Appendix C1

Supplement Post ROSC Angiography

Summary of observational data with high risk of bias and very low certainty of evidence.

POST ROSC no STEMI and all rhythms

For the critical outcome of **survival to hospital discharge** we identified very-low certainty evidence from 1 observational studies (Kim 2018) reporting adjusted odds ratios. which showed no benefit from the use of early coronary angiography when compared to late/no angiography [OR 1.60 (95% CI 0.73 to 3.53)].

For the critical outcome of **survival to hospital discharge** we identified very-low certainty evidence from 5 observational studies (Hanuschak 2019; Kern 2015; Kim 2018; Kleissner 2015; Vadeboncoer 2018) reporting unadjusted odds ratios. One study (Kleissner 2015) found no effect of early coronary angiography compared to late/no coronary angiography with OR 1.80 (95% CI 0.37 to 8.82). One study found a decrease in survival (Kim 2018) [OR 0.41 (95% CI 0.23 to 0.72)] and 3 studies found increased survival with early coronary angiography (Hanuschak 2019; Kern 2015; Vadeboncoer 2018). The effect sizes ranged from a low of OR 2.80 (95% CI 1.94 to 4.04) to a high of OR 7.42 (95% CI 5.44 to 10.12).

For the critical outcome of *survival at 30 days*, we identified very-low certainty from one study (Bro-Jeppesen 2012) which found no effect of early coronary angiography compared to late/no angiography [ORadj 1.42 (95% CI 1.00 to 2.50) and ORunadj 1.66 (95% CI 0.96 to 2.88).

For the critical outcome of *survival at 3-6 months*, we identified very-low-certainty evidence from 1 observational studies (Kleissner 2015) with unadjusted effect estimates of OR 1.48 (95% CI 0.55 to 3.99).

For the critical outcome of *survival at 1-3 years*, we identified very-low-certainty evidence from 1 observational study (Bro-Jeppesen 2012) which found no effect of early coronary angiography compared to late/no angiography with an adjusted OR 0.97 (95% CI 0.76 to 1.25).

We identified very-low-certainty evidence from 2 observational studies (Bro-Jeppesen 2012; Dankiewicz 2015). One study (Bro-Jeppesen 2012) found increased survival with early coronary angiography [OR 1.92 (95% CI 1.11 to 3.32)] and one study (Dankiewicz 2015) found no effect [OR 1.27 (95% CI 0.91 to 1.79)].

For the critical outcome of survival with *favourable neurologic outcome at hospital discharge*, we identified very-low-certainty evidence from 1 observational study (Bro-Jeppesen 2012) with adjusted effect estimates which found no effect of early coronary angiography compared to late/no angiography [OR 1.50 (95% CI 0.80 to 2.90).

We identified very-low-certainty evidence from 3 observational studies (Bro-Jeppesen 2012; Hanuschak 2019; Kleissner 2015) with unadjusted effect estimates. One study (Kleissner 2015) found on effect with early coronary angiography [OR 1.28 (95% Cl 0.51 to 3.20)]. Two studies (Bro-Jeppesen 2012; Hanuschuk 2019) found increased survival with favourable neurologic outcome with early coronary angiography with a range of effect estimates from a low of OR 1.94 (95% Cl 1.19 to 3.17) to a high of OR 8.37 (95% Cl 6.18 to 11.35).

For the critical outcome of survival with *favourable neurologic outcome at 30 days*, we identified very-low-certainty evidence from 1 study (Kim 2018) with adjusted effect size which found no effect with early coronary angiography with an OR 1.92 (95% CI 0.95 to 3.85)

We identified very-low-certainty evidence from 2 observational studies (Kim 2018; Kern 2015) with unadjusted effect estimates. One study (Kern 2015) found an increase in survival with favourable neurologic outcome at 30 days with early coronary angiography [OR 2.77 (95% CI 1.92 to 4.00)] and one study (Kim 2018) found a decrease with early coronary angiography [OR 0.45 (95% CI 0.26 to 0.77)].

For the critical outcome of survival with *favourable neurologic outcome at 3-6 months*, we identified very-low-certainty evidence from one observational study (Dankiewicz 2015) with adjusted effect estimate which found no effect of early coronary angiography OR 0.92 (95% CI 0.69 to 1.18).

We identified very-low certainty evidence from 2 studies (Dankiewicz 2015; Kleissner 2015) with unadjusted effect estimates. Both studies (Dankiewicz 2015; Kleissner 2015) found no benefit with early coronary angiography [OR 1.36 (95% CI 0.97 to 1.91) and OR 2.01 (95% CI 0.77 to 5.24) respectively].

Table 1: Studies examining post-ROSC coronary angiography in patients with no ST elevation on ECG and all ECG rhythms

Survival								
		Adju	ısted			Unad	justed	
Author	Hospital	30-Day	3-6 Month	1-3 Year	Hospital	30-Day	3-6 Month	1-3 Year
	Discharge	Survival	Survival	Survival	Discharge	Survival	Survival	Survival
Bro-Jeppesen		1.42				1.66		1.92
2012		(1.00, 2.50)				(0.96, 2.88)		(1.11, 3.32)
Dankiewicz				0.97				1.27
2015				(0.76, 1.25)				(0.91, 1.79)
Hanuschak					7.42			
2019					(5.44, 10.12)			
Kern 2015					2.80			
					(1.94, 4.04)			
Kim 2018	1.60				0.41			
	(0.73, 3.53)				(0.23, 0.72)			
Kleissner 2015					1.80		1.48	
					(0.37, 8.82)		(0.55, 3.99)	
Vadeboncoer					3.26			
2018					(2.51, 4.23)			
Favourable Neu	rologic Outcom	e						
		Adju	isted		Unadjusted			
Author	Hospital	30-Day	3-6 Month	1-3 Year	Hospital	30-Day	3-6 Month	1-3 Year
	Discharge	Survival	Survival	Survival	Discharge	Survival	Survival	Survival

