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Overview 
 
To construct the global ocean size-spectrum, we drew on a diverse assemblage of complementary 
data, methods and assumptions. Here, we outline our data and methods for each group and our 
procedures used to reach the estimates of size-specific abundance, biomass and uncertainty values 
reported in the paper. We also detail the approach used to estimate how humans have altered the 
size-spectrum through animal hunting and climate change. Finally, we outline our statistical 
approach, including more general considerations of our treatment of uncertainty and fitting 
methods. In addition, we provide all data and referenced sources, such that our analysis can be 
reproduced and updated as new data becomes available: https://doi.org/10.5281/zenodo.5520055. 
 
 
 
 
 
 
 
 



 

Table S1. General summary of ocean biomass. Body mass range and total ocean biomass (wet weight; 
Gt ≡ 1015 g) are summarized across major taxonomic groups. Fold uncertainty is a multiplicative factor of 
the mean (×/÷) that expresses our confidence in the data akin to a 95% confidence interval (see text). These 
estimates are compared to values in the literature, particularly Bar-On et al. 2019 (20, 41–43, 67). 

 
 
There are several ways that a global size-spectrum analysis could be undertaken, from the coarse 
use of published global biomass estimates aggregated by major group and size class, to a very 
disaggregated assembly of existing observational data, which could include many tens of 
thousands of species-specific surveys and mass-specific size-spectra for different taxa and regions. 
The coarsely-aggregated extreme is shown in Table 1. In contrast, a highly disaggregated approach 
would require a vast effort, and would be plagued by difficulties regarding spatial and temporal 
bias. For this paper we elected to focus on a middle path between the two extremes, making use 
of many kinds of pre-existing data, while employing a number of procedures of intermediate 
sophistication. Our methods are tailored to the data existing for each major taxonomic group, and 
are designed to maximize the utility of ancillary information.  
 
Our methods include statistical and process models constrained by large existing surveys or 
satellite imagery, ensembles of dynamical models developed by independent research groups, and 
species specific survey data over their global geographic range. Our resulting global biomass 
estimates are all within a factor of two of previously published global biomass estimates (20, 41–
43, 67) (Table S1). Abundance and biomass estimates for more resolved taxonomic groupings are 
shown in Table S2 and the geographic distribution of our biomass estimates for each major group 
are shown in Fig. S1. Finally, greater resolution and summary tables are available as part of the 
output of the code linked to in the first paragraph. 
 
In order to study the size-spectrum over the entire ocean, we necessarily employed a number of 
assumptions to delimit the scope of our study, on which our results are strongly dependent. One 
major assumption is what constitutes “ocean” life. Like Sheldon and the many size-spectra studies 
that came after, we take oceanic life to refer largely to the pelagic environment (organisms living 
suspended in the salt water column of the ocean)(1, 5, 85). We therefore did not consider benthic 
organisms explicitly or in great depth, though aggregate measures of organisms that live on the 
seafloor are included in estimates of “non-mesopelagic fish” from the FishErIes Size and 
functional Type model (FEISTY; (40)) and the BiOeconomic mArine Trophic Size-spectrum 
model (BOATS; (39)). We also elected not to include brackish waters, mangroves or seabirds. The 
exclusion of benthic and sediment organisms has the largest impact on bacteria biomass estimates, 
given their extremely large estimated biomass in sediments (86).  

Body mass 
range (g)

Biomass 
(Gt)

Fold (×∕÷) 
uncertainty

Bar-On (41) 
biomass (Gt)

Fold (×∕÷) 
uncertainty

Other biomass 
estimate (Gt)

Bacteria (to seafloor) 10-14 10-11 14.48 3.85 13 3 10   Buitenhuis 2013 (43)

Phytoplankton 10-14 10-5 5.34 3.28 4 6.3 6.3  Buitenhuis 2013 (43)

Zooplankton 10-13 103 19.71 7.4 17.5 10 19   Buitenhuis 2013 (43)

Fish 10-3 107 10.9 5 12 7 14   Jennings 2015 (20)

Mammals (current) 104 109 0.068 5 0.04 1.4 0.065  Kaschner 2004 (67)

Major group

Body mass 
range (g) Abundance Biomass (Gt) Abundance Biomass (Gt)

Fold (×∕÷) 
uncertainty

Bacteria 10-14 10-11 2.1 x 1029 14.48 5.5 x 1028 3.73 3.85

Picophytoplankton 10-14 10-11 3.5 x 1028 2.19 3.5 x 1028 2.19 3.22

Nanophytoplankton 10-12 10-8 9.7 x 1025 1.8 9.7 x 1025 1.8 3.22

Microphytoplankton 10-9 10-5 7.3 x 1022 1.35 7.3 x 1022 1.35 3.22

Nanozooplankton 10-13 10-10 2.1 x 1027 2.5 1 x 1027 1.21 6.53

Microzooplankton 10-11 10-5 8.9 x 1024 4.79 4.3 x 1024 2.33 6.53

Mesozooplankton 10-6 10 3.6 x 1020 10.88 1.3 x 1020 4.07 7.7

Macrozooplankton 10-3 103 3.7 x 1016 1.54 5.8 x 1015 0.24 11.39

Epipelagic fish 10-3 107 1.2 x 1017 5.53 1.2 x 1017 5.53 5

Mesopelagic fish 10-2 103 4.1 x 1016 5.37 0 0 3

Mammals (historic) 104 109 4.4 x 108 0.44 4.4 x 108 0.44 5

Major group
Global ocean (to seafloor) Top 200 meters

Table S2. Summary of ocean biomass among major groups. Ocean abundance and biomass (wet weight) are 

compared across major groups at a more resolved level than Table S1 (see Table S1 caption), and include values 

for the top 200 meters only. Mammals are estimated at historic levels and are six times higher than current values.

Table S1. General summary of ocean biomass. Body mass range and total ocean biomass (wet weight; Gt ≡ 

1015 g) are summarized across major taxonomic groups. Fold uncertainty is a multiplicative factor of the mean 

(×∕÷) that expresses our confidence in the data akin to a 95% confidence interval (see text). These estimates are 

compared to values in the literature, particularly Bar-On et al. 2019. Further estimates are listed in the text.



 

Table S2. Summary of ocean biomass among major groups. Ocean abundance and biomass (wet 
weight) are compared across major groups at a more resolved level than Table S1 (see Table S1 caption), 
and include values for the top 200 meters and extended to the sea floor. Mammals and fish are estimated 
at historic levels. 

 
 
We also did not explicitly consider several taxonomic groups including the following (global 
biomass estimates are from (41, 42): viruses (~0.3 Gt); fungi (~2.6 Gt); seagrasses (~2 Gt), and 
corals (~0.5 Gt). Our methods and estimates include groups such as molluscs including squid (0.5 
Gt) and nematodes (0.1 Gt) that we did not consider separately. We do not distinguish 
heterotrophic bacteria from archaea (3 Gt), and refer to these two groups as “bacteria”. Note that 
cyanobacteria and other photosynthetic or mixotrophic bacteria are included in phytoplankton. 
 
We show estimates of biomass over the top 200 meters of the ocean as well as the entire water 
column down to the sea floor to provide perspective on the vertical distribution of marine life. The 
top 200 meters (epipelagic) is where the majority of life’s diversity resides and where all major 
groups commonly exist, as well as where data have the best coverage. Extending our analysis from 
the top 200 meters to the ocean depths has the greatest effect on estimates of bacteria biomass 
(Table S2).  
 
Size-spectra have been sampled at various locations and represented in many ways. Individual size 
may be in units of length, volume, wet or dry mass, and counted over an area or volume, which 
may be transformed into biomass or energy density. Individuals may be binned into any number 
of logarithmic or linear size-classes, or represented as a probability or cumulative density function, 
and fit using various methods such as least squares or maximum likelihood (2, 5, 12). These varied 
published representations can obscure commonalities among observed patterns, which, when 
expressed as a log size vs. log frequency distribution, tend to be strikingly similar with exponents 
near a value of −1, as revealed by a recent meta-analysis (5), and shown in Table S3 and Fig. S2. 
 
 

Body mass 
range (g)

Biomass 
(Gt)

Fold (×∕÷) 
uncertainty

Bar-On 2019 
biomass (Gt)

Fold (×∕÷) 
uncertainty

Other biomass 
estimate (Gt)

Bacteria (to seafloor) 10-14 10-11 14.48 3.85 13 3 10   (Buitenhuis 2013)

Phytoplankton 10-14 10-5 5.34 3.28 4 6.3 6.3  (Buitenhuis 2013)

Zooplankton 10-13 103 19.71 7.4 17.5 10 19   (Buitenhuis 2013)

Fish 10-3 107 10.9 5 12 7 14   (Jennings 2015)

Mammals (current) 104 109 0.068 5 0.04 1.4 0.065  (Kaschner 2004)

Major group

Body mass 
range (g) Abundance Biomass (Gt) Abundance Biomass (Gt)

Fold (×∕÷) 
uncertainty

Bacteria 10-14 10-11 2.1 x 1029 14.48 5.5 x 1028 3.73 3.85

Picophytoplankton 10-14 10-11 3.5 x 1028 2.19 3.5 x 1028 2.19 3.22

Nanophytoplankton 10-12 10-8 9.7 x 1025 1.8 9.7 x 1025 1.8 3.22

Microphytoplankton 10-9 10-5 7.3 x 1022 1.35 7.3 x 1022 1.35 3.22

Nanozooplankton 10-13 10-10 2.1 x 1027 2.5 1 x 1027 1.21 6.53

Microzooplankton 10-11 10-5 8.9 x 1024 4.79 4.3 x 1024 2.33 6.53

Mesozooplankton 10-6 10 3.6 x 1020 10.88 1.3 x 1020 4.07 7.7

Macrozooplankton 10-3 103 3.7 x 1016 1.54 5.8 x 1015 0.24 11.39

Epipelagic fish 10-3 107 1.2 x 1017 5.53 1.2 x 1017 5.53 5

Mesopelagic fish 10-2 103 4.1 x 1016 5.37 0 0 3

Mammals (historic) 104 109 4.4 x 108 0.44 4.4 x 108 0.44 5

Major group
Global ocean (to seafloor) Top 200 meters

Table S2. Summary of ocean biomass among major groups. Ocean abundance and biomass (wet weight) are 

compared across major groups at a more resolved level than Table S1 (see Table S1 caption), and include values 

for the top 200 meters only. Mammals are estimated at historic levels and are six times higher than current values.

Table S1. General summary of ocean biomass. Body mass range and total ocean biomass (wet weight; Gt ≡ 

1015 g) are summarized across major taxonomic groups. Fold uncertainty is a multiplicative factor of the mean 

(×∕÷) that expresses our confidence in the data akin to a 95% confidence interval (see text). These estimates are 

compared to values in the literature, particularly Bar-On et al. 2019. Further estimates are listed in the text.



 

 
 
Fig. S1. Geographic distribution of biomass by major taxonomic group. All biomass is for the top 200 
m of the global ocean in g/m2. A. Net primary production (NPP) on which the vast majority of all other 
biomass is based. B. All consumer biomass is the sum of biomass in D to F that depends on the flux in A. 
C. Phytoplankton biomass is the standing stock that is largely responsible for NPP in A. D-F. Biomass of 
(D) bacteria, (E) zooplankton and (F) fish. Note the color scale of each major group is not the same, and 
was instead chosen to better distinguish the geographic distribution of biomass within a group, rather than 
facilitate cross-group comparison. 

 
 
Another consideration with respect to the Sheldon hypothesis is that the “pristine” biomass 
distribution, which existed prior to human hunting and habitat modification, differs from the 
current biomass distribution. On the one hand, the interest in the Sheldon hypothesis as a possible 
universal law-like property of intact aquatic systems would prompt use of the reconstructed 
pristine biomass, which we have done here. On the other hand, it is of significant interest to know 
how human impacts might have altered the size-spectrum through a long history of harvesting, as 



 

well as the current expectations of how humans may impact the size-spectrum through climate 
change (35). We therefore also provide an estimate of how historical impacts from fishing and 
whaling have shaped the current size-spectrum, as well as projecting changes in biomass under a 
pessimistic scenario (RCP8.5) of future changes in climate from year 2000 to 2100 (Fig. 3). 
 
