η	1.85322894	0.30507555	5.55167729
С	4.02339323	-2.49487489	3.88792911
Η	3.94030400	-3.46721973	3.81494803
Н	4.75268152	-2.27436787	4.50361758

Η	4.21466489	-2.11489240	3.00478431
С	2.12357493	2.95434866	0.09734273
Н	1.50066811	2.37596663	-0.39176485
Н	2.95528444	3.04404859	-0.41230883
Н	1.71918479	3.83856561	0.22201949
С	3.85387771	3.23790945	2.55305061
Н	3.52409913	4.14720299	2.70937921
Н	4.63000084	3.27177507	1.95524370
Н	4.11653018	2.83475730	3.40641100
С	4.55307971	-1.99311263	-3.47093952
Н	5.41594674	-2.00647024	-3.87025753
С	1.63424551	3.71774425	5.15687276
Н	1.61015465	2.94181216	5.75488813
н	1 31249844	4 50857549	5 63668416
н	2 55427080	3 86860156	4 85610389
C	0 51130861	4 95880086	2.64646575
Н	1.39203626	5.10005241	2.24195120
Н	0.28658545	5 72427749	3 21550043
н	-0.16320617	4 86817682	1 94175434
C	3 54072349	-2.76360940	-3 98979919
н	3 70814618	-3 31760178	-4 74182438
C	3.05526995	-1 19211357	-1 79890515
н	2 89746578	-0 64394023	-1 03925612
C	4 31246232	-1 20035965	-2 36828177
н	5.00705301	-0 66217783	-2.00368071
11	5.00705501	-0.00217703	-2.00500071
Cor	npound 3		
U	0.00000000	-0.00000000	2.30439631
C	0.00000000	0.00000000	0.00000000
C	-0.14324712	-0.00330987	-1.21315422
C	-0.31355157	0.07081719	-2.60142708
N	1.13438998	1.91204657	2.81585501
N	-2.23811023	-0.02828677	2.57235230
N	1.07098940	-1.93540012	2.78572272
Si	2.24652247	2.00469045	4.14723090
Si	-3.17024394	-0.87511506	1.38358011
Si	-2.98361537	0.88693483	3.84624440
Si	2.47428142	-2.29162844	1.81353584
Si	0.53307491	-3.05827448	3.98899166
Si	0.89012387	3.26275611	1.77725536
C	-0.39557568	1.41596947	-3.18213318
C	-0.01752273	1.73170013	-4.49966215
C	-4 14937998	2 20164830	3 20499468
C	-0.81371582	2.47917738	-2.39510652
C	2.39842186	0.34702011	4.97036445
C	-0.07303125	3.05407262	-4.97032265
C	-0.85954361	3.75856532	-2.88984745
C	-0.88908280	-1.25669935	-4.67590301
C	-1.02144849	-2.40974010	4.78823714
-			