Bro-Jeppesen	1.50			1.98			
2012	(0.80, 2.90)			(1.14, 3.43)			
Dankiewicz			0.92			1.36	
2015			(0.69, 1.18)			(0.97, 1.91)	
Hanuschak				8.37			
2019				(6.18, 11.35)			
Kern 2015					2.77		
					(1.92, 4.00)		
Kim 2018		1.92			0.45		
		(0.95 <i>,</i> 3.85)			(0.26 <i>,</i> 0.77)		
Kleissner 2015				1.28		2.01	
				(0.51, 3.20)		(0.77, 5.25)	

POST ROSC no STEMI and shockable initial rhythm

For the critical outcome of *survival to hospital discharge* we identified very-low certainty evidence from two observational studies (Garcia 2016; Hollenbeck 2014) which reported adjusted effect estimates for early coronary angiography compared to late/no angiography. One studies (Hollenbeck 2014) identified benefit from early angiography [OR 2.86 (95% CI 1.43 to 5.56)]. A single study (Garcia 2016) found no effect of early angiography [OR 1.73 (95% CI 0.80 to 3.74)].

We also identified very-low certainty evidence from two studies (Garcia 2016; Hollenbeck 2014) reporting unadjusted effect estimates for early coronary angiography compared to late/no angiography. One study (Hollenbeck 2014) identified benefit with early angiography with an OR 2.04 (95% CI 1.24 to 3.34). Garcia (2016) found no benefit with early coronary angiography [OR 1.25 (95% CI 0.67 to 2.34)].

For the critical outcome of *survival at 30 days* we identified very-low certainty evidence from one study (Elfwen 2018) which reported an adjusted effect estimate of OR 1.42 (95% CI 1.00 to 2.02).

We also identified very-low certainty evidence from one study (Elfwen 2018) reporting unadjusted effect estimates with an OR 1.73 (95% Cl 1.28 to 2.34).

For the critical outcome of *survival at 1-3 years* we identified very-low certainty evidence from a single study (Elfwen 2018) which reported adjusted effect estimates and found benefit with early angiography with an OR 1.35 (95% CI 1.04 to 1.77).

We identified very-low certainty evidence from 2 studies (Elfwen 2018; Hollenbeck 2014) which reported unadjusted effect estimates. Both studies found benefit with early angiography with effect estimates ranging from a low of OR 1.77 (95% CI 1.32 to 2.39) to a high of OR 3.48 (95% CI 2.36 to 5.14).

For the critical outcome of *favourable neurologic outcome at hospital discharge* we identified very-low certainty evidence from one observational studies (Garcia 2016) identifying benefit with the use of early angiography compared to late/no angiography with an adjusted OR 2.77 (95% CI 1.31 to 5.85).

We also identified very-low certainty evidence from two observational studies (Garcia 2016; Hollenbeck 2014) which reported unadjusted effect estimates for early coronary angiography compared to late/no angiography. One study (Hollenbeck 2014) found benefit with early coronary angiography [OR 1.94 (95 %CI 1.19 to 3.17). The other study (Garcia 2016) found no benefit with early coronary angiography [OR 1.70 (95% CI 0.95 to 3.06)].

For the critical outcome of survival with *favourable neurologic outcome at 1-3 years* we identified very-low certainty evidence from 1 study (Hollenbeck 2014) reporting unadjusted effect estimates with an OR 2.11 (95% CI 1.30 to 3.45).

Survival									
		Adju	isted		Unadjusted				
Author	Hospital	30-Day	3-6 Month	1-3 Year	Hospital	30-Day	3-6 Month	1-3 Year	
	Discharge	Survival	Survival	Survival	Discharge	Survival	Survival	Survival	
Garcia 2016	1.73				1.25				
	(0.80, 3.74)				(0.67, 2.34)				
Elfwen 2018		1.42		1.35		1.73		1.77	
		(1.00, 2.02)		(1.04, 1.77)		(1.28, 2.34)		(1.32, 2.39)	
Hollenbeck	2.86				2.04			2.06	
2014	(1.43 <i>,</i> 5.56)				(1.24, 3.34)			(1.26, 3.35)	
Favourable Neu	rologic Outcom	e							
		Adju	isted		Unadjusted				
Author	Hospital	30-Day	3-6 Month	1-3 Year	Hospital	30-Day	3-6 Month	1-3 Year	
	Discharge	Survival	Survival	Survival	Discharge	Survival	Survival	Survival	
Garcia 2016	2.77				1.70				
	(1.31, 5.85)				(0.95, 3.06)				
Hollenbeck					1.94			2.11	
2014					(1.19, 3.17)			(1.30, 3.45)	

Table 2: Studies examining post-ROSC coronary angiography in patients with no ST elevation on ECG and	d initial shockable rhythms
---	-----------------------------

POST ROSC With ST-segment elevation on ECG

For the critical outcome of *survival at hospital discharge* we identified very-low certainty evidence from one study (Garcia 2016) which reported adjusted effect estimates for early coronary angiography compared to late/no coronary angiography for patients with ROSC after out-of-hospital cardiac arrest. The study found no effect with early angiography [OR 1.89 (95% CI 0.48 to 7.40)].