 

 
Fig. S2. Summary of size spectra slopes from the literature. These slopes represent the normalized 
biomass spectra slopes, or equivalently, the log of the number of individuals in each logarithmic size class. 
A. A histogram of the mean slope from each of 47 separate studies. B. A histogram of all 325 slopes 
reported across these 47 studies. Data are from the meta-analysis in (5), supplemented with 43 additional 
size spectra from (7, 8, 87–90). A summary of this meta-analysis is reproduced in the Supplementary Data 
file, with some of the more important studies listed in Table S3. 
 
 
 
A number of assumptions must be made in order to aggregate individuals into body mass size-
classes. We chose the major groups of bacteria, phytoplankton, zooplankton, fish and mammals, 
as these capture common distinctions between functional groups, but more importantly, they 
demarcate important differences in our methods for estimating biomass, as described further in the 
section “Data and methods”. Among some major groups, further sub-divisions were necessary for 
improving our estimates given the data available (listed in Table S2). Finally, these sub-divided 
groups were split into order-of-magnitude size classes. While admittedly coarse, this represents a 
common level of resolution that can be applied to all major groups with similar confidence. For 
many groups, the available data allows much more refined size-class binning, but we instead set 
the bin size to a coarse order of magnitude to avoid making additional assumptions for less resolved 
group size distribution.  This provided us with 23 separate and relatively well estimated data points 
on which to construct a regression, which is discussed further in “Statistical considerations”.  
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Table S3. Summary of some important size spectra studies. The number of locations (n) may refer to 
separate regions or distinct time periods (with maximum depth shown in meters; Sheldon 1972 included a 
few size spectra greater than 500 m, but most were <200m). The reported smallest to largest groups and 
order of magnitude range of body sizes (grams fresh mass) is approximated. The mean slope of the size-
spectrum (normalized biomass) is reported with the range of slope values underneath, where available. 
Further studies are listed in (5, 91).   
 

Locations Groups included Size range (g) Mean slope Reference 

Various ocean regions, 
(500 m), n ≈ 80 

Bacteria to 
mesoplankton 

10−13   0.1 −1 Sheldon et al. 1972 
(1) 

Northwest Atlantic,  
(400 m), n = 9 

Bacteria, nano to 
mesoplankton 

10−14   0.1 −0.99 
–1.01 to –0.96 

Quinones et al. 
2003 (3) 

North Pacific Central 
Gyre, (120 m), n = 24 

Picoflagellates to 
macrozooplankton 

10−9  10−2 −1.16 
–1.34 to –0.95 

Rodriguez & Mullin 
1986 (4) 

Various ocean & lakes, 
(200 m), n = 7 

Phytoplankton to 
fish 

10−12  102 −1.04 
–1.04 to –1.07 

Boudreau & Dickie 
1992 (7) 

Antarctic Peninsula,  
(200 m), n = 27 

Nanoplankton to 
macrozooplankton 

10−12  10−1 −1.05 
–1.2 to –0.96 

Witek & Krajewska-
Soltys 1986 (92) 

Antarctic Peninsula 
(400 m), n = 22 

Bacteria to 
zooplankton 

10−13 10 −0.88 
–1.02 to –0.79 

Garcia-Munoz et al. 
2014 (93) 

SW Atlantic Shelves 
(50 m), n = 10 

Picoplankton to 
mesozooplankton 

10−14 10−2 −1.12 
–1.29 to –0.99 

San Martin et al. 
2006 (6) 

North Aegean Sea 
(100 m), n = 15 

Microzooplank. to 
macrozooplankton 

10−7 10−1 −1.12 
–1.27 to –1.0 

Frangoulis et al. 
2017 (94) 

Eastern Brazil Coast 
(80 m), n = 4 

Mesozooplank. to 
macrozooplankton 

10−6 10−1 −0.94 
–1.01 to –0.86 

Marcolin et al. 2013 
(91) 

Northwest Mediterranean 
(70 m), n = 2 

Plankton 
(unspecified) 

10−11  10−6 −1.07 
–1.2 to –0.95 

Vidondo et al. 1997 
(89) 

Western English Channel 
(50 m), n = 12 

Bacteria to 
macrozooplankton 

10−8 102 −1.11 
–1.14 to –1.05 

Atkinson et al. 2020 
(5) 

Scotia Sea 
(1000 m), n = 3 

Microplankton to 
macrozooplankton 

10−10  102 −1.08 
–1.09 to –1.06 

Tarling et al. 2012 
(95) 

Lake Constance,  
(20 m), n = 11 

Bacteria to 
crustaceans 

10−13   10−3 −1.00 
–1.16 to –0.94 

Gaedke 1992 (9) 

Various lakes,  
(25 m), n = 18 

Phytoplankton to 
fish 

10−11  103 −1.0 
–1.14 to –0.86 

Cyr & Peters 1996 
(11) 

Lake Ontario & Malawi, 
(250 m), n = 2  

Phytoplankton to 
fish 

10−12  104 −1.03 
–1.04 to –1.02 

Sprules 2008 (96) 

Lake Ontario & Michigan 
(250 m), n = 2 

Phytoplankton to 
prey fish 

10−12  104 −1.04 Sprules & Goyke 
2008 (10) 

Lakes in Argentina,  
(3 m), n = 3 

Pico to 
macroplankton 

10−14  10−4 −1.2 Cózar et al. 2003 
(90) 

Lake Superior, 
(120 m), n = 2 

Phytoplankton to 
prey fish 

10−11  103 −1.11 Yurista et al. 2014 
(8) 



 

Uncertainty 
 
Uncertainties in our estimates come from a range of sources. Below we provide more detail to our 
description of sources of uncertainty in Materials and Methods. 
 
Boundaries of the Sheldon hypothesis 
There is uncertainty regarding the physical and taxonomic boundaries of what ought to delimit the 
“Sheldon hypothesis” in the ocean. Sheldon et al. first hypothesized that a constant biomass across 
log size classes extended from bacteria to whales, with little indication of the physical boundaries 
or the many taxonomic groups, in which this pattern should be relevant (1). For example, should 
we assume that the physical boundary in which the pattern is most relevant is only the open surface 
waters of the epipelagic, or might it extend to the mesopelagic or all the way to the seafloor and 
seafloor sediment? Likewise, are we to assume that all taxonomic groups whose niche overlaps 
with these environments should be included in the Sheldon hypothesis, or are we to include only 
species that physically reside in these environments, excluding say, seabirds and polar bears? 
While the inclusion/exclusion of minor taxonomic groups should have little bearing on the overall 
Sheldon spectrum, the physical boundary, and particularly the depth to which we delimit the 
problem alters the shape of the distribution, as shown in Fig. 2. In order to facilitate comparison 
with Sheldon et al’s original study, and the many that have come after (Table S3), we have focused 
largely on the epipelagic, though our marine ecosystem models that were used to estimate fish 
biomass include some benthic and demersal groups along the continental shelves. Nonetheless, we 
show results for two domains in the ocean: the upper 200m and the full water column (Fig. 2, 
Table 1 and Table S2). In addition, we have excluded most species that do not physically reside in 
the water column, and have excluded brackish waters, estuaries and mangroves. 
 
Measurement error 
Estimation of phytoplankton biomass depends on satellite estimates of chlorophyll a concentration 
at the surface, while estimates of bacteria and zooplankton are based on interpolations from 
hundreds of thousands of sample estimates. These estimates depend on well calibrated observing 
instruments. Small drifts in instrument calibration can cause significant errors in reported 
chlorophyll concentration, and abundance measures, which in turn drive errors in estimates of 
group biomass (76). Zooplankton biomass samples have been taken with dozens of different gear 
types and mesh sizes over the past 60 years (63). However, many of these gear and mesh types are 
not suitable to capture small or large zooplankton due to passive or active avoidance, aggregation 
and diurnal migration, leading to (usually) underestimates of total zooplankton biomass (77). 
Further, the ability of many mesopelagic fish to avoid nets can produce taxon-specific biases that 
are difficult to estimate (97). Because of the inherent difficulties with scientific sampling, some 
fish estimates make use of fishery data to help constrain biomasses. Industrial fishing activities 
capture a large fraction of global fish production, providing independent constraints on coupled 
fish-fishery models (39), though they also have large uncertainties due to unreported, 
underreported and illegal catches (58). Finally, in the case of mammals, most abundance estimates 
come from visual observation at the sea surface or in breeding grounds. In addition to the 
measurement errors associated with different methods, there is also uncertainty in how comparable 
these different methodologies are (43). This is particularly relevant for attempting to compare 
estimates of uncertainty intervals between different groups.  
 



 

Sampling bias 
The ocean covers 2/3 of the planet, and large parts of it have not been sampled thoroughly. What 
is more, the environment is continually fluctuating, which can cause large temporal variability at 
any point in the ocean. As a result, there is the potential for large biases in the spatial and temporal 
distribution of observational samples (98) which is likely to greatly exceed the measurement error. 
We address this bias using statistical and/or process-based models that capture how biomass 
abundance varies with the environment, and then resample the models at the global scale using 
realistic average environmental conditions. Although the models have large uncertainties for 
predicting the biomass under any given set of environmental conditions, they have much less 
uncertainty associated with the global mean values, which are the target of interest here. 
 
Major group size distributions 
Much research over the past 50 years has revealed that, within limited taxonomic domains, the 
size-frequency distribution is characteristically the same as the broader size-spectrum that we show 
in Fig. 1 (power law distribution with an exponent near -1; see Table S3). For some major groups, 
however, very little is known of the size distribution, which is particularly true for bacteria, for 
which we are aware of only a single study that explicitly studied their size distribution in the open 
ocean (99). We therefore test this uncertainty by using alternative size distributions and 
undertaking a sensitivity analysis of our assumption of an equal distribution of biomass across 
order of magnitude size bins for each major group, described below in the section “Group size 
distributions and sensitivity analysis”.  
 
Calculating uncertainty bounds by major group 
For each major group, uncertainties are represented as 95% confidence intervals of the average 
biomass estimate (Fig. 2 A). Following the approach of (41), we report these uncertainty ranges 
as multiplicative fold changes (×/÷) from the mean, rather than additive changes (±). This is done 
because the distribution of sample data is best approximated by a log-normal, and the geometric 
mean (i.e. the average on log scale) will give an estimator that is more robust to outliers, 
particularly when data are sparse. Multiplicative uncertainty is more robust to large fluctuations 
and appropriate for log-normally distributed data. Moreover, much of the error in estimation, as 
well as the natural fluctuations in time or in space or among taxa, are multiplicative rather than 
additive. Given the range of sources we use to calculate our biomass estimates, the method we 
used to estimate uncertainty was not the same for all groups. The extent to which uncertainty 
bounds across methodologies can be compared remains difficult to evaluate. We summarize the 
method used to estimate uncertainty intervals for each major group below.  
 
 
 
 
 
 
 
 
 
 
 
 



 

Table S4. Summary of estimation methods by major groups and key gaps in knowledge. 
 
Major group Groups included Estimation method Key knowledge gaps 

Bacteria Bacteria & archaea Georeferenced samples (n = 
47254) & statistical model  

Sampling bias and size 
distribution of group 

Phytoplankton Pico, nano & 
microphytoplankton 

Satellite chlorophyll a globally & 
empirical models 

Chlorophyll a to biomass 
conversion 

Zooplankton Nano, micro, meso, & 
macrozooplankton 

Georeferenced samples (n = 
205,190) & statistical model 

Sampling bias due to 
varying gear types 

Fish  Epipelagic, demersal 
& mesopelagic 

FishMIP (two independent global 
fisheries models) 

Estimates are sparse, 
fish < 1 g poorly known 

Mammal All marine mammal 
species (n = 127) 

Species specific global surveys 
and geographic range maps 

Historical abundance and 
human influence 

 
 
Bacteria and zooplankton uncertainty. Global estimates of abundance for bacteria and biomass for 
all zooplankton groups (nano-, micro-, meso-, and macro-zooplankton, as well as all other animals 
that pass through a zooplankton life-stage) were calculated using generalized linear models fit to 
log-transformed sample measurements. For our statistical models of bacteria and zooplankton we 
follow the approach of (41, 42) in reporting our uncertainties using the geometric mean of two 
measures of uncertainty: 1) the standard error from 1000 bootstrap predictions of mean global 
abundance or biomass from the statistical model, and 2) the standard deviation of the log-
transformed sample data on which the statistical model was fit. The geometric mean of the two 
uncertainty measures is then multiplied by 1.96 to obtain the 95% confidence interval for the mean 
estimate in log-space. We use the geometric mean of these two uncertainty measures. For the first 
uncertainty estimate, the standard error of the global mean biomass estimate will be smaller the 
better the predictive capability of our statistical model. However, this uncertainty does not consider 
the presence of bias or measurement error in the sample data used to fit the statistical model, 
therefore this uncertainty estimate is most likely an underestimate. On the other hand, the standard 
deviation of the log-transformed data would be an overestimate of the uncertainty of average 
biomass, given it does not take into account the decrease in uncertainty that comes from the 
averaging that takes place when the statistical model is fit. 
 