С	-0.33990500	-1.14785778	-3.37397410
С	0.16741715	-3.55172031	-3.55853544
С	-0.38213334	-3.54645178	-4.83541062
С	1.72489958	3.16292012	5.51033657
С	-0.89197396	3.31203271	1.23862575
С	-3.93098344	-0.13927019	5.11676656
С	-2.25434031	-2.36174274	0.79880036
С	2.00318812	-3.42767126	0.37904505
С	1.22922885	4.91984279	2.59627494
С	-4.80850701	-1.51882956	2.07060465
С	-0.87922778	-2.43934589	-5.37438416
С	0.13483212	-2.36174824	-2.82780178
С	-1.63914831	1.75260343	4.83068874
С	-3.61119466	0.21354544	-0.07195947
С	1.72221662	-3.32772205	5.38284498
С	-0.46478155	4.04483726	-4.17394929
С	3.88338055	-3.10194484	2.75623719
С	3.18468092	-0.70928394	1.14103349
С	0.15956461	-4.74348810	3.26009938
С	3.93515815	2.53187229	3.58755972
С	1.94930740	3.15611137	0.25562551
Н	0.36648446	0.94717647	-5.15772414
Η	-3.64489262	2.85716451	2.47454497
Н	-4.53486463	2.83645590	4.02440848
Н	-5.02147109	1.75590866	2.69337074
Η	-1.12398506	2.28200715	-1.36594100
Η	1.44175654	0.02299888	5.42306117
Η	3.13331651	0.40563641	5.79617323
Η	2.71693518	-0.46148443	4.29371911
Н	0.24857705	3.24946072	-6.00223380
Н	-1.20346619	4.56773473	-2.23099190
Η	-1.34929480	-0.37243957	-5.12851165
Η	-0.84421345	-1.45564475	5.32131598
Н	-1.38766387	-3.12965019	5.54401278
Н	-1.83767498	-2.22896065	4.06982256
Η	0.57704738	-4.46349205	-3.11093111
Η	-0.37552997	-4.48196963	-5.41384860
Η	1.73718963	4.22325701	5.20994079
Η	2.40978280	3.05783174	6.37352291
Η	0.70668211	2.93159845	5.86807207
Η	-1.26517726	2.33866165	0.86660540
Η	-1.02318206	4.03106907	0.40914858
Η	-1.55546884	3.62685813	2.06383814
Η	-4.83667614	-0.60994689	4.70081479
Η	-4.24717620	0.51185407	5.95366468
Η	-3.29984902	-0.94064845	5.53689952
H	-1.32558375	-2.09780156	0.26796406
Н	-2.87743757	-2.93374661	0.08435614
Η	-1.99933661	-3.04468280	1.62929212

Η	1.87555260	-4.47532788	0.70485265
Н	2.74831849	-3.41176431	-0.43659168
Н	1.03943860	-3.09064221	-0.03569077
Н	0.56466557	5.10143608	3.45951977
Н	1.04032271	5.72708419	1.86332139
Н	2.27033950	5.03693482	2.94286566
Н	-4.66609131	-2.20397078	2.92545903
Н	-5.33181865	-2.08423384	1.27696448
Н	-5.48872174	-0.71148442	2.39635565
Н	-1.32075141	-2.45972399	-6.37995619
Н	0.56037111	-2.33347622	-1.82051638
Н	-0.94936963	1.03956304	5.32259107
Н	-2.10138883	2.34746010	5.64157297
Н	-1.02194446	2.43435906	4.22400426
Н	-4.08008266	1.15865252	0.25645771
Η	-4.31856047	-0.29237000	-0.75502618
Н	-2.70738248	0.46302886	-0.65163902
Н	2.63565471	-3.86684129	5.08339964
Н	1.23660600	-3.92413167	6.17884516
Η	2.04007486	-2.37230643	5.83601426
Н	-0.50469941	5.08003183	-4.53816930
Н	4.18015474	-2.51874797	3.64580655
Η	4.76573023	-3.16796509	2.09227097
Η	3.64842361	-4.12848082	3.08827723
Н	2.46039763	-0.12976192	0.53734549
Η	4.02793637	-0.94936072	0.46618182
Η	3.57554654	-0.05271709	1.93702891
Η	-0.52958122	-4.66683865	2.40109236
Η	-0.30040560	-5.41748378	4.00680326
Н	1.07934169	-5.23586314	2.89557852
Η	4.33925984	1.84479801	2.82296622
Η	4.65601919	2.55668079	4.42661808
Η	3.92431779	3.53911351	3.13578513
Η	3.02554647	3.11457889	0.50408722
Н	1.78745108	4.00912363	-0.42893118
Н	1.69621637	2.23753070	-0.30254106
Con	npound 4		
Th	0.00000000	0.00000000	2.36739322
С	0.00000000	0.00000000	0.00000000
С	0.17314732	0.00933229	-1.22374792
С	0.32124163	-0.10335879	-2.61335178
Ν	-1.20462656	-1.90038245	2.88982102
Ν	2.30229067	-0.11163034	2.71585493
Ν	-1.01058007	2.03853123	2.85577971
Si	-2.35656244	-1.97145256	4.20258928
Si	3.29631206	0.70610636	1.56332019
Si	2.97100571	-1.04592685	3.99423481
Si	-2.40255158	2.43047026	1.87517206