We also identified very-low certainty evidence from 4 studies (Garcia 2016; Hanuschack 2019; Kern 2015; Pleskot 2008) which reported unadjusted effect estimates for early coronary angiography compared to late/no angiography. Two studies (Hanuschak 2019; Pleskot 2008) identified benefit from early

angiography with OR 4.07 (95% CI 2.85 to 5.82) and OR 11.67 (95% CI 1.11 to 122.38) respectively. Two other studies (Garcia 2016; Kern 2015) found no benefit with early angiography with OR 1.65 (95% CI 0.45 to 6.09) and OR 0.85 (95% CI 0.31 to 2.32).

For the critical outcome of *survival at 1-3 years* we identified very-low certainty evidence from one study (Pleskot 2008) which reported unadjusted effect estimates with an OR 11.67 (95% CI 1.11 to 122.38).

For the critical outcome of survival with *favourable neurologic outcome at hospital discharge*, we identified very-low-certainty evidence from 2 observational study (Garcia 2016; Weiser 2013) with adjusted effect estimates which found no difference in favourable neurologic outcome with early coronary angiography with an OR 1.12 (95% CI 0.30 to 4.19) and OR 1.17 (95% CI 0.45 to 3.04) respectively.

We also identified very-low certainty evidence from 4 studies (Garcia 2016; Hanuschack 2019; Pleskot 2008; Weiseer 2013) which reported unadjusted effect estimates for early coronary angiography compared to late/no angiography. Two studies (Hanuschak 2019; Weiser 2013) identified benefit from early angiography with OR 4.05 (95% CI 2.82 to 5.83) and OR 1.94 (95% CI 1.05 to 3.59) respectively. Two other studies (Garcia 2016; Pleskot 2008) found no benefit with early angiography with OR 1.03 (95% CI 0.28 to 3.76) and OR 7.50 (95% CI 0.73 to 76.77).

For the critical outcome of *survival at 1-3 years* we identified very-low certainty evidence from one study (Pleskot 2008) which reported unadjusted effect estimates with an OR 11.67 (95% CI 1.11 to 122.38).

Survival								
		Adju	ısted		Unadjusted			
Author	Hospital	30-Day	3-6 Month	1-3 Year	Hospital	30-Day	3-6 Month	1-3 Year
	Discharge	Survival	Survival	Survival	Discharge	Survival	Survival	Survival
Garcia 2016	1.89				1.65			
	(0.48, 7.40)				(0.45, 6.09)			
Hanuschak					4.07			
2019					(2.85, 5.82)			
Kern 2015					0.85			
					(0.31, 2.32)			
Pleskot 2008					11.67			11.67
					(1.11, 122.38)			(1.11, 122.38)
Favourable Ne	urologic Outcom	e						
		Adju	usted			Unad	justed	
Author	Hospital	30-Day	3-6 Month	1-3 Year	Hospital	30-Day	3-6 Month	1-3 Year
	Discharge	Survival	Survival	Survival	Discharge	Survival	Survival	Survival
Garcia 2016	1.12				1.03			
	(0.30, 4.19)				(0.28, 3.76)			

Table 3: Studies examining post-ROSC coronary angiography in patients with ST elevation on ECG

Hanuschak			4.05		
2019			(2.82, 5.83)		
Pleskot 2008			7.50		11.67
			(0.73, 76.77)		(1.11, 122.38)
Weiser 2013	1.17		1.94		
	(0.45, 3.04)		(1.05, 3.59)		

POST ROSC all ECGs (undifferentiated) all initial rhythms

For the critical outcome of *survival to hospital discharge* we identified very-low certainty evidence from four studies (Bougouin 2018; Shin 2017; Stub 2011; Zanuttini 2012) which reported adjusted effect estimates for early coronary angiography compared to late/no coronary angiography. Two studies (Shin 2017; Zanuttini 2012) identified benefit with early angiography with effect estimates of OR 2.70 (95% CI 1.60 to 4.60) and OR 2.32 (95% CI 1.23 to 4.38). Two studies (Bougouin 2018; Stub 2011) found no benefit with early angiography [OR 1.20 (95% CI 0.80 to 1.90) to OR 4.30 (95% CI 0.97 to 19.00)].

We also identified very-low certainty evidence from 21 studies (Study Citations) which reported unadjusted effect estimates for early angiography compared to late/no angiography in patients with ROSC after out-of-hospital cardiac arrest. Seventeen studies (Study Citations) identified benefit of early coronary angiography with unadjusted effect estimates ranging from a low of OR 1.73 (95% CI 1.34 to 2.23) to a high of OR 7.60 (95% CI 3.20 to 17.50). Four studies (Study Citations) found no benefit with the use of early angiography with effect estimates ranging from a low of OR 1.20 (95% CI 0.50 to 2.90) to a high of OR 2.46 (95% CI 1.00 to 6.04).

For the critical outcome of *survival at 30-days* we identified very-low certainty evidence from three studies (Casella 2014; Jaeger 2018; Waldo 2013) reporting adjusted effect estimates for the use of early coronary angiography compared to late/no angiography in patients with ROSC after out-of-hospital cardiac arrest. All three studies (Casella 2015; Jaeger 2018; Waldo 2013) identified benefit with the use of early angiography with adjusted effect estimates ranging from a low of OR 1.52 (95% CI 1.33 to 1.72) to a high of OR 2.38 (1.06, 5.26).