For bacteria, an additional step is required where mean global abundance is multiplied by average 
bacteria cell size to estimate mean global biomass. We incorporate this added uncertainty in our 
global bacteria biomass estimate by multiplying 95% confidence interval of geometric mean 
bacteria cell size with the 95% confidence interval of the geometric mean global abundance of 
bacteria.  
 
Phytoplankton uncertainty. Global phytoplankton biomass was calculated from satellite surface 
chlorophyll observations. We used an empirical equation from (72) to derive total chlorophyll in 
the water column from satellite surface estimates, and then another empirical equation from (73) 
to convert total chlorophyll into phytoplankton carbon and finally wet biomass. These empirical 
equations were published with reported 95% confidence intervals in log-space, and we obtained 



 

the cumulative 95% confidence interval by multiplicatively combining the reported 95% 
confidence intervals from these two empirical equations. 
 
Fish uncertainty. We split ‘fish’ (which includes large cephalopds and invertebrates) into two 
groups; mesopelagics and non-mesopelagics. For mesopelagic fish, we quantified the uncertainty 
of our estimate using results from (75), who assessed how uncertainty in the composition of the 
mesopelagic community causes uncertainty in estimates derived from bioacoustics surveys. For 
non-mesopelagic fish, including cephalopods and benthic invertebrates, we obtained estimates of 
global biomass from two process-based marine ecosystem models; the FishErIes Size and 
functional Type model (FEISTY; (40)) and the BiOeconomic mArine Trophic Size-spectrum 
model (BOATS; (39)). We used publicly available output from these models to derive our global 
biomass estimates (both models’ output available at https://www.isimip.org). To calculate the 
uncertainty range for our estimates of non-mesopelagic fish biomass, we follow the approach of 
(42), who took the 90% confidence interval of global fish biomass from (20) as representative of 
the uncertainty of their non mesopelagic fish biomass estimate.  
 
Mammal uncertainty. Estimates of marine mammal uncertainty is obtained from additional species 
population data from multiple additional sources. These include current mammal abundance 
estimates listed on IUCN species pages, as well as data drawn from Appendix 4 of (67), which 
lists minimum, mean and maximum values for 115 of 126 marine mammal species. The vast 
majority of these estimates tend to be within a multiplicative factor of three of our current values. 
Obtaining uncertainty estimates for pre-whaling abundance is more challenging, but are seldomly 
more than a factor of ten different from other estimates, and on average are a factor of 4.3 of 
maximum current values from (67). Pooling all estimates including those of IUCN (47) and current 
values of (67) (which may not be independent of one another) gives a mean fold uncertainty of 2.2 
(following methods described in (41, 42)). Given that our knowledge of the pre-whaling period is 
necessarily vague, we considered a fold uncertainty value of 5 to be cautious, and include all 
additional abundance estimates used for estimating uncertainty in the Supplementary Data file. 
 
Further information about uncertainty are described under major group headings in the section 
“Data and methods” below. 
 
 
 
  



 

Data and methods 
 
In this section, we describe our data sources, methods and models for estimating global ocean 
abundance and biomass, as well as procedures for estimating uncertainty in these values.  
 
 
Bacteria 
 
There were two steps to obtain our estimate of global bacteria biomass. First, we fit a statistical 
model of bacteria abundance with monthly georeferenced chlorophyll a, sea-surface temperature 
and 1° bathymetry data to interpolate global bacteria abundance. These environmental variables 
were taken from monthly climatologies of MODIS-Aqua (Moderate Resolution Imaging 
Spectroradiometer aboard the Aqua spacecraft; (100)) 4 km measurements, from 2002-2016. 
Similarly, 1° bathymetry data was used to calculate the depth-integrated biomass of bacteria in 
each 1° region of the global ocean, with data drawn from GEBCO (101). We then used in situ 
samples of individual bacteria cell size from coastal and open ocean sites to estimate the average 
individual bacteria cell size, as well as the size range of bacteria. We then multiplied our global 
bacteria abundance estimate by our estimate of average bacteria cell size to obtain global bacteria 
biomass. Our data sources for bacteria abundance did not distinguish between bacteria and archaea, 
so we include both of these groups in our bacteria biomass estimate. 
 
Data sources of bacteria abundance 

1. 5671 observations from Wigington et al. 2016 (60) 
https://doi.org/10.1038/nmicrobiol.2015.24 

2. 39767 observations from Buitenhuis et al. 2012 (61) 
https://doi.pangaea.de/10.1594/PANGAEA.779142 

3. 1816 observations from Lara et al. 2017 (62) 
http://doi.org/10.1126/sciadv.1602565 

 
 
 
Statistical model of bacteria abundance 
We fit a generalised linear model, with log10 bacteria abundance as the response variable, with a 
linear relationship for the environmental predictors log10 chlorophyll, temperature, and a third 
order polynomial for log10 sample depth (Figure 1). All predictors are significant, and the model 
has an R2 of 74%.  
 
Total global bacteria abundance 
For each grid square, we use temperature, bathymetry and chlorophyll to calculate the depth-
integrated density of bacteria (count/m2). We then summed all grid squares to obtain a total global 
abundance of 1.41 x 1029 bacteria (×∕÷) 3.4-fold 95% confidence interval). This number is close 
to Bar-On et al. 2019 (42) estimate of 1.2 x 1029, which was derived from three previous studies 
of total bacteria abundance (102): 8 x 1028; (103): 1.7 x 1029; (61): 1.2 x 1029).  
 



 

 
 
Fig. S3. Model fit to each of the predictor variables for bacteria abundance, with partial residuals. 

 
 
Mean individual bacteria wet weight  
We obtained individual bacteria cell size observations (both carbon and wet weight) from five 
studies where in situ samples were taken from pelagic and coastal regions (104–108). For the two 
largest studies ((104): n = 145, Sargasso Sea) and ((105): n = 201, coastal Norway and Denmark), 
individual bacteria were measured with an electron microscope, after microplankton cells 
containing chlorophyll were identified and removed. Carbon content was determined using X-ray 
microanalysis, calibrated on particles with known chemical composition. The cell size 
distributions (in wet weight) for these studies are similar to distributions from other studies (99, 
109) that used flow cytometry—considered a reference technique in bacteria community analysis 
(110)—to count and measure individual bacteria. Contrary to (111), we didn’t find a statistically 
significant difference between the distribution of open ocean – Sargasso Sea – observations (95% 
CI for mean = 7.2-11.6 fg C), and combined coastal observations (95% CI for mean = 9.1-11.4 fg 
C), so we combined both coastal and open ocean data together, and assumed that individual 
bacteria cell sizes across the global ocean can be well approximated by a single lognormal 
distribution.  
 
For each sample used to build the distribution of individual bacteria size in carbon, we also 
obtained wet weight (biovolume). Bacteria wet weight observations also follow a lognormal 
distribution (Fig. S4) with a mean individual bacteria wet weight of 0.109 pg (95% confidence 
interval – 0.096, 0.124 pg; ×∕÷ 0.14-fold uncertainty).  
 
Global bacteria biomass and size range 
Using our mean wet weight bacteria cell size of 0.109 pg, we calculate global bacteria biomass to 
be 14.48 Pg (cumulative 95% confidence interval is ×⁄÷ 3.85-fold). We used the 99% confidence 
interval of our bacteria cell size distribution (Fig. S4) to define the size range of bacteria for this 
study to be 10−2 – 100.5	pg (10−14 – 1011.5 g). 



 

Fig. S4. Histogram of bacterial cell sizes in log10 pg wet weight. 
 
 
Phytoplankton 
 
To estimate global phytoplankton biomass, we used satellite chlorophyll observations from 
MODIS-Aqua (100), averaged over 2002-2016, and empirical equations of chlorophyll with depth 
and by functional type, to calculate the global biomass of pico, nano and microphytoplankton. Our 
estimate of total phytoplankton biomass includes both autotrophs and mixotrophs, since both of 
these groups contain chlorophyll and so are represented in satellite estimates. 
 
Chlorophyll a from pico, nano and microphytoplankton 

First, we calculate the percentage of surface chlorophyll from pico (< 2%m), nano (2-20%m) and 
microphytoplankton (20-200%m) with the empirical model developed by (82). The model was 
developed with a dataset of phytoplankton pigments from the Atlantic Ocean, and shows close 
agreement with other global models of phytoplankton functional types developed with datasets for 
different regions (Figure 4.3 of IOCCG Report, (112)). We assume the percentage of chlorophyll 
from each group is the same as the surface throughout the entire water column. This assumption 
is supported by Figure 4.3 in the IOCCG (112), which shows that the contribution of different 
phytoplankton groups from the chlorophyll a across the entire euphotic zone (72) is in close 
agreement with the contribution from the Brewin model (82), which used only surface chlorophyll 
a.  
  
Chlorophyll a in euphotic zone 
To calculate total chlorophyll a in the euphotic zone from surface chlorophyll a, we use the 
empirical equations in (72). Uitz et al., (72) gives two equations for total chlorophyll a from surface 
chlorophyll a, one for stratified waters (defined as water where euphotic zone depth is less than 
the mixed layer depth) and another for mixed waters (defined as water where euphotic zone depth 
is greater than mixed layer depth). To apply Uitz’s equations, we divide the global ocean into 



 

mixed and stratified grid squares, using average euphotic zone depth for 2002-2019 from Modis-
AQUA, derived with the Lee algorithm (83), and annual average mixed layer depth derived from 
Argo profiles (84). 
 
The Uitz equations (72) are fit to a sample set from 2419 stations across the global ocean, with 
~1800 from stratified waters and ~600 from mixed waters. The fit of the Uitz equations to the 
data is close to that of earlier work from (113), and was chosen for its use of an extensive dataset 
to derive total chlorophyll a in the euphotic zone from satellite output. In terms of uncertainty, 
there was a 1.4-fold 95% prediction interval in the relationship between surface chlorophyll a and 
total chlorophyll a in the euphotic zone (72). 
 
Conversion to wet biomass by size class 
To convert total chlorophyll a concentration to carbon, we used the empirical equation from (73), 
who fit a relationship between chlorophyll and phytoplankton biomass (carbon concentration), 
with surface observations from coastal and open ocean stations across the global ocean. The linear 
relationship between log chlorophyll and log carbon concentration in (73), had an R2 value of 0.9 
and a 2.3-fold 95% prediction interval. In each grid square, to calculate total carbon content in the 
water column, we divided total chlorophyll from step 2 by euphotic zone depth and then used this 
average chlorophyll concentration to calculate the average carbon concentration with the Marañón 
equation (73). We then calculated average total carbon content in the water column in each grid 
square by multiplying average carbon concentration by the euphotic zone depth. We then used the 
percentages calculated in step 1 to break total carbon into pico, nano and microphytoplankton 
groups. Finally, to convert total carbon of each group into wet weight, we assumed a wet weight 
to carbon ratio of 10:1 (7). 
 
Individual cell size ranges converted to wet weight 
The size ranges for pico, nano and microphytoplankton are typically expressed in um ESD: 0.2 
%m – 2 %m for picophytoplankton, 2 %m – 20 %m for nanophytoplankton and 20 %m – 200 %m for 
microphytoplankton (82). We convert these cell size ranges to wet weight, assuming 1 g wet 
weight is equal to 1cm3. 
 