Si	-0.41260722	3.11732665	4.08834625
Si	-1.03727504	-3.27975563	1.83372106
С	0.41313942	-1.44867451	-3.19950436
С	0.01507098	-1.75226946	-4.53052002
Н	-0.37404070	-0.99266983	-5.20894971
С	4.08574293	-2.43056883	3.37748094
Н	3.55932319	-3.05938536	2.63871991
Н	4.42352898	-3.08289436	4.20397775
Н	4.98733122	-2.03042410	2.87998230
С	0.83373897	-2.49710869	-2.41689925
Н	1.15961271	-2.27331788	-1.39565609
С	-2.39610880	-0.30327613	4.99733447
Н	-1.42552084	-0.04325030	5.46427133
Н	-3.13871553	-0.28839549	5.81804881
Н	-2.65000821	0.52249830	4.31255096
С	0.09316192	-3.13434981	-4.94131680
Н	-0.22490362	-3.33938999	-5.97585983
С	0.85842057	-3.81202351	-2.85478134
Η	1.19145122	-4.62133511	-2.19603551
С	0.83609426	1.20760587	-4.72038903
Η	1.30224862	0.32033001	-5.16053792
С	1.08962100	2.35165098	4.88053711
Η	0.83125884	1.42484431	5.42960042
Η	1.51169733	3.04589197	5.63149637
Η	1.89912745	2.09423973	4.17718045
С	0.31778182	1.11677091	-3.39952054
С	-0.15963985	3.49000917	-3.55546832
Н	-0.55545936	4.40463766	-3.09977447
С	0.25961586	3.45938500	-4.83277515
Η	0.20817914	4.40288531	-5.40397537
С	-1.92748242	-3.18531489	5.61152203
Η	-2.02723247	-4.24071331	5.31017584
Η	-2.61093517	-3.01307762	6.46414391
Η	-0.89521845	-3.03259665	5.97159750
С	0.73268002	-3.35080007	1.27409598
Н	1.07904115	-2.38932659	0.84668008
Η	0.85505815	-4.09576757	0.46670177
Η	1.42268927	-3.62206551	2.09269760
С	3.92166344	-0.08063961	5.30654711
Η	4.86228361	0.35085992	4.92685021
Η	4.17689925	-0.75081626	6.14893022
Η	3.31349972	0.74739705	5.71011372
С	2.49594937	2.20718215	0.98351008
Η	3.14749741	2.73132308	0.25882321
Η	2.28670142	2.92045941	1.80229095
Η	1.55097780	2.00727494	0.44493799
С	-1.82658968	3.53154085	0.38340707
Н	-1.62864078	4.57463241	0.68715295
Η	-2.55874485	3.54188542	-0.44330899

Η	-0.88499700	3.10427866	0.00211641
С	-1.47430191	-4.95579130	2.65925683
Η	-0.82930582	-5.17267943	3.52862133
Η	-1.31916755	-5.76092187	1.91732343
Η	-2.52505092	-5.01165661	2.98990460
С	4.99721210	1.26532157	2.29105732
Н	4.88278914	1.96193695	3.14082190
Н	5.56432901	1.79059974	1.50029815
Н	5.61472130	0.41416005	2.62856521
С	0.81328699	2.39705705	-5.43731374
Н	1.20542828	2.44388346	-6.45914950
С	-0.14349385	2.29384749	-2.82963333
Н	-0.52310770	2.26570872	-1.80489803
С	1.54952842	-1.83916572	4.92984389
Н	0.89772439	-1.09095777	5.42406900
Н	1.94933314	-2.47422503	5.74327564
Н	0.89993791	-2.47592250	4.30670346
С	3.69909317	-0.46973117	0.14530063
Н	4.07681393	-1.43117098	0.53513344
Н	4.45896825	-0.06001698	-0.54541984
Η	2.78603740	-0.67005168	-0.44119524
С	-1.56422621	3.42762637	5.51255762
Η	-2.47368202	3.98207352	5.22647757
Н	-1.04564157	4.02126362	6.28888761
Η	-1.89172010	2.48263611	5.98203095
С	0.42581050	-4.06341706	-4.17845182
Η	0.44516446	-5.10731907	-4.52842292
С	-3.80629424	3.29513140	2.80940001
Η	-4.13095439	2.70702895	3.68640689
Η	-4.67670873	3.40506945	2.13663820
Η	-3.53162847	4.30489212	3.16193790
С	-3.09808494	0.88317233	1.19687052
Η	-2.36743435	0.32559827	0.57512519
Η	-3.94247581	1.12214677	0.52271115
Η	-3.49011380	0.19950263	1.97101794
С	0.01177133	4.80307697	3.35278286
Η	0.69978926	4.70207146	2.49518814
Η	0.48002640	5.47891418	4.09214166
Η	-0.90213052	5.29969133	2.97987659
С	-4.05077374	-2.40516306	3.62092838
Η	-4.41037018	-1.69639978	2.85363777
Η	-4.78126779	-2.39514029	4.45173525
Η	-4.08805862	-3.41050498	3.16687362
С	-2.10252997	-3.09690562	0.29809690
Η	-3.17657250	-3.00973658	0.54256392
Η	-1.97251230	-3.94540684	-0.39825406
Η	-1.79732896	-2.18111782	-0.23926795