We identified very-low certainty evidence from four observational studies (Bro-Jeppesen 2012; Casella 2015; Jaeger 2018; Winther-Jensen 2018) reporting unadjusted effect estimates for early coronary angiography compared to late/no angiography for patients with ROSC after out-of-hospital cardiac arrest. All four studies (Bro-Jeppesen 2012; Casella 2015; Jaeger 2018; Winther-Jensen 2018) identified benefit with early angiography with effect estimates ranging from a low of OR 1.61 (95% CI 1.05 to 2.47) to a high of OR 2.59 (95% CI 1.24 to 5.43).

For the critical outcome of *survival at 1-3 years* we identified very-low certainty evidence from one observational studies (Casella 2015) reporting adjusted effect estimates for early coronary angiography compared to late/no angiography which showed benefit with early coronary angiography with an OR 3.57 (95% CI 1.32 to 10.00).

We also identified very-low certainty evidence from four studies (Bergman 2016; Bro-Jeppesen 2012; Casella 2015; Geri 2015) which reported unadjusted effect estimates for early coronary angiography compared to late/no angiography. All four studies (Bergman 2016; Bro-Jeppesen 2012; Casella 2015; Geri 2015) identified benefit with early angiography with effect estimates ranging from a low of OR 1.84 (95% CI 1.20 to 2.81) to a high of OR 4.51 (95% CI 2.07 to 9.87).

For the critical outcome of survival with *favourable neurologic outcome at hospital discharge*, we identified very-low-certainty evidence from five observational study (Bougouin 2017; Casella 2015; May 2020; Reynolds 2014; Shin 2017) with adjusted effect estimates. All five studies found improved outcomes with early coronary angiography with effect estimates ranging from a low of OR 1.43 (95% CI 1.02 to 2.00) to a high of OR 36.36 (95% CI 2.13 to 631.14).

We identified very-low-certainty evidence from 11 observational studies (Bro-Jeppesen 2012; Callaway 2014; Casella 2015; Chelvanathan 2016; Hanuschak 2019; Jentzer 2018; Mooney 2011; Reynolds 2014; Shin 2017; Tomte 2011; Vadeboncoer 2018) with unadjusted effect estimates. All 11 studies found benefit with early coronary angiography with effect estimates ranging from a low of OR 1.83 (95% CI 1.20 to 2.80) to a high of OR 10.54 (95% CI 6.68 to 16.62).

For the critical outcome of survival with *favourable neurologic outcome at 3-6 months* we identified very-low certainty evidence from one observational study (Nielsen 2009) which identified improved outcome with early coronary angiography compared to late/no coronary angiography with a reported unadjusted OR 3.11 (95% CI, 2.40 to 4.04).

Survival								
		Adju	sted		Unadjusted			
Author	Hospital Discharge	30-Day Survival	3-6 Month Survival	1-3 Year Survival	Hospital Discharge	30-Day Survival	3-6 Month Survival	1-3 Year Survival
Aurore 2010					2.74 (1.57, 4.76)			
Bergman 2016					2.50 (1.70, 3.67)			3.48 (2.36, 5.14)
Bougouin 2018	1.20 (0.80, 1.90)				3.92 (2.89, 5.34)			
Bougouin 2017								
Bro-Jeppesen 2012						1.61 (1.05, 2.47)		1.84 (1.20, 2.81)
Callaway 2014					4.93 (4.17, 5.83)			
Casella 2015		2.38 (1.06, 5.26)		3.57 (1.32, 10.00)		2.59 (1.24, 5.43)		4.51 (2.07, 9.87)
Chelvanathan 2016					3.81 (1.96, 7.38)			
Geri 2015					2.40 (1.91, 3.02)			2.88 (2.19, 3.79)
Hanuschak 2019					5.12 (4.29, 6.10)			

Table 4: Studies examining post-ROSC coronary angiography in patients without ST elevation on ECG and any initial rhythm

Jaeger 2018		1.52				2.56		
		(1.33, 1.72)			2.25	(2.32, 2.83)		
Jentzer 2018					2.85			
					(2.04, 3.99)			
Kern 2015					2.49			
					(1.85, 3.35)			
Kroupa 2017					1.20			
					(0.50, 2.90)			
Lam 2018					3.00			
					(1.69, 5.28)			
Mooney					2.65			
2011					(1.24, 5.67)			
Nadar 2018					2.12			
					(0.69. 6.49)			
Nielsen 2009					1.73			
110000112000					(1.34, 2.23)			
Revnolds					2.26			
, 2014					(1.70, 3.01)			
Shin 2017	2.70				6.80			
	(1.60, 4.60)				(4.49, 10.28)			
Stub 2011	4.30				7.60			
	(0.97, 19.00)				(3.20, 17.50)			
Vadeboncoer					2.31			
2018					(1.90, 2.79)			
Waldo 2013		2.29			2.46			
		(1.19, 4.41)			(1.00, 6.04)			
Wiiesekera		. , ,			4.41			
2014					(1.36, 14.32)			
Winther-					· · ·	1.74		
Jensen 2018						(1.11, 2.63)		
Zanuttini	2.32				1.74			
2012	(1.23, 4.38)				(0.77 <i>,</i> 3.97)			
Functional Neu	rologic Outcom	ne						
	-	Adju	sted		Unadjusted			
Author	Hospital	30-Day	3-6 Month	1-3 Year	Hospital	30-Day	3-6 Month	1-3 year
	Discharge	Survival	Survival	Survival	Discharge	Survival	Survival	Survival