We calculated global picophytoplankton biomass to be 2.15 Pg, nanophytoplankton biomass 1.8 
Pg and microphytoplankton biomass to be 1.35 Pg. Altogether, total phytoplankton biomass is 5.3 
Pg (cumulative 95% confidence interval is ×⁄÷ 3.2).  
 
 
Zooplankton 
 
To interpolate sample estimates of zooplankton biomass, we used satellite chlorophyll a, 
bathymetry and sea-surface temperature as environmental predictor variables. Monthly 
chlorophyll a and sea-surface temperature measurements were appended to observations, based on 
the month in which they were taken, as well as their latitude and longitude. These environmental 
variables were taken from monthly climatologies of MODIS-Aqua (100) 4km measurements, from 
2002-2016. Similarly, 1° bathymetry data from GEBCO (101) was used to calculate the depth-
integrated biomass of zooplankton in each 1° region of the global ocean. 
 



 

Zooplankton can be broken into four size ranges: nano (0.8µm - 5µm), micro (5µm - 200µm), 
meso (200µm-2cm), macro (0.2-10cm) (43, 68). Nano and microzooplankton cover protists groups 
such as heterotrophic flagellates, dinoflagellates, ciliates and juvenile mesozooplankton (64, 69). 
Mesozooplankton cover groups such as copepods, larvaceans, amphipods and giant rhizaria (65, 
70). Macrozooplankton include groups such as chaetognaths, euphausiids, tunicates, fish larvae, 
ctenophores and cnidaria (71).  
 
Nanozooplankton 
For this group, we were unable to find reliable resources with which to generate a global statistical 
model, so we used the estimate of (42) of 2.5 Pg wet weight biomass (assuming a 10-1 wet weight 
to carbon conversion) for this group. No uncertainty bound was provided for this estimate, as it is 
derived from only one source (69), so we use the ×∕÷	 6.5-fold 95% confidence interval calculated 
for microzooplankton (see below), which overlaps taxonomically with the nanozooplankton (64, 
69). 
 
Microzooplankton 
Data derived from 4579 observations from Buitenhuis et al. 2010 (64). 
https://doi.org/10.1029/2009GB003601 
 
 
After applying quality control to the data (e.g., filtering NA observations for biomass, depth 
sampled) we were left with 3866 observations. For the 46 observations where depths are greater 
than 1000m, depth was set to 1000m.  
 
 

 
 
Fig. S5. Model fit to each of the predictor variables for microzooplankton, with partial residuals. 
 
 
We used a generalised linear model, with a linear relationship between log10 zooplankton biomass 
and temperature, a third order polynomial for log10 sample depth and another third order 
polynomial for log10 chlorophyll. All predictors are significant, and the model has an R2 of 27%. 
Although the R2 is low, the relationship of log biomass with environmental variables is reasonable 
(Fig. S5). For instance, the chlorophyll relationship is not uniformly increasing, but is highest in 
mesotrophic waters, which matches the results of the model in (64).  
 



 

For each grid square, we use temperature, bathymetry and chlorophyll, and a carbon to wet weight 
conversion factor of 10 (7) to calculate the depth-integrated wet weight biomass of 
microzooplankton (g m3) over the water column in each grid square, to obtain a total global 
biomass of 4.79 Pg (95% confidence interval for this estimate is ×∕÷ 6.5-fold).  
 
Mesozooplankton 
Mesozooplankton are not only comprised of groups such as meroplanktonic larvae and copepods, 
but also giant protists from the group Rhizaria. A recent study (65) indicated that although giant 
Rhizaria are a major fraction of the mesozooplankton, their delicate nature means that they are 
heavily undersampled in conventional sampling techniques such as the ones used to build the 
COPEPOD database. To address this, we obtained an estimate of global giant rhizaria biomass 
separately (see next sub-section) to ensure that this group was properly incorporated into our 
overall estimate of mesozooplankton biomass. Here we describe all other mesozooplankton 
biomass estimates. 
 
Data derive from 214,922 observations from the COPEPOD database (63): 
https://www.st.nmfs.noaa.gov/copepod/atlas/html/taxatlas_b400.html.  
 
After applying quality control to the data (e.g., filtering NA observations for biomass, volume 
filtered, depth sampled, removing samples from mesh sizes less than 200µm and greater than 
2000µm) we were left with 176,000 observations.  
 
We used a generalized linear model, with a linear relationship between log10 zooplankton biomass, 
and log10 chlorophyll, temperature, and a third order polynomial for log10 sample depth. 
Observations across measurement types were not converted to carbon, so we also included a factor 
variable for the measurement type (Fig. S6). All predictors are significant, and we get an R2 of 
83% for this model. The majority of this variance explained comes from the measurement type 
factor, and when that factor is excluded the R2 is 18%. The relationships with the environmental 
variables and sample depth is reasonable, as is the measurement type factor – with wet weight 
biomass having a higher mean value than the other methods. The spread of the residuals is very 
wide, about two orders of magnitude around the predicted values (Fig. S6).  
 
Giant rhizaria 
Data derive from 1509 observations from the supplement to Biard et al. 2016 (65). 
https://doi.pangaea.de/10.1594/PANGAEA.858156 
 
Each observation gives the total integrated carbon biomass mg C m-2 over a transect of the water 
column, with 681 observations covering 0-200m, and the remaining 828 observations covering 0-
500m. We fit a statistical model to the 0-200m and 0-500m datasets separately, using the 0-500m 
dataset to estimate total giant rhizaria biomass over the water column (following the approach of 
(42)). Although cell abundance for protists is much lower across the deep ocean (114), the lack of 
sampling below 500m means that total rhizaria biomass may be underestimated. 
 



 

  
Fig. S6. Model fit to each of the predictor variables for mesozooplankton, with partial residuals. 
 
 
 
For our estimate of giant rhizaria biomass over the total water column, and from 0-200m, we used 
separate generalized linear models, each with a second order polynomial relationship between 
log10 rhizaria biomass (from 0-500m or 0-200m), and log10 chlorophyll and temperature (Fig. S7). 
Both temperature and log10 chlorophyll predictors are significant for both models, and we get an 
R2 of 25.9% for the model fitted to 0-200 m rhizaria biomass samples, and an R2 of 22.7% for the 
model fitted to 0-500 m samples. The fitted relationships between log10 chlorophyll, temperature 
and log10 biomass were similar across both models (Fig. S7). 
 
 



 

 
Fig. S7. Model fit to each of the predictor variables for giant rhizaria with partial residuals. Top row 
is 0-200m, bottom row is 0-500m. 
 
 
Total mesozooplankton biomass 
For each grid square, we use temperature, bathymetry and chlorophyll and the wet weight factor 
level to calculate the depth-integrated wet weight biomass of mesozooplankton (excluding 
rhizaria) over the water column in each grid square to get a total global wet weight biomass is 8.85 
Pg (95% confidence interval for this estimate is ×∕÷  7.5-fold). For giant rhizaria, we use 
temperature and chlorophyll and a 10-1 carbon to wet weight conversion (7) to calculate a global 
rhizaria biomass estimate of 2.2 Pg wet weight (95% confidence interval for this estimate is ×∕÷ 
8.5-fold). This is close to the estimate of 0.204 Pg carbon weight from (65), when converted to 
wet weight. Rhizaria biomass in the top 200m was 1 Pg wet weight (using a 10-1 wet weight to 
carbon conversion), which is also close to Biard et al.’s  estimate of 0.089 Pg carbon weight (65). 
We combine our global mesozooplankton (excluding giant rhizaria) with our global giant rhizaria 
biomass estimate to obtain a total mesozooplankton biomass estimate of 10.9 Pg wet weight 
biomass, with a 95% confidence interval for this estimate of ×∕÷ 7.7-fold. 
 
 
 



 

Macrozooplankton 
Data derive from 36,268 observations from MAREDAT, Moriarty, 2012 (66) 
https://doi.pangaea.de/10.1594/PANGAEA.777398 
 
After quality controlling the data (e.g., filtering NA observations for biomass, volume filtered, 
depth sampled), we were left with 23,815 observations We also removed about 8000 observations 
that recorded zero biomass density because most of the observations (34,938 out of 36,268) were 
converted from abundance to biomass using conversion equations, but only if the observations 
recorded species-level information (so as to use median species size). This means that many 
observations were recorded as zero carbon biomass even though there was non-zero abundance 
recorded, because species-level information was not retained for that sample, meaning they are not 
true zero observations.  
 
  

 
 
Fig. S8. Model fit to each of the predictor variables for macrozooplankton, with partial residuals. 
 
 
We used a generalized linear model, with a second order polynomial relationship between log10 
zooplankton biomass, a linear relationship with log10 chlorophyll temperature, and a second order 
polynomial for log10 sample depth (Fig. S8). All predictors are significant, and the R2 for this 
model is 13%, with a very wide spread of residuals. Similar to microzooplankton, 
macrozooplankton biomass declines at high chlorophyll, but also similar to microzooplankton 
most of the data comes from areas with less than 1mg m-3 of chlorophyll a. 
 
For each grid square, we use temperature, bathymetry and chlorophyll and a carbon to wet weight 
conversion factor of 10 (7) to calculate the depth-integrated carbon biomass of macrozooplankton 
(g/m3) over the water column in each grid square, to get a total global wet weight biomass of 1.5 
Pg (95% confidence interval for this prediction is ×∕÷ 11.4-fold).  
 
 
Fish 
 
In the analysis here, ‘fish’ include true fish (bony and cartilaginous) as well as invertebrates of the 
same size range (mostly cephalopods). Fish include epipelagic, mesopelagic and demersal 
organisms as well as some benthic organisms that are not covered by zooplankton. We split this 
group into two groups; mesopelagics and non-mesopelagics, and estimate both separately. We then 



 

compare our cumulative estimate of these groups with published estimates to assess how our value 
compares with other studies. 
 
Mesopelagics 
Mesopelagic fish live in the mesopelagic zone (200-1000m) of the global ocean. Although difficult 
to sample directly, these fish can be detected by the reflectance of acoustic signals from sonar, and 
this reflectance can be used to estimate their biomass (75). However, acoustic estimates are 
sensitive to assumptions about the physiological structure of individual mesopelagic fish, as well 
as the presence of siphonophores (cnidarians), which have a high acoustic reflectance but low 
biomass. To address these issues, we used results from (75), who developed a model to explore 
how the percentage contribution of siphonophores to the acoustic backscatter as well as different 
assumptions about the proportion of fish with gas bladders (which have high reflectance but low 
biomass), would impact global estimates of mesopelagic fish biomass from acoustic surveys. 
Taking these uncertainties into account, they reported a range of 1.8 – 16 Pg wet weight (the lower 
and upper quartile from 500,000 simulations) for the biomass of mesopelagic fish from 70° north 
and south across the global ocean. Taking the geometric mean of this range, as well as the 
maximum fold-change from the upper and lower range bound to the geometric mean for our 95% 
confidence interval estimate, we obtain a global estimate for mesopelagic fish biomass of 5.4 Pg 
with a ×∕÷ 3-fold 95% confidence interval.  
 
This estimate is similar to (42) estimate of 5 Pg wet weight (assuming a wet-weight to carbon 
conversion of 10), which was based on the geometric mean of a global acoustic survey estimate of 
1.5 Pg C (which is probably an overestimate given it assumes most mesopelagic fish have no gas 
bladder and so have high density) and with a net trawl survey estimate of 0.15 Pg C from (115) 
(which is probably an underestimate given the ability of mesopelagic fish to avoid survey nets; 
(97)). Our estimate is also within the range of uncertainty given by (12), who reported a 
mesopelagic fish biomass between 40° north and south of 2.4 Pg, with approximately a 5-fold 
uncertainty.  
 
To define the size range of mesopelagic fish, we used the minimum and maximum recorded sizes 
from three datasets of mesopelagic fish length-weight measurements (116–118). The combined 
datasets contained samples from the trophic and equatorial Atlantic as well as the Southern Ocean 
and gave a body size range of 0.01-500 g for mesopelagic fish. 
 