References

1. Turner, H. W.; Andersen, R. A.; Zalkin, A.; Templeton, D. H., Chloro-, methyl-, and (tetrahydroborato)tris((hexamethyldisilyl)amido)thorium(IV) and uranium(IV). Crystal structure of (tetrahydroborato)tris((hexamethyldisilyl)amido)thorium(IV). *Inorg. Chem.* **1979**, *18*, 1221-1224.

2. Andersen, R. A., Tris ((hexamethyldisilyl) amido) uranium (III): preparation and coordination chemistry. *Inorg. Chem.* **1979**, *18*, 1507-1509.

3. Huang, J.-H.; Lee, T.-Y.; Swenson, D. C.; Messerle, L., An alkylidene-tethered tantallanorbornadiene from reduction of a tantalum(phenylalkenyl)alkylidene derived from 3,3-diphenylcyclopropene ring opening by $(\eta-C_5Me_4R)_2Ta_2(\mu-X)_4$ (Ta=Ta). *Inorg. Chim. Acta* **2003**, *345*, 209-215.

4. Barnett, N. D. R.; Mulvey, R. E.; Clegg, W.; O'Neil, P. A., Crystal structure of lithium disopropylamide (LDA): an infinite helical arrangement composed of near-linear nitrogen-lithium-nitrogen units with four units per turn of helix. *J. Am. Chem. Soc.* **1991**, *113*, 8187-8188.

5. Harris, R. K.; Becker, E. D.; De Menezes, S. M. C.; Granger, P.; Hoffman, R. E.; Zilm, K. W., Further Conventions for NMR Shielding and Chemical Shifts (IUPAC Recommendations 2008). *Magn. Reson. Chem.* **2008**, *46*, 582-598.

6. Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.; Goodfellow, R.; Granger, P., NMR nomenclature: nuclear spin properties and conventions for chemical shifts. IUPAC Recommendations 2001. International Union of Pure and Applied Chemistry. Physical Chemistry Division. Commission on Molecular Structure and Spectroscopy. *Magn. Reson. Chem.* **2002**, *40*, 489-505.

7. SMART Apex II, Version 2.1 ed.; Bruker AXS Inc.: Madison WI, 2005.

8. *SAINT Software User's Guide*, Version 7.34a ed.; Bruker AXS Inc.: Madison, WI, 2005.

9. Sheldrick, G. M., *SADABS*, the Siemens Area Detector Absorption Correction; University of Göttingen: Göttingen, Germany, 2005.

10. SHELXTL PC, Version 6.12 ed.; Bruker AXS Inc.:Madison, WI, 2005.

Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H., Gaussian 16. Gaussian, Inc. Wallingford, CT: 2016.
 Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G., The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. *J. Chem. Phys.*

correlation functional applied to the G2-1 test set using a plane-wave basis set. *J. Chem. Phys.* **2005**, *122*, 234102.

13. Cao, X.; Dolg, M., Valence basis sets for relativistic energy-consistent small-core lanthanide pseudopotentials. *J. Chem. Phys.* **2001**, *115*, 7348-7355.

14. Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; Windus, T. L., 6-31G* basis set for atoms K through Zn. *J. Chem. Phys.* **1998**, *109*, 1223-1229.

15. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **2011**, *32*, 1456-1465.