Bougouin	1.43				
2017	(1.02, 2.00)				
Bro-Jeppesen			1.83		
2012			(1.20, 2.80)		
Callaway			5.20		
2014			(4.40, 6.15)		
Casella 2015	36.36		5.42		
	(2.13, 631.1)		(2.28, 12.86)		
Chelvanathan			9.41		
2016			(4.19, 21.15)		
Hanuschak			5.66		
2019			(4.74, 6.77)		
Jentzer 2018			3.16		
			(2.05, 4.89)		
May 2020	1.45				
	(1.02, 2.09)				
Mooney			3.29		
2011			(1.50, 7.24)		
Nielsen 2009				3.11	
				(2.40, 4.04)	
Reynolds	1.92		3.32		
2014	(1.20, 3.07)		(2.47, 4.47)		
Shin 2017	2.30		10.54		
	(1.60, 3.10)		(6.68, 16.62)		
Tomte 2011			2.45		
			(1.04, 5.74)		
Vadeboncoer			4.19	 	
2018			(3.45, 5.08)		

POST ROSC all ECGs (undifferentiated) initial shockable rhythm

For the critical outcome of *survival at hospital discharge* we identified very-low certainty evidence from 3 studies (Aissaoui 2018; Bergman 2016; Garcia 2016) reporting adjusted effect estimates comparing early coronary angiography to late/no coronary angiography in comatose post-cardiac arrest patients. Two studies (Aissaoui 2018; Bergman 2016) found benefit with early coronary angiography with effect estimates of OR 7.01 (95% CI 4.80 to 10.23) and OR 2.86 (95% CI 1.43 to 5.56) respectively. A single study (Garcia 2016) found no benefit with an OR 1.60 (95% CI 0.83 to 3.08).

We also identified very-low certainty evidence from 5 studies (Bergman 2016; Cronier 2014; Garcia 2016; Nanjayya 2012; Strote 2012) reporting unadjusted effect estimates. Four studies (Bergman 2016; Cronier 2014; Garcia 2016; Strote 2012) found benefit with early coronary angiography with effect estimates ranging from a low of OR 2.50 (95% CI 1.70 to 3.67) to a high of OR 3.41 (95% CI 1.20 to 9.67). A single study (Nanjayya 2012) found no benefit with an OR 2.03 (95% CI 0.78 to 5.31).

For the critical outcome of *survival at 30-days* we identified very-low certainty evidence from a single study (Jaeger 2018) comparing early coronary angiography to late/no coronary angiography which reported adjusted effect estimates which found improved survival with early coronary angiography [OR 1.74 (95% CI 1.37 to 2.21)].

For the critical outcome of *survival at 1-3 years* we identified very-low certainty evidence from a single study (Bergman 2016) reporting unadjusted effect estimates for early coronary angiography compared to late/no coronary angiography which found improved survival with early coronary angiography [OR 3.48 (95% CI 2.36 to 5.14)].

For the critical outcome of *favourable neurologic outcome at hospital discharge* we identified very-low certainty evidence from 2 studies (Aissaoui 2018; Garcia 2016) which reported adjusted effect estimates for early coronary angiography compared to late/no coronary angiography for comatose post-cardiac arrest patients. Both studies found improved outcome with early coronary angiography with effect estimates of OR 6.40 (95% CI 3.90 to 10.50) and OR 1.99 (95% CI 1.07 to 3.72) respectively.

We also identified very-low certainty evidence from four studies (Garcia 2016; Nanjayya 2012; Strote 2012; Vyas 2015) which reported unadjusted effect estimates for early coronary angiography compared to late/no coronary angiography. Two studies (Strote 2012; Vyas 2015) found improved outcome with early coronary angiography with effect estimates of OR 2.16 (95% CI 1.20 to 3.89) and OR 2.29 (95% CI 2.01 to 2.60) respectively. Two studies (Garcia 2016; Nanjayya 2012) found no benefit with early coronary angiography with effect estimates of OR 1.45 (95% CI 0.54 to 3.89) and OR 1.56 (95% CI 0.94 to 2.56) respectively.

For the critical outcome of *favourable neurologic outcome at 30 days* we identified very-low certainty evidence from a single study (Jaeger 2018) which reported adjusted effect estimates for early coronary angiography compared to late/no coronary angiography for comatose post-cardiac arrest patients which found improved outcome with early coronary angiography [OR 1.57 (95% CI 1.23 to 2.01)].

Table 5: Studies examining post-ROSC coronary angiography in patients with undifferentiated ECG and initial shockable r	r hythm
---	----------------

Survival								
		Adju	ısted			Unadj	usted	
Author	Hospital	30-Day	3-6 Month	1-3 Year	Hospital	30-Day	3-6 Month	1-3 Year
	Discharge	Survival	Survival	Survival	Discharge	Survival	Survival	Survival
Aissaoui	7.01							
2018	(4.80,10.23)							
Bergman	2.86				2.50			3.48
2016	(1.43, 5.56)				(1.70, 3.67)			(2.36, 5.14)

Cronier					3.41					
2014					(1.20, 9.67)					
Garcia 2016	1.60				1.31					
	(0.83, 3.08)				(0.77, 2.27)					
Jaeger 2018		1.74								
-		(1.37, 2.21)								
Nanjayya					2.03					
2012					(0.78, 5.31)					
Strote 2012					2.74					
					(1.46, 5.15)					
Favourable N	eurologic Outco	ome								
		Adju	isted		Unadjusted					
Author	Hospital	30-Day	3-6 Month	1-3 Year	Hospital	30-Day	3-6 Month	1-3 Year		
	Discharge	Survival	Survival	Survival	Discharge	Survival	Survival	Survival		
Aissaoui	6.40									
2018	(3.90,									
	10.50)									
Garcia 2016	1.99				1.56					
	(1.07, 3.72)				(0.94, 2.56)					
Jaeger 2018		1.57								
		(1.23, 2.01)								
Nanjayya					1.45					
2012					(0.54, 3.89)					
Strote 2012					2.16					
					(1.20, 3.89)					
Vyas 2015					2 20					
					2.29					