Non-mesopelagics 
For our estimate of the cumulative biomass of epipelagic and demersal fish, cephalopods and large 
benthic invertebrates, we used spatially-resolved global estimates from two process-based marine 
ecosystem models (39, 40), chosen due to their comprehensiveness and use of data constraints. 
The first estimate comes from the Bioeconomic mArine Trophic Size-spectrum model (BOATS; 
(39)), a size-based global model that represents harvested organisms (including epipelagic and 
demersal fish, squid and benthic invertebrates) from 10 g-100 kg, using average temperature in the 
top 75m with integrated primary production in the water column as environmental inputs. The 
second estimate comes from the FishErIes Size and functional TYpe model (FEISTY; (40)), which 
represents the global biomass of epipelagic and demersal fish, and benthic invertebrates from 1 
mg to 125kg, using a functional-type framework, with sea surface temperature, zooplankton 
carbon concentration and particulate organic carbon flux to the sea floor as environmental inputs. 



 

Both models are constrained with catch data, and each are able to reproduce global-scale patterns 
in catch of pelagic and demersal fish, cephalopods and benthic invertebrates that agree with 
empirical estimates. These models are members of the FISHeries and marine ecosystem Model 
Intercomparison Project (FishMIP), and we used publicly available output from these models to 
derive our global biomass estimates from simulations where each model is forced with 
environmental inputs from the CESM-BGC1 earth system model (both models’ output available 
at https://www.isimip.org). For each model, we calculated their global average biomass using the 
decadal average from 1850-1860 from simulations of pristine ocean biomass with no fishing. We 
chose this decade because it was the furthest in the past that both models have been run through, 
and it is far enough back in time that anthropogenic climate impacts are not discernible from 
existing climate variability (74).  
 
Only FEISTY covered the size range from 1mg to 10 g, so we used this model to calculate a global 
biomass estimate of 1.35 Pg for pelagic and demersal fish, and benthic invertebrate biomass in this 
size range. From 10 g to 100 kg, the FEISTY model gave a global biomass estimate of 2.25 Pg, 
and the BOATS model provided an estimate of 5 Pg. Taking the geometric mean of these two 
values, we estimate the global biomass of pelagic and demersal fish, benthic invertebrates and 
cephalopods from 10 g to 100 kg to be 3.6 Pg.  To obtain the biomass of fish with body sizes 
greater than 100 kg we used the scaling relationship between biomass and body size from (20), 
who used macroecological theory from (32) to define the relationship between biomass and body 
size as a power function with an average exponent of -0.06 (assuming an average ecosystem 
trophic transfer efficiency of 0.125, and an average predator-prey mass ratio of 1000). According 
to this scaling, total biomass in any given order of magnitude size range is 88% of the biomass in 
the preceding order of magnitude range. Using this relationship, and their reported median biomass 
of all fish between 1 g and 1 tonne of 4.9 Pg, we were able to obtain a global biomass estimate of 
total biomass from 100 kg-1 tonne (covering groups such as adult salmon and tuna) of 0.57 Pg, 
from 1 tonne-10 tonne (covering groups such as sunfish, rays and sharks) of 0.48 Pg. The fish 
component of this biomass was then calculated by subtracting mammal biomass (derived below). 
 
To calculate the uncertainty range for our estimates of non mesopelagic fish biomass, we follow 
the approach of (42), who took the 90% confidence interval of global fish biomass from (20) as 
representative of the uncertainty of their non mesopelagic fish biomass estimate. Jennings and 
Collingridge (20) calculated a median biomass of fish between 1e-5g and 1 tonne of 14 Pg, with a 
90% confidence interval of 2.9 Pg to 46 Pg. Using this interval, we calculated a ×∕÷ 5-fold 95% 
confidence interval for our estimate of non-mesopelagic fish.  
 
Comparison of total fish biomass with other global estimates 
When combined, our estimate of global fish biomass is within the range of estimates reported in 
previous studies. For example, our estimate of total biomass from 1g to 1 tonne is 8.2 Pg, almost 
double the 4.9 Pg estimate of (20) but within the 50% uncertainty interval for their estimate (2 – 
10.4 Pg). More broadly, for all organisms from 1e-5g to 1 tonne, covering mesozooplankton, 
macrozooplankton and all fish, we obtain a global biomass estimate of  approximately 23 Pg, 
which is almost double the 14 Pg estimate of (20), but still within the 50% uncertainty interval of 
their estimate for this size range (7.7 Pg – 23 Pg). Finally, (42) estimated the global biomass of 
mesopelagic and pelagic fish, benthic organisms and cephalopods to be approximately 10 Pg wet 



 

weight (assuming 10-1 wet weight to carbon conversion), which is close to our total estimate for 
these groups of 10.9 Pg. 
 
Table S5. Summary of fisheries models, their size ranges and global fish biomass estimates. 
 
Marine model Size range (g) Earth system model Biomass (Pg) 

BOATS (Carozza et al., 2016 (39)) 10 – 1x105 CESM1-BGC 4.94 

FEISTY (Petrik et al., 2019 (40)) 1x10–3  –  1.25x105 CESM1-BGC 3.55 

 
 
Mammals 
 
Marine mammal biomass was estimated from species-specific surveys for the majority of all 
known species. These are usually underestimates due to limited observation over portions of a 
species full geographic distribution, or else due to the inherent difficulties of counting individuals 
that dive for long periods or actively evade observers. Moreover, we seek both current and 
“pristine” numbers, the latter of which might characterize the pre-whaling period, before any 
observations of population numbers were systematically taken. This necessarily involves 
guesswork, but the range of possibilities is narrowed by making use of multiple independent 
estimates for the current abundance, body mass, and geographic range, along with growth rates 
and human capture data. These complementary data are available for most marine species, as well 
as for most non-marine mammals, against which the marine estimates can be compared.  
 
Population data of varying quality exist for more than 2/3 of extant species of marine mammals. 
Although there are more than 130 species of marine mammal (WoRMS (119)), we excluded some 
species (e.g. fish-eating bats) that did not physically reside in the ocean, leaving us with 126 marine 
mammal species. Nearly all current estimates of marine mammals are from IUCN (47) (n=87). We 
estimated “pre-whaling” population counts by taking larger valued estimates or upper confidence 
intervals when extensive capture levels have been reported, or else from expert opinion or 
modeling studies (n=83). For many of the larger whales, we relied on estimates in (48), which is 
in part based on a study by (67). When no additional information was available beyond current 
estimates, we assumed pristine numbers were the same as exist currently. We believe this approach 
is more likely to underestimate abundance than overestimate it in most instances, but they provide 
among the most complete tallies of currently available data for marine mammal biomass yet 
assembled.  
 

1.  
 



 

 
Fig. S9. Marine mammal population regressions. A. Mammal population density is calculated by dividing 
the global species count by geographic range area. Regressions for both pre-whaling estimates (red circles) 
and current densities from IUCN (black stars) allow species with no global data to be predicted (yellow 
circles). The grey bins sum total marine mammal population density in each size class. B. Total global 
counts of mammal species are uncorrelated with body mass (N ~ m0). C. Mammal geographic range area 
shows a positive relation with body mass (A ~ m0.6). D. Global mammal population counts show a positive 
relation with geographic range area (N ~ A0.6). Regression line is to pre-whaling values (red circles) and we 
did not account for shifts in range size. Regressions B to D show considerable scatter, giving different 
predictions for the regression in A. For example, pre-whaling density (A; N/A ~ m−0.6) is consistent with 
combining B and C, (N/A ~ m−0.6), but is not consistent with combining C and D (N/A ~ m−0.24). 

Fig L. Marine mammal population regressions. A. Marine mammal population 
density is calculated by dividing the global population count by geographic range 
area for each species. Regressions for both pre-whaling estimates (red circles) 
and current densities from IUCN (black stars) allow species for which data do not 
exist to be predicted (yellow circles). The grey bins sum total marine mammal 
population density in each size class. B. Total global counts of marine mammal 
species are uncorrelated with body mass (N ~ m0). C. Marine mammal 
geographic range area shows a positive relation with body mass (A ~ m0.6). D. 
Global marine mammal population counts show a positive relation with 
geographic range area (N ~ A0.6). Regression line is to pre-whaling values (red 
circles) and we did not account for shifts in range size. Regressions B to D show 
considerable scatter, giving different predictions for the regression in A. For 
example, pre-whaling density (A; N/A ~ m−0.6) is consistent with combining B and 
C, (N/A ~ m−0.6), but is not consistent with combining C and D (N/A ~ m−0.24).
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To provide population estimates for the 1/3 of species that have not been surveyed, we used 
regression predictions for the 2/3 of species for which observations are available. These data and 
associated species body mass and geographic range area were used to build relations between 
mammal population density and body mass. By dividing global population counts by geographic 
range area, we obtain mean population density, which we regressed against body mass for the 2/3 
of marine mammals for which empirical counts exist (Fig. S9 A). These regressions were used to 
estimate pristine and current densities for the remaining 1/3 of species for which no current or 
prior estimates exist. Mean body mass estimates were obtained from (120), while range areas were 
obtained from shapefiles from (47, 121) for all 126 marine mammal species. This allowed us to 
estimate the population density over their range for the remaining 40 some species (yellow points 
in Fig. S9 A), and to calculate their total numbers by multiplying by geographic range. While 
marine mammal species generally exhibit poor relations between global count vs. body mass (Fig. 
S9 B), geographic range area vs. body mass (Fig. S9 C) and global count vs. geographic range area 
(Fig. S9 D), their population density vs. body mass relation (Fig. S9 A) is comparatively robust 
for both the pre-whaling period and current estimates. Nonetheless, these regression predictions 
for species abundance without extensive surveys tend to be considerably higher, sometimes by 
orders of magnitude, than the estimates listed in (67), most of which are species with the lowest 
confidence and limited survey over their geographic distribution (see Supplementary Data file).  
 
Mammal population densities and population biomass are also not notably different from terrestrial 
species, but tend to fall below the terrestrial body mass regression for both pre-whaling and 
particularly for current estimates (Fig. S10 A and B). The regression of terrestrial and pre-whaling 
densities has an exponent of −0.9, which is considerably steeper than what has been shown over a 
more limited range to be near −0.75 (34, 122, 123). Marine mammals, and particularly whales, 
extend the terrestrial mammal size-density relationship by a full two orders of magnitude. 
 
Marine mammal abundances may be underestimated for many reasons, including i) difficulties in 
counting individuals hidden deep under the surface, ii) poor estimates of geographic range areas 
used to estimate densities or iii) centuries of human capture. Disentangling these many factors is 
not possible with currently available information. For reference, we also show how geographic 
range area vs. body mass compares between terrestrial and marine mammals, with all body masses 
capable of occupying the entire surface of land or sea, but larger animals apparently incapable of 
occupying very small areas (Fig. S10 C). We also show for all mammal species how species 
diversity (count of species in each size class) compares between terrestrial and marine species (Fig. 
S10 D). 
 



 

 

 
Fig. S10. Comparing marine and terrestrial mammal body mass regressions. A. Marine mammal 
population density from Fig. S9 A are compared with (mostly) terrestrial mammal species (grey circle). The 
regression line is for terrestrial and pre-whaling estimates (excludes current densities). B. Mammal 
population biomass is calculated by multiplying densities from A and body mass. The grey bins represent 
total marine mammal population density sums over each order of magnitude size class. C. Marine (red, 
from Fig. S9 C) and terrestrial (grey) mammal global geographic range areas. D. Mammal diversity (species 
richness) across order of magnitude size classes. The regression line excludes the smallest and largest 
(blue whale) size classes. 
 