16. Glendening, E. D.; Landis, C. R.; Weinhold, F., NBO 6.0: Natural bond orbital analysis program. *J. Comput. Chem.* **2013**, *34*, 1429-1437.

17. Lu, T.; Chen, F., Multiwfn: A multifunctional wavefunction analyzer. *J. Comput. Chem.* **2012**, *33*, 580-592.

18. Baerends, E. J.; Ziegler, T.; Atkins, A. J.; Autschbach, J.; Baseggio, O.; Bashford, D.; Bérces, A.; Bickelhaupt, F. M.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Daul, C.; Chong, D. P.; Chulhai, D. V.; Deng, L.; Dickson, R. M.; Dieterich, J. M.; Ellis, D. E.; Faassen, M. v.; Fan, L.; Fischer, T. H.; Guerra, C. F.; Franchini, M.; Ghysels, A.; Giammona, A.; Gisbergen, S. J. A. v.; Goez, A.; Götz, A. W. G., J. A.; Gritsenko, O. V.; Grüning, M.; Gusarov, S.; Harris, F. E.; Hoek, P. v. d.; Hu, Z.; Jacob, C. R.; Jacobsen, H.; Jensen, L.; Joubert, L.; Kaminski, J. W.; Kessel, G. v.; König, C.; Kootstra, F.; Kovalenko, A.; Krykunov, M. V.; Lenthe, E. v.; McCormack, D. A.; Michalak, A.; Mitoraj, M.; Morton, S. M.; Neugebauer, J.; Nicu, V. P.; Noodleman, L.; Osinga, V. P.; Patchkovskii, S.; Pavanello, M.; Peeples, C. A.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ramanantoanina, H.; Ramos, P.; Ravenek, W.; Rodríguez, J. I.; Ros, P.; Rüger, R.; Schipper, P. R. T.; Schlüns, D.; Schoot, H. v.; Schreckenbach, G.; Seldenthuis, J. S.; Seth, M.; Snijders, J. G.; Solà, M.; Stener, M.; Swart, M.; Swerhone, D.; Tognetti, V.; Velde, G. t.; Vernooijs, P.; Versluis, L.; Visscher, L.; Visser, O.; Wang, F.; Wesolowski, T. A.; Wezenbeek, E. M. v.; Wiesenekker, G.; Wolff, S. K.; Woo, T. K.; Yakovlev, A. L.: , Amsterdam Density Functional. 2017 ed.; SCM, Theoretical Chemistry, Vrije Universiteit Amsterdam, The Netherlands, . . 2017.

19. Lenthe, E. v.; Baerends, E. J.; Snijders, J. G., Relativistic regular two - component Hamiltonians. *J. Chem. Phys.* **1993**, *99*, 4597-4610.

20. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.

21. Pye, C. C.; Ziegler, T., An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. *Theor. Chem. Acc.* **1999**, *101*, 396-408.

22. Autschbach, J.; Zheng, S., Analyzing Pt chemical shifts calculated from relativistic density functional theory using localized orbitals: The role of Pt 5d lone pairs. *Magn. Reson. Chem.* **2008**, *46*, S45-S55.

23. Autschbach, J., Analyzing NMR shielding tensors calculated with two-component relativistic methods using spin-free localized molecular orbitals. *J. Chem. Phys.* **2008**, *128*, 164112.

24. Kent, G. T.; Yu, X.; Wu, G.; Autschbach, J.; Hayton, T. W., Synthesis of Parent Acetylide and Dicarbide Complexes of Thorium and Uranium and an Examination of Their Electronic Structures. *Inorg. Chem.* **2021**, *In press*.

25. Wiberg, K. B.; Hammer, J. D.; Zilm, K. W.; Cheeseman, J. R., NMR Chemical Shifts. 3. A Comparison of Acetylene, Allene, and the Higher Cumulenes. *J. Org. Chem.* **1999**, *64*, 6394-6400.

26. van Dongen, J. P. C. M.; van Dijkman, H. W. D.; de Bie, M. J. A., Characteristic 13C chemical shifts and 13C–H coupling constants in organolithium compounds. *Recl. Trav. Chim. Pays-Bas* **1974**, *93*, 29-32.