	Patient		Study		During		STEMI and no STEMI	STEMI	No STEMI	All rhythms	Shockable	Non shockable
Author/Year	Number	Country	duration	Patient aracteristics	Design	Outcomes	Ū					
RCTS	1	r	r		1	1						
Lemkes 2019	552	Netherlands	2015- 2018	Included: OHCA Initial shockable rhythm Unconscious after ROSC Excluded Signs of STEMI on ECG in the ED Shock Obvious non- coronary cause of the arrest.	RCT	Survival at 90 days, Survival to HD, FNO at 90 days, PCI/CABG rates, recurrent VT or VF requiring defibrillation, bleeding, acute renal failure, renal replacement therapy, shock	-	_	+	_	+	_
Elfwen 2019	79	Sweden	2015 - 2017	Included: Witnessed OHCA; Age> 18 years ROSC; admitted alive to hospital Without ST-segment elevation or new LBBB Excluded: Obvious non-cardiac causes Life expectancy < one year Expected time to CAG >120 min Known pregnancy Patients not unconscious (GCS>8)	RCT	Survival at 24 h, subarachnoid haemorrhage, recurrent VT/VF, bleeding, bradyarrhythmias needing pacing	_	-	+	+	-	-
Observational	studies											
Aissaoui 2018	1502	France, SDEC registry	2011- 2015	Included: • OHCA • age ≥18 years • initial shockable rhythm • admitted alive to hospital • no obvious extra-cardiac cause • no prior terminal condition	Retrospective	Survival to HD, FNO at 1 month	+	-	-	_	+	-
Aurore 2010	445	France	2000- 2006	Included: • ROSC after OHCA	Retrospective	Survival to HD	+	-	-	+	-	-

Appendix C2 Table 1. Characteristics of included studies

				Included:								
Dorgmon			2002	 >18 years 		Summer to UD 1 and 5	+	-	-	+	+	+
2016	156	Nothorlands	2003-	admitted after OHCA	Potrospoctivo	Survival to HD I and S						
2010	450	Nethenanus	2010	Known Initial rnythm Included:	Retrospective	years, FNO at HD						
				 age2 to years admitted with POSC 								
							<u>т</u>			<u>т</u>		
		France.		OHCA Excluded			т	_	_	Т	_	-
Bougouin		SDEC	2011-	prior terminal condition								
2018	1817	registry	2015	obvious popcardiac cause	Retrospective	FNO at HD						
2010	1017	France	2015		Recrospective							
		PROCAT										
Bougouin		registry	2000-				+	-	-	+	-	-
2017	1410	single centre	2000	 age>10 years admitted in an ICLI with BOSC after CA 	Retrospective	Survival to HD_ENO at HD						
2017	1410	Single centre	2015	Included	Retrospective							
				 >18 years 								
				 admitted with sustained ROSC 								
				OHCA			+	_	+	+	-	-
		Denmark,		Excluded		Survival to HD and at 1			-			
Bro-Jepessen		Single	2004 -	 GCS ≥9 		year, FNO at HD,						
2012	360	centre	2010	 cardiogenic shock upon admission 	Prospective	Successful PCI						
				Included:								
				 age > 18 years 								
				OHCA delivered to hospital with a pulse								
				or regained a pulse in the ED								
				• survived for >60 min after hospital								
				arrival								
				EMS-witnessed cardiac arrest								
				 patients with tracheostomies 			+	-	-	+	-	-
				Excluded:								
				prisoners								
				pregnant women								
				 patients with "DNR" directives 		Survival to HD, FNO at HD,						
		USA,		• patients with blunt, penetrating or		Stroke/ICH, recurrent						
Callaway		Canada,	2007-	burn-related trauma		arrest, sepsis, pneumonia,						
2014	3981	Multicentre	2009	 cardiac arrest due to exsanguination 	Retrospective	bleeding						
				Included:								
				 ≥18 years of age 								
				no obvious extra-cardiac aetiology								
				admitted alive to hospital after OHCA		Survival at 30 days or at	+	-	-	+	-	-
				Excluded:		discharge survival at 1						
		Italy, Single	2004 -	 GCS ≥9 upon admission 		year, FNO at HD, sepsis,						
Casella 2015	141	centre	2012	terminal illness	Prospective	bleeding						