 
 
Our measure of uncertainty for large mammals derives from considering extensive additional data 
that we include in our dataset, but are not shown in the figures. In addition to “pre-whaling” and 
current best estimates of marine mammals, we made use of additional current estimates of marine 
mammals also listed on IUCN species pages (47), as well as data drawn from Appendix 4 of (67), 
which is derived from some 275 published sources, and lists minimum, mean and maximum values 

Fig M. Comparing marine and terrestrial mammal body mass regressions. 
A. Marine mammal population density from Fig. L A are compared with (mostly) 
terrestrial mammal species (grey circle). The regression line is for terrestrial and 
pre-whaling estimates (excludes current densities). B. Mammal population 
biomass is calculated by multiplying densities from A and body mass. The grey 
bins represent total marine mammal population density sums over each order of 
magnitude size class. C. Marine (red, from Fig. L C) and terrestrial (grey) 
mammal global geographic range areas. D. Mammal diversity (species richness) 
across order of magnitude size classes. The regression line excludes the smallest 
and largest (blue whale) size classes.
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for 115 of 126 marine mammal species. Many of these estimates are reportedly of very low 
confidence over a limited geographic range, and differ from our current best estimates to varying 
degrees, but tend to be within a factor of three of current values. It is more difficult to obtain a 
measure of uncertainty for pre-whaling abundance, but even the most extreme species specific 
values are rarely more than a factor of ten different from other estimates, and on average are within 
a multiplicative factor of 4.3 of maximum current values from (67). Pooling all estimates including 
those of (47) and the minimum, mean and maximum current values of (67) gives a mean fold 
uncertainty of 2.2 (following (41, 42)). However, these separate estimates are not necessarily 
independent, and our knowledge of the pre- whaling period is necessarily vague. We considered a 
fold uncertainty value of 5 to be cautious, and include all additional marine mammal estimates in 
the Supplementary Data file. 
 
Further assumptions about how we chose to deal with uncertainty and our regression methods are 
covered in the section “Statistical considerations”, below.  
 
 
 
Human impacts on the biomass spectrum 
 
The most dramatic human impacts on marine biomass to date have been the hunting of wild 
animals, including fishing, sealing, and whaling. Climate change, on the other hand, is rapidly 
growing in importance and is expected to be a major driver of change in abundance over the current 
century. Because dramatic fishing impacts have already occurred and regulation efforts are now 
slowing the rate of overfishing in many parts of the world (124), we use empirically-informed 
estimates of the impact that fishing has had to date, focusing on the depletion caused by industrial 
fishing up until the early 2000s. We compare this with the climate change impacts expected under 
a pessimistic scenario for the 21st century, assuming that the impacts of fishing and climate on 
biomass are approximately additive, with little non-linear interaction between them (50, 125). Thus 
the estimated historical fishing impacts are summed with projected climate changes to provide an 
estimate of the total impacts that would occur in future if the effective fishing effort remains 
approximately constant. Although humans have also impacted biomass by physically modifying 
habitats, most importantly coastal regions, estuaries and waterways used in anadromous fish 
migrations (126, 127), we do not address these directly. 
 
Annual mammal and wild fish harvests were estimated at 0.12 Gt from (58), while total annual 
human consumption is estimated at 4.7 Gt from (128), making human harvests over the ocean a 
small fraction < 3% of what humans consume globally. We use values for total human population 
of 1 billion in 1800, 8 billion currently and 11 billion in 2100. We multiply these values by a 
reference human being of 60 kg to get biomass values for humans shown in Fig. 3 A. 
 
 
 
 
 
 



 

Fishing impacts 
 
Fishing has had a major impact on the biomasses of fish (including true fish as well as targeted 
invertebrates). The available estimates that have been made for the global biomass depletion by 
fishing do not explicitly address changes in the distribution of biomass depletion over the size-
spectrum, however, some local studies have addressed the size-distributed impact. Thus, we first 
consider the global fish biomass depletion, and second the changes in the size distribution based 
on local observations.  
 
Biomass decline 
There are many local and taxon-specific estimates of the decline of fish biomass caused by fishing 
activity, but relatively few global estimates. Furthermore, the long history of modification of 
ecosystems by fishing, which often began long before data was collected, leads to a problem of 
shifting baselines (129), making it difficult to reconstruct the pristine state. We include two 
different global estimates that approximately target the timespan of 1950 to 2000, each of which 
is methodologically independent.  
 
1. Worm and Branch (46) present a compilation of fish stocks assessed by scientific management 
agencies. These covered only 20-25% of fished stocks at that time, but suggested that, for these 
stocks, only 31% of the pristine biomass remains. This is consistent with fishing pressure being 
exerted slightly in excess of that which would produce maximum sustainable yield, generally 
expected at roughly 40% of pristine biomass (130). Fishing pressure generally occurs on fish >10 
g, and so this estimate is applied across all fish larger than 10 g. A similar value is obtained from 
(131) using a process model of the global fishery, including all potentially commercial fish >10g. 
These estimates are subject to uncertainty in the unfished biomass fraction, i.e. the proportion of 
the total fish biomass that is not harvested. This unfished biomass is not included in stock 
assessments, and is absent from global fishery models. We are not aware of published 
comprehensive assessments of this unfished fraction, but a recent model-based study provides a 
global estimate that 58% (±22%) of fish biomass is targeted by commercial fisheries (132), and 
that 42% is not targeted. In the absence of empirical data, we use this model estimate of 
commercial fisheries fraction to calculate the total fractional decline in fish biomass as follows: 
the commercial fisheries decline (0.31) multiplied by the commercial to total fisheries fraction 
(0.58), plus the fraction of fish not targeted by fishing (0.42), gives an estimated 60% of total fish 
biomass >10g remaining from pristine levels. 
 
2. Christensen et al. (45) provide a compilation of more than 200 Ecopath models constructed for 
globally-distributed ecosystems and incorporating data on fish biomass. They fit a multi-variate 
linear regression to the simulated biomasses of predatory and forage fish in order to estimate the 
changes over time. They estimate a decrease in global biomass of all predatory fishes by two-thirds 
(60.2 - 71.2 %, 95% C.I.) over the century from 1910-2010, thus leaving only 33% of fish biomass 
>10 g remaining from estimated pristine levels. Christensen et al. (45) do not provide a size 
estimate for these fish, but here we assume this applies to all fish >10 g, commercial and non-
commercial. They also suggest that small forage fish have doubled in biomass, potentially by as 
much as 130%, though we have not incorporated this suggestion, which remains an intriguing 
possibility. 
 



 

We combined these two estimates for the fraction of fish >10g remaining from pristine fish 
biomass (60% inferred from  (46), and 33% inferred from (45)) by taking their geometric mean, 
giving a value of 45% of fish >10g remaining.   
 
Impacts on the size structure 
As first demonstrated by (38), fishing has very strong effects on the size structure of exploited 
species and associated bycatch for three main reasons, all of which cause a steepening of the size-
spectrum. First, larger fish are preferentially targeted given that most gears select sizes larger than 
some mesh cutoff size, increasing bycatch of larger organisms, and larger fish tend to be more 
desirable (133). Second, because large fish take many years to grow slowly from smaller fish, high 
rates of exploitation of young fish prevent the replacement of large, older fish (39). Third, because 
heavy exploitation favours quickly-reproducing individuals, there are strong evolutionary 
pressures towards smaller maximum sizes (134). Jennings and Blanchard (134) show trawling data 
for the heavily exploited North Sea, revealing a biomass slope of -1 (abundance slope of -2) over 
the range of 1-66 kg, which they interpret as a sharp steepening of the pristine slope of this size 
range of the benthic community by -1. Together, these factors have been shown to produce strong 
increases in the slopes of size spectra in most exploited communities (2). 
 
We therefore calculated what size-spectrum slope would be consistent with the 45% depletion 
among the fraction >10g, assuming that fish ≤10g have not been significantly affected by current 
harvesting in the global average. This would require that the slope has become steeper by −0.17 
for all fish >10g. Thus, we assumed no change in the size-spectrum for fish ≤10g, but above this 
the size spectra slope has been steepened by −0.17, account for the inferred fraction of fish 
remaining relative to pristine levels.  
 
We note that different ecosystems seem to show different sensitivities of the size-spectrum to 
fishing. Demersal fish, which may have steeper size spectra slopes, appear to be relatively sensitive 
to harvesting (135). In contrast, coral reef size-spectrum slopes tend to be less steep, with baseline 
slopes > −1 and proving relatively robust to fishing pressure (136). Thus it appears likely that coral 
reef size structures have been less impacted than the global average, possibly due to the stabilizing 
effect of very large grazers. These observations serve to emphasize that our global inferences for 
fish declines will not likely apply to particular ecosystems and are necessarily a first order 
approximation.   
 
In addition to steepening in the size-spectrum due to fishing, there have also been significant 
declines in large mammals, particularly whales. As described in the section “Data and methods” 
under “Mammals”, along with accompanying data at the doi link provided in the first paragraph 
of this file, we compiled both pre-whaling and current abundance for more than 2/3 of all ~ 126 
extant species of marine mammals. These data derive from over 275 primary sources, as well as 
meta-analyses of (48, 67), as well as expert opinion and compilation from (47). While these data 
do not include all species, and are more limited for pristine species biomass estimates, they 
summarize the state of current knowledge and suggest some startling declines particularly among 
the largest size classes. In particular, these data suggest that among the smallest marine mammals 
(10-100kg), only 47% remain, but that progressively smaller fractions characterize the larger size 
classes, with possibly only 25% of mammals remaining in the 10 to 100 tonne size class, and only 
3% of blue whales, making up the largest size class (48). 



 

 
Combining the declines due to fishing and whaling results in significant changes of the size-
spectrum, not only among harvested size classes, but with noticeable effects on the overall slope 
from bacteria to whales, as shown in Fig. 3 C and Table S6 (compare i and ii). 
 
 
Climate projection impacts 
 
To provide an illustration of expected impacts of climate change on the full size-spectrum of 
marine life, we assembled estimates of relative changes in biomass obtained by previously-
published model projections for different taxonomic groupings. In all cases these studies compared 
the last decade of the 21st century with the last decade of the 20th century – thus, these do not 
estimate the total impact of climate change from the pre-industrial state, but rather serve as a 
consistent metric in the literature that is used here to gauge relative impacts across size.  
 
 
Table S6. Human impacts on the size-spectrum. The global ocean regression (i) represents the 
estimated pristine (before 1800) size-spectrum, while regression (ii) is the size-spectrum estimated 
currently (2020) that includes the impacts of fishing, and (iii) is estimated under climate projected impacts 
to 2100. 
 

 
At the root of all these projected changes are Earth System model simulations, that estimate the 
changes in ocean temperature, circulation patterns and biogeochemical cycling that will result from 
a given future trajectory of atmospheric greenhouse gases. Here we use the worst-case scenario 
trajectory, Representative Concentration Pathway (RCP) 8.5.  
 
Rather than rely on a single model, we take the mean estimate from the ten climate models that 
participated in the fifth simulation round of the Climate Model Intercomparison Project (CMIP5) 
and included biogeochemical components, as analyzed by (80). The multi-model mean sea surface 
temperature (SST) changes from 1990-2000 to 2090-2100 under RCP8.5 is 2.73 ±0.72 °C. This 
temperature change would be expected to be representative of the average warming within the 
continually-mixed surface layer (the upper 20-80 m). At greater depths the warming would be less, 
given the time required for heat to penetrate from the atmosphere to the subsurface. 
 
Changes in plankton concentration were calculated by the same Earth System models that estimate 
the physical changes, using ecosystem modules that were run in a fully-coupled mode with the 
ocean modules. According to the analysis of (49), these models simulate a global mean 
phytoplankton decrease of 6.1% ± 2.5% and a global mean zooplankton biomass decline of 13.6 
±3.0 %. These changes were applied uniformly across the full size ranges of phytoplankton and 
zooplankton, respectively. 

Table S4. Comparing exponents from different fitting methods. Regression statistics for the global ocean and 

that restricted to the top 200m are shown for ordinary least squares (OLS), with exponents from maximum 
likelihood (MLE) and reduced major axis (RMA) shown for comparison. “n” refers to the number of size class 

bins, R2 is the coefficient of determination, “Constant” is the abundance when size is 1 g, and 95% C.I. is the 95% 
confidence interval for the OLS derived exponent.

Table S5. Human impacts on the size spectrum. The global ocean regression (i) represents the estimated 

pristine (before 1800) size-spectrum, while regression (ii) is the size spectrum estimated currently (2020) that 
includes the impacts of fishing, and (iii) is estimated under climate projected impacts to 2100.

Size-spectrum regression n R2 Constant
Exponent 95% C.I. 

(OLS)
Body mass 
range (g)

p−value
MLE RMA OLS

ii Global ocean, top 200m 23 0.999 6.61E+14 -1.028 -1.040 -1.040 -1.054 -1.026 10-14 109 10-32

ii Global ocean to seafloor 23 0.998 1.09E+15 -1.033 -1.052 -1.051 -1.072 -1.03 10-14 109 10-27

Size-spectrum regression n R2 Constant Exponent & 95% C.I. Body mass 
range (g)

p−value

i Before 1800, top 200m 23 0.999 6.4E+14 -1.042 -1.057 -1.027 10-14 109 10-32

ii Current 2020, fishing 23 0.997 2.96E+14 -1.087 -1.115 -1.059 10-14 109 10-27

iii Projected 2100, climate 23 0.997 2.45E+14 -1.092 -1.12 -1.063 10-14 109 10-27



 

 
Climate-driven changes in fish biomass are also provided by global dynamical process models, 
run offline using the output of the Earth System models. Typically the most important drivers are 
net primary production and water temperature. The multi-model analysis of (50) projected a 17 
±10.7% decrease in animal biomass, for the resolved animals >10 cm. 
 
Unlike the case for the preceding groups, there are no global process models available for marine 
mammals. Instead, we use the statistical model of (51). These authors argued for a competitive 
niche of marine mammals that shrinks with rising temperatures, so that a 1 °C increase of sea 
surface temperature results in a 12% decline of marine mammal abundance (24% for pinnipeds). 
Thus, the CMIP5 estimated warming of 2.73 °C implies a 30% reduction in marine mammals and 
a 53% reduction in pinnipeds. 
 
Finally, we were unable to find prior estimates for the relative changes in bacteria concentrations 
under climate change. Instead we estimated the changes using the temperature and chlorophyll 
dependence from the statistical model we developed to estimate global bacteria abundance, an 
approach analogous to that used by (51) for marine mammals. We obtained decadal averages of 
global sea-surface temperature and surface chlorophyll-a concentration for 1950-1960 and 2090-
2100 from the GFDL-ESM2M and IPSL-CM5A earth-system models, forced with historical and 
RCP85 scenarios. We used these decadal averages as inputs to our statistical model of global 
bacteria abundance, and obtained an estimate of the relative change in bacteria abundance in 2090-
2100 compared to 1950-1960 under the RCP85 warming scenario for each earth-system model. 
Contrary to other major groups, we estimate that global bacteria abundance will see a moderate 
increase of approximately 2.3% by the end of this century under an RCP8.5 warming scenario, 
compared to 1950-1960 levels. 
 
While climate change projections could have significant unanticipated changes on marine 
ecosystem function, they appear to pale in comparison to the impacts on the size-spectrum 
resulting from fish and mammal harvesting, as shown in Fig. 3 B and Table S6 (compare ii and 
iii). 
 
 
 

Statistical considerations 
 
In this section, we outline the various ways of representing the size-spectrum, our fitting methods, 
and the sensitivity of our assumptions of group size distributions and group biomass to our overall 
findings. 
 
 
Fitting size-frequency distributions  
 
Unlike the size-frequency distribution of people, which follows the classic ‘bell-curve’ or normal 
distribution, a power law distribution is extremely right skewed, also referred to as heavy-tailed or 
fat-tailed. The power law distribution (also called the Pareto distribution) is more like a log-normal 
distribution but with no central mode, such that the smallest size class is overwhelmingly the most 



 

frequent, and the largest size class is extremely rare, but orders of magnitude larger than the 
smallest (59, 137, 138).  
 
A power law is revealed as a straight line when observations are plotted on log-log axes of size 
and frequency. The same data appears as a capital “L” on regular axes, and is not informative over 
larger size ranges. Many claims of underlying power law mechanisms have been made from the 
appearance of a straight line on log transformed axes, some of which are undoubtedly false (79, 
139–141). In the past decade, methods have been developed based on maximum likelihood that 
better evaluate if the underlying data conform to a power law based on more principled statistical 
methods, and claim to estimate the exponent with greater precision than ordinary least squares. 
Unfortunately, there has been considerable criticism of these methods (79, 140, 141), implying 
that the statistics of fitting power law distributions has failed to reach broad consensus. 
  
An additional source of confusion is the proliferation of different ways of constructing these size-
frequency distributions, which is not only extensive among aquatic ecologists, but also among the 
many other fields of science that study power law frequency distributions. Here we list several of 
the many ways that the size-spectrum can be represented (2): 

- Size-spectrum or abundance-spectrum: This is the size-frequency distribution shown in Fig. 1, 
representing numerical abundance (y-axis) vs. size class (x-axis), both in logarithmic scale 
(including logarithmic bin width). This is a common way that the distribution of individual sizes 
is represented. A size-spectrum slope of −1 indicates that size and abundance are inversely 
proportional, i.e. individuals decrease in number by the same factor as they increase in body mass.  

- Biomass-spectrum: This is the size or abundance spectrum multiplied by the body mass size-
class, as shown in Fig. 2, and is also a common way that these distributions are represented. For 
example, abundance-spectrum slope of −1 is equivalent to a biomass-spectrum slope of 0. Biomass 
may be represented on logarithmic (Fig. 2 A) or linear axes (Fig. 2 B). 

- Normalized size-spectrum: This is the size-spectrum but the count of individuals in each bin is 
divided (or “normalized”) by the bin width (although bins appear to have equal width on log axes, 
they are in fact getting multiplicatively larger as size increases) (2). An abundance-spectrum (with 
log bins) slope of −1 is equivalent to a normalized size-spectrum slope of −2. The normalized size-
spectrum exponent is equivalent to the probability density function exponent (59, 142).  

- Normalized biomass-spectrum: Similarly, this is equivalent to the biomass spectrum except that 
the biomass in each size-class is normalized (divided) by bin width. A biomass-spectrum (with log 
bins) slope of 0 is equivalent to a normalized biomass-spectrum slope of −1. 

 - Cumulative distribution: Instead of binning the data, the distribution can be expressed as the 
probability that a randomly selected individual is greater than or equal to a given size. The 
cumulative distribution is sometimes thought to be a superior way of representing the data, given 
that it eliminates the requirement for arbitrary decisions about how to construct bins (59, 139).  

- Rank-size distribution: Instead of plotting the cumulative distribution on the y-axis and size on 
the x-axis, we can instead plot the rank of the cumulative distribution against body mass. This is 
typically done by reversing the axes, so that rank is on the x-axis and size is on the y-axis. This is 
also known as Zipf’s law (59, 138). If we rank the sizes of individuals in order, then there are n 
individuals with frequency greater than or equal to that of the nth largest size. The rank and 
cumulative distribution are thus proportional, and since the axes have been reversed then the 



 

exponents of the distributions are inverse, which in the particular case of a slope of −1 remains the 
same (see also (143). 

 
In addition to these different ways of expressing the size distribution, ecologists have expressed 
size on the x-axis in terms of length (e.g. diameter), volume or mass (e.g. wet or dry mass) or 
energy density (e.g. kilocalories or watts). Although the exponent is unlikely to be much affected 
by conversions between volume, mass or energy density, the use of length as a measure of size 
yields very different exponent values. For example, if the size-spectrum uses length, and has a 
cumulative distribution function slope of −', then to convert to volume, the slope will be −'/3. 
If the probability density function uses length and has a slope of −', then to convert to volume, 
the slope will be –('+2)/3.	Although Sheldon et al. originally represented size in terms of length 
(equivalent spherical diameter; Sheldon et al. 1972, Sheldon and Parsons 1969), they binned their 
data in units of volume, so that converting length to volume would not alter the exponent. 	
 
Our estimated size-spectrum extends over a size range of some 23 orders of magnitude. Very few 
power laws in other fields of science, with the exception of perhaps astronomy, come anywhere 
close to these size ranges (e.g. see list in (59)). Many claimed empirical power laws that have later 
been claimed to be spurious under alternative statistical approaches typically span only two to five 
orders of magnitude. Our purpose was to show that the Sheldon hypothesis is largely validated 
(with two broad exceptions being bacteria and whales), rather than to provide precise estimates of 
the overall slope. Nonetheless, our best estimates of abundance in each size class exhibit a highly 
regular pattern over this extraordinary size range, such that different estimators of the exponent 
are quite similar, as shown in Table S7.  
 
 
Table S7. Comparing exponents from different fitting methods. Regression statistics for the global 
ocean and that restricted to the top 200m are shown for ordinary least squares (OLS), with exponents from 
maximum likelihood (MLE) and reduced major axis (RMA) shown for comparison. “n” refers to the number 
of size class bins, R2 is the coefficient of determination, “Constant” is the abundance when size is 1 g, and 
95% C.I. is the 95% confidence interval for the OLS derived exponent. 

We show statistics obtained from ordinary least squares (OLS), and compare these exponents with 
those of maximum likelihood (MLE; following methods outlined in (79) for binned data), and 
reduced major axis (RMA; following methods outlined in (78, 144)). The latter method partitions 
error in the data equally to both x- and y-axes (unlike OLS, which assigns all error to the y-axis), 
and so is not really appropriate for our data. Although there is undoubtedly some error in our 
assignment of different major groups to different size classes, the vast majority of our uncertainty 
lies in our ability to estimate abundance over the global ocean in each size class. Nonetheless, we 
report RMA exponents for reference, and note the similarity in the exponents among all methods 
(OLS, MLE and RMA). 

Table S3. Comparing exponents from different fitting methods. Regression statistics for the global ocean and 

that restricted to the top 200m are shown for ordinary least squares (OLS), with exponents from maximum 
likelihood (MLE) and reduced major axis (RMA) shown for comparison. “n” refers to the number of size class 

bins, R2 is the coefficient of determination, “Constant” is the abundance when size is 1 g, and 95% C.I. is the 95% 
confidence interval for the OLS derived exponent.

Table S5. Human impacts on the size spectrum. The global ocean regression (i) represents the estimated 

pristine (before 1800) size-spectrum, while regression (ii) is the size spectrum estimated currently (2020) that 
includes the impacts of fishing, and (iii) is estimated under climate projected impacts to 2100.

Size-spectrum regression n R2 Constant
Exponent 95% C.I. 

(OLS)
Body mass 
range (g)

p−value
MLE RMA OLS

ii Global ocean, top 200m 23 0.999 6.61E+14 -1.028 -1.040 -1.040 -1.054 -1.026 10-14 109 10-32

ii Global ocean to seafloor 23 0.998 1.09E+15 -1.033 -1.052 -1.051 -1.072 -1.03 10-14 109 10-27

Size-spectrum regression n R2 Constant Exponent & 95% C.I. Body mass 
range (g)

p−value

i Before 1800, top 200m 23 0.999 6.4E+14 -1.042 -1.057 -1.027 10-14 109 10-32

ii Current 2020, fishing 23 0.997 2.96E+14 -1.087 -1.115 -1.059 10-14 109 10-27

iii Projected 2100, climate 23 0.997 2.45E+14 -1.092 -1.12 -1.063 10-14 109 10-27



 

Sensitivity analysis of group size distributions 
 
Most research over the past 50 years has revealed that the biomass distribution within major groups 
is approximately invariant with body mass (Table S3, and references therein). Nonetheless, to 
make such an assumption a priori across each of our 11 major groups (see Table S2) would 
potentially weaken our ability to test the hypothesis of invariant biomass across all groups together. 
As we show, however, alternative assumptions about the size distribution within major groups, 
even those that are quite unrealistic, all give very similar global patterns from bacteria to whales.  
 
For example, instead of assuming an invariant biomass within each major group, we can assume a 
log-normal distribution of biomass across each group, which tends to characterize more resolved 
taxonomic groups, but we are not aware of the log-normal describing the size distributions of any 
of the major groups we have distinguished (see Tables 1, S2), with the exception of bacteria in the 
Sargasso Sea (99). Nonetheless, this assumption served to illustrate that quite different major group 
size distributions have little effect on the overall size distribution.  
 