Chelvanathan		Canada, Single					+	_	-	+	_	-
2016	176	centre			Retrospective	Survival to HD, FNO at HD						
Cronier 2011	111	France, Multicentre	2003- 2008	Included: • Age ≥ 18 • ROSC following OHCA • shockable rhythm	Prospective	Survival to HD	+	-	-	-	+	-
Dankiewicz 2015	544	Multiple Countries; Europe, Australia, Multicentre	2010 - 2013	Included: • OHCA of presumed cardiac cause • no STEMI	Post-hoc analysis of RCT	Survival at the end of the study, FNO at 6 months, complications, Successful PCI, bleeding	-	_	+	+	-	-
Elfwen 2018	799	Sweden, Different national registers, multicentre	2008 - 2013	Included: • bystander-witnessed OHCA • age> 18 years • shockable first rhythm • admitted alive to hospital Excluded: • GCS >8 • age >80 years	Retrospective	Survival at 30 days and at 1 and 3 years	-	-	+	_	+	-
Garcia 2016	315	USA, CARES registry	2013- 2014	Included: • Prehospital CA • age >18 and <76 years • arrest of presumed cardiac etiology	Retrospective	Survival to HD, FNO at HD	+	+	+	-	+	-
Geri 2015	1722	France, Multicentre	2000- 2013	Included: • Nontraumatic OHCA	Retrospective	Survival to 30 days, Survival to a median follow up 3.2 years	+	-	-	+	-	-
Hanuschak 2019	2578	Canada, Multicentre	2010- 2014	Included: • age>17 years • treated by EMS • OHCA • alive six hours following ED arrival Excluded: • pre-existing DNR order • obvious non-cardiac issue	Retrospective	Survival to HD, FNO at HD	+	+	+	+	-	-
Hollenbeck 2014	269	USA, INTCAR registry	2005- 2011	Included: • age ≥18 years • survived to hospitalization • comatose state • cardiac arrest due to VT or VF Excluded: • patients with ECG criteria for STEMI	Retrospective	Survival to HD, Survival to a mean follow up 5.7 to 6 months; FNO at HD, FNO to a mean follow up 5.7 to 6 months	-	-	+	-	+	-

		France,		Included: • age >18 years			+	_	_	+	+	+
Jaeger 2018	4046	REAC	2011-	cardiac cause transported to the bespital	Retrospective	Survival at 30 days, FNO at	-					
		Tegistiy	2010	Included:	Retrospective	50 days						
				OHCA of presumed cardiac etiology				-	-	-		
				Excluded:								
				 Subjects who died or failed to achieve BOSC in the ED 		Survival to HD_ENO at HD	+				-	-
Jentzer 2018	599	USA,	2005-	patients receiving ongoing		complications, Successful						
		Multicentre	2013	resuscitation at the time of CAG	Prospective	PCI, bleeding						
				Included:								
				 patients ≥18 years 			+	+	+	+	-	-
Kern 2015		USA, INTCAR	2006-	• survived to hospitalization in a	Retrospective	Survival to HD, FNO at 6.5	-	-	-	-		
	745	registry	2011	comatose state after cardiac arrest		±4.5 months						
				Included:								
Kim 2019		Korea	2010-	adult (>18 years) non-traumatic OHCA suprivors		Survival at 30 days ENO at	-	-	+	+	-	-
1015	227	Multicentre	2015	 treated with TTM 	Retrospective	30 days						
				Included:	·							
		Czach		OHCA survivors who were admitted to								
		Republic		ICU Eveluded					-			
		Single		Patients with acute STEMI or		Survival at discharge and	-	-	т	т	-	-
Kleisner 2015		centre	2007-	myocardial infarction with left bundle		at 6 months, FNO at						
	99		2014	branch block	Prospective	discharge and at 6 months						
		Czech		Included:								
Kroupa 2017		Republic,	2011	• age>18 years		Survival to HD. Survival at 1	+	-	-	+	-	-
Kioupa 2017	102	centre	2011 -	 ORCA admitted to the CCU 	Retrospective	vear						
				Included:		100						
				patients with OHCA								
				who achieved ROSC								
				admitted to hospital Final Addition			+	-	-	+	-	-
				angiography at an acute care hospital								
Lam 2018		USA, Single	2007-	prior to transfer								
	323	centre	2014	 incomplete medical records 	Retrospective	Survival to HD						
				Included:								
				 age≥18 years 			+	-	-	+	-	-
				admitted to the intensive care unit								
		USA,	2006 -	ROSC after OHCA		Survival to HD FNO at HD						
May 2020	966	Multicentre	2017	 presumed cardiac etiology 	Retrospective	and at 6 months						

				Included:								
				OHCA								
				 unresponsive after ROSC 								
				 collapse to ROSC <60 minutes 			+	_	_	+	_	_
				Excluded:						•		
				 comatose before arrest 								
Mooney 2011	140	USA, Single	2006-	active bleeding		Survival to HD, FNO at 6.5						
		centre	2009	 do-not-resuscitate directives 	Prospective	±4.5 months						
				Included:								
				 individuals > 18 years 								
				OHCA								
				Excluded:			+	-	-	+	-	-
		Oman,		 clear non cardiac cause of CA 								
Nadar 2018		Single	2012 -	 dead on arrival to hospital 								
	216	centre	2016	chronicle terminal illness	Retrospective	Survival to HD						
				Included:								
				 age≥18 years 								
Nanjayya		Australia,		successful ROSC			+	-	-	-	+	-
2012		Single	2003 -	 VF/pVT OHCA 								
	70	centre	2008	admitted to ICU	Retrospective	Survival to HD, FNO at HD						
				Included:								
		USA,		ROSC after CA		Survival to HD, Survival at	+	-	-	+	-	-
Nielsen 2009	986	Europe.	2004-	treated in ICU		6-12 months. FNO to hD.						
		Multicentre	2008	• GCS<8	Prospective	FNO at 6-12 months						
				Included:								
				BOSC								
				• admitted to nospital			-	+	-	+	-	-
				Excluded:								
		Czech		cardiac arrest in the presence of EMS		Survival to HD and at 1						
Plescot 2008		Republic,	2002-	terminal illness		year, FNO at HD and at 1						
	26	Multicentre	2004	 non-cardiac etiology of CA 	Prospective	year						
				Included:								
				 ≥ 18 years 								
				ROSC								
				OHCA, IHCA								
				Excluded:								
				• traumatic or surgical causes of arrest			+	-	-	+	-	-
				 immediate re-arrest and failure to 								
				resuscitate								
Revnolds				withdrawal of care within 6 h of return								
2014			2005-	of pulses because of advanced								
2014	1011	contro	2003-	directives or wishes	Retrosportivo							
	1011	centre	2012	UNECTIVES OF WISHES	Recospective							