 

Fig. S11. The size-spectrum assuming a log-normal distribution of biomass. Total global frequency 
(A) and biomass (B) vs. body mass size-class assuming each of eight major groups are log-normally 
distributed with respect to size. We have assumed that our best estimate of the logarithm of size range for 
each group corresponds to four standard deviations. The bin width can be modified arbitrarily without 
altering the slope (shown here are half an order of magnitude size bins). Depending on how groups are 
stacked within a given size class determines which group is given prominence on the logarithmic plot (plots 
in A and B are the same data, but are stacked differently so that they appear different).   
 
We assumed the size range of each major group corresponds to four standard deviations, and that 
the total biomass independently estimated for each group constrains the distribution. We also 
binned groups into half order of magnitude width, though this has a negligible effect on our results. 
We show that the slope for the size-spectrum and the biomass spectrum is essentially unchanged 
from Figs. 1 and 2 (see Fig. S11). Similar analysis using other long-tailed distributions and binning 
criteria yield little differences in slope across all groups. 
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Fig . The size spectrum under alternative assumptions. Total global frequency (A) and biomass (B) 
vs. body mass size-class assuming each of eight major groups are log-normally distributed with 
respect to size. We have assumed that our best estimate of the logarithm of size range for each group 
corresponds to four standard deviations. The bin width can be modified arbitrarily without altering the 
slope (shown here are half an order of magnitude size bins). Depending on how groups are stacked 
within a given size class determines which group is given prominence on the logarithmic plot (plots in A 
and B are the same data, but are stacked differently so that they appear different).  
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Fig. S12. Biomass spectra slopes under different assumptions. Spectra slopes are obtained from 
10,000 simulations where we assume no knowledge of the distribution of biomass for each of 12 major 
groups, listed in Table S2. A and B show exponent values for the upper 200 meters of the ocean, while C 
and D show values for waters to the seafloor. In A and C, we use our best estimates of group biomass, and 
allocate this at random to different size classes within the group. In B and D, we additionally randomize the 
assignment of group biomass based on our uncertainty bounds shown in Fig. 2 A. 
 
 
We have also undertaken sensitivity analysis on the size distribution of major groups and find that 
even quite extreme variation in group size distributions still yields slopes centered on the slopes 
reported in Figs. 1 and 2, with little variation about the mean. 
 
When we assume that the biomass in each group is uniformly distributed within each group’s size 
range, we obtain a slope of -0.060 for the total depth integrated global biomass size-spectrum, and 
-0.040 for the global biomass size-spectrum in the top 200 m. To assess the uncertainty of these 
slope estimates, we started by assuming that the only knowledge we have is the size ranges of the 
different groups, but no knowledge of how the biomass of each group is distributed within its size 
range. To do this, we generated for each group a random allocation of total group biomass across 
the log-equal bins in its size range, with the total allocation summing to 1. Fig. S12 A and C are 
the distribution of slopes after 10,000 simulations for the top 200 m, and the entire water column, 
respectively. For the top 200m, we obtained a normal distribution with mean -0.042 and a standard 
deviation of 0.006. This gives a 95% confidence interval for the slope of the total global biomass-
spectrum in the top 200m of -0.054 to -0.030. For the global biomass-spectrum for the entire water 
column, we obtained a normal distribution with mean -0.054 and a standard deviation of 0.007. 



 

This gives a 95% confidence interval for the slope of average global biomass from bacteria to 
whales across the entire water column of -0.068 to -0.040. 
 
We not only have uncertainty in the distribution of biomass for each group within its size range, 
but we also have uncertainty in our estimates of the total biomass for each group. In addition to 
considering the uncertainty in the slope of average biomass for each group, we now consider the 
additional effect of uncertainty in our estimates of the total biomass for each group. To do this, we 
added an additional step where for each group we obtained a random total biomass estimate from 
a log-normal distribution centred at the mean biomass estimate for that group, with standard 
deviation calculated from the 95% confidence intervals for the group. Fig. S12 B, C are the 
distribution of slopes for 10,000 simulations for the top 200m and the entire water column, 
respectively. For the top 200m, we obtained a normal distribution with mean -0.049 and a standard 
deviation of 0.021. This gives a 95% confidence interval for the slope of the average global 
biomass in the top 200m from bacteria to whales of -0.085 to -0.003. Across the entire water 
column, we get a normal distribution with mean -0.056 and a standard deviation of 0.020. This 
gives a 95% confidence interval for the slope of average global biomass from bacteria to whales 
across the entire water column of -0.095 to -0.017. 
 
 
Slope dependence on group biomass 

Our global maps of biomass for each of nine major groups allow us to estimate the biomass (or 
abundance) spectrum slope for nearly every grid point over the global ocean, where all major 
groups have been estimated. These data exclude nano-zooplankton and mammals, though they 
represent a small fraction of the total biomass and so may not play so dominant a role in affecting 
the biomass spectrum. Fig. S13 is a map of the biomass spectra slopes at all the grid points where 
we have data for each major group from bacteria to fish. We assumed uniform biomass across each 
major group size range, though as discussed above, this has little effect on the resulting spectra 
slopes (see previous section). We then summed across major groups in each size class for a total 
of 33,821 regression slopes. These slopes are almost all in [-0.01, -0.05], which are consistent with 
the sensitivity analysis described in the previous section (see the histogram of slopes above the 
map legend in Fig. S13).  

Although this analysis suggests the size-spectrum appears to broadly hold regionally, at 1° spatial 
resolution, we caution against drawing strong conclusions from these findings for the following 
reasons. First, spatially resolved size-spectra do not include several major groups (mammals and 
nano-zooplankton). For these groups, only global estimates of biomass are available, potentially 
biasing more spatially resolved size-spectra. Moreover, many mammals, and fish aggregate and 
migrate over vast distances, such that even the relatively large 1° lat-long cells of the ocean may 
not be sufficiently large to capture these variations. Second, while most of our data are widely 
distributed geographically (Fig. 1 A), they are still very patchy for most major groups. We expect 
that geographic variations will be partially normalized through aggregation over the entire ocean, 
since we do not expect any systematic bias in our global interpolation. Nonetheless, the patchiness 
of the data may mean that undersampled regions do not provide reliable estimates of the local size 
spectrum. Third, an analysis of the local size-spectrum slope dependence on different major groups 
revealed that fish biomass appears to dominate slope estimates (Fig. S13 E), described below.  



 

 
Fig. S13. Geographic distribution of biomass spectra slopes and their dependence on major group 
biomass. The biomass spectra slope is calculated for 33,821 regions in the ocean, with the vast majority 
of slopes between -0.05 and -0.01, as shown in the legend histogram. The colors in the map denote the 
slope, while colors in the plots denote major taxonomic groups. For each ocean region, the biomass 
spectrum slope over all groups is plotted against the biomass of each major group separately, excluding 
mammals. A. Biomass spectrum slope vs. the total biomass sum over all major groups. B. Biomass 
spectrum slope vs. bacteria biomass. C. Slope vs. phytoplankton biomass. D. Slope vs. zooplankton 
biomass. E. Slope vs. fish biomass. Biomass spectra slopes appear to have a strong, almost proportionate 
dependence on the logarithm of fish biomass. Fish also exhibit an order of magnitude larger biomass range 
than other groups.  
 

We checked how this relatively small variation in slope was related to the biomass of each major 
group (Fig. S13 B-E). Although there is almost no slope dependence on total biomass, nor on most 
major groups, there does appear to be a strong slope dependence on fish biomass (Fig. S13 E) in 
different regions of the ocean. The slope appears to have a strong proportional dependence on the 
log of fish biomass. Unfortunately, fish also happen to be our least well resolved or constrained 
group, and so it is difficult to know whether this is representative of biological reality or an artefact 
of how fish biomass is estimated.  

If this slope dependence on fish biomass is legitimate, it indicates the slope gets more negative in 
more oligotrophic systems, which is consistent with comparative empirical research among 
plankton (2), but contradicts empirical research among fish in northern lakes (145). Fig. S13 E 
implies that fish get more abundant faster than other groups as we go to more eutrophic systems 
(and less abundant faster towards oligotrophic).  If oligotrophic has a more positive slope than 



 

eutrophic (regardless of actual slope values), it follows that fish must have smaller variance than 
other groups, (regardless of their actual values).  

Alternatively, if this slope dependence on fish biomass is an artefact, it implies the fish models are 
overly sensitive to variations in their prey and are varying more in response than they should in 
reality. This appears due to fish having the largest range in biomass, spanning more than 2 decades, 
when other groups span < 1, and that fish occupy the entire upper part of the regression, since 
mammals are excluded from this analysis. It is possible that fish biomass exhibits greater 
variability than other groups over different regions of the ocean due to their aggregation and 
migratory behaviors, but it is not clear if that variation would be detected at the coarse grid scale 
of our global map data.  

 
Energetic considerations 
 
In this section we show data for the predator-prey and metabolism-body mass relations across a 
similar size range as the global ocean size-spectrum shown in Figs. 1 and 2. In Fig. S14 we show 
data for predator-prey mass ratios. Here we are considering individual level predator-prey body 
mass relations, rather than community level predator-prey biomass relations (146, 147). 
 
 

Fig. S14. Predator-prey mass relations. In all three plots, the typical mass (grams) of different species 
consumer-resource pairs are plotted. Only aquatic trophic interactions are colored (according to prey), for 
which the best fit regression (black line) equation is reported. The dashed grey line is the 1:1 line, meaning 
a predator consumes a prey of the same size, with points below the dashed line representing a smaller 
individual consuming a larger. Data are from A. Brose et al. 2005 (52, 148), B. Barnes et al. 2008 (53), and 
C. Barbier & Loreau 2019 (149). The level of overlap between studies has not been investigated, but the 
patterns are all very highly dispersed. 
 
 
Fig. S14 shows data from three sources separately (53, 148, 149), revealing in all cases that 
predator-prey mass ratios are not constant (exponent ≠ 1), as is widely assumed, and residual 
variation is extremely high, near six orders of magnitude in any given size class.  
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Fig O. Predator-prey mass relations. In all three plots, the typical mass (grams) of different species consumer-
resource pairs are plotted. Only aquatic trophic interactions are colored, for which the best fit regression (black line) 
equation is reported. The dashed grey line is the 1:1 line, meaning a predator consumes a prey of the same size, with 
points below the dashed line representing a smaller individual consuming a larger. Data are from A. Brose et al. 2005, 
B. Barnes et al. 2008, and C. Barbier & Loreau 2019. The level of overlap between studies has not been investigated, 
but the patterns are all very highly dispersed. 

MammalFishZooplanktonAutotrophBacteria Terrestrial (omitted)



 

 
 

 
Fig. S15. Metabolic scaling. A. Basal metabolism (corrected to 15°C) is plotted from bacteria to whales 
(data from (33, 34)), highlighting 5130 aquatic species (terrestrial species are colored light gray but omitted 
from the regression). B. Fish resting (blue) and maximum (violet) metabolism (corrected to 15°C) is shown 
for fish (data from (56)). These data were used to estimate the amount of energy associated with the lost 
biomass spectrum (pink striped area in Fig. 3 C).   
 
 
Fig. S15 shows data for metabolism from (33, 34, 56), revealing that basal metabolism scales near 
0.9 with body mass over all aquatic species, which is somewhat shallower than previous work has 
shown across similar size ranges (33, 34, 55), but still significantly steeper than ¾, as is often 
assumed. Across fish, both resting and maximum metabolism are nearly proportional to body 
mass. Note that we obtained slightly steeper slopes than are reported in the original paper that 
assembled these fish data (56) (0.948 for resting and 0.937 for maximum).   
 
In all plots in Figs. S14 and S15 only aquatic species are colored, with terrestrial species shown in 
light grey and omitted from regressions and species counts (n). These individual trophic and 
metabolic relations are frequently thought to underpin the size spectrum in a number of theories, 
including  (19–24, 26, 28–30, 150, 151) for predator-prey body mass ratios, and (16–23, 151) for 
metabolism.  
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differing from other taxa. In C, points are colored according to prey. In E and F, unicells (grey and yellow 
points) divide in two, and are shown simulated. The way energy and biomass are transferred across 
size-classes is quite irregular, eluding a single individual-based explanation for the size spectrum.
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