				Included:								
				OHCA								
				• without a definite non-cardiac cause of								
				arrest								
				Excluded:			+	-	-	+	-	-
				no ROSC								
		Korea,		• age <18 years								
Shin 2017		Captures	2014-	 not transferred by EMS 								
	607	registry	2014	incomplete data	Prospective	Survival to HD, FNO to HD						
				Included:								
				ROSC from OHCA			+	_	_	_	+	_
Strata 2012			1999 -	• V(F or)/T on the first identified shother								
Strote 2012	240	USA,	2002	• VF or VT as the first identified rhythm	Potrocpoctivo							
	240	wulticentre			Retrospective	Survival to HD, FINO to HD						
			2002	Included:								
			2002-	• OHCA								
		Australia	(control)	• VF			+	-	-	+	-	-
Stub 2011		Single	2007-	 sustained BOSC >20 min 								
500 2011	125	centre	2007-	admitted to bosnital	Retrospective	Survival to HD						
	125	centre	2005		Retrospective							
				Included:								
				OHCA								
				presumed cardiac origin			+	-	-	+	-	-
				surviving to ICU admission								
Tomte 2011		Norway,	2003 –	Excluded:								
	174	Multicentre	2009	initially treated at other hospitals	Prospective	FNO to HD						
				Included:								
				 age ≥18 years 								
				OHCA								
				 transported initially or transferred to a 								
				Cardiac Receiving Centre								
				Excluded:			+	-	+	+	-	-
				 prehospital resuscitation not initiated 								
Vadenbocoer				 cause of CA presumed to be non- cardiac 								
2018		USA. CARES	2010-	• patient with a DNR order								
-	1881	registry	2014	the patient died in the ED	Prospective	Survival to HD, FNO to HD						
			•									

						1						
				Included: • age ≥18 years • OHCA • VF/ VT or unknown shockable rhythm • untained BOCC ≥20 min								
Vyas 2015		USA. CARES	2010-	 sustained KOSC 220 min admission to hospital Excluded: patients with no report data on performance of CAG hospitals that did not perform CAG on any cardiac arrest patient and were also confirmed to not have a cardiac catheterization laboratory missing data on the date of CAG or 			+	-	-	-	+	-
,	4029	registry	2013	survival	Retrospective	Survival to HD, FNO to HD						
Waldo 2013	110	USA, ACTIVATE SF registry	2008- 2012	Included: • cardiac arrest successfully resus- citated.	Retrospective	Survival to hospital discharge and at 30 days	+	-	-	+	-	-
Weiser 2013	249	Austria, Single centre	2005- 2010	 Included: Survivors of OHCA cardiac aetiology with good neurological performance age ≥18 years ST-segment elevation in their first ECG after sustained ROSC 	Prospective	Survival at 30 days, FNO at 30 days	-	+	-	+	-	-
Wijesekera 2014	78	Australia, Single centre	2007- 2009	Included: • OHCA • age ≥18 years • admitted to either the coronary or the intensive care unit	Retrospective	Survival to HD, FNO to HD	+	-	-	+	-	-
Winther - Jensen	704	Denmark, Multiple centre	2007– 2011	Included: • age≥18 years • OHCA • presumed cardiac aetiology • successful resuscitation or ongoing CPR at hospital arrival • dispatch by the physician-based EMS	Retrospective	Survival at 30 days	+	-	-	+	-	-

				Inc	luded:								
				•	OHCA								1
				•	age >18 years								
				•	sustained ROSC (≥120 minutes)			-					1
				•	persistent unconscious state at hospital			т	-	-	т	-	-
Zanuttini					admission								1
2012		Italy, Single	2008 -	•	absence of any obvious extracardiac								1
	93	centre	2011		cause	Retrospective	Survival to HD						

HD: hospital Discharge, FNO: Favorable Neurologic Outcome, ROSC: Return of Spontaneous Circulation, OHCA: Out of Hospital Cardiac Arrest, GCS: Glasgow Coma Scale, ED: Emergency Department, DNR : Do Not Resuscitate, ICH: intracranial haemorrhage, SPARC: Post Arrest Resuscitation Care , EMS: emergency medical services, CAG: coronary angiography

Appendix C3

Cryotherapy for Epistaxis: Experimental Study Characteristics and Findings

Author, year, country	Study design	Population	Intervention	Control	Outcome	Findings on our outcomes, as presented in article.
Ozturk, 2014, Turkey	Observation	15 patients (mean age=28.8; 9 female) least 18 years with no nasal symptoms within 3 weeks, and not pregnant.	Nasal dorsal skin cooling using two ice applied to left (L) and right (R) side of nose for 10 minutes (n=15).	No application, baseline	Cross-sectional area (cm2) and nasal cavity volume (cm3) via acoustic rhinometry	* Mean values for sum of the L and R first minimal cross-sectional area and second minimal cross-sectional area revealed no statistical differences, for either parameter at any between any intervals.
						* Means values for nasal cavity volume revealed no statistical differences, for any parameter, between any intervals.
Porter, 1991, United Kingdom	Cross-over, Randomized	16 healthy subjects (mean age=32, range 25-40) with no history of nasal disease, previous nasal surgery or symptoms and a normal rheoscopic	Ice contained with a surgical glove applied to forehead or mouth for 3 minutes each (n=16).	Same, but at body temperature for 3 minutes each.	Nasal mucosal blood flow, measured in flux (velocity and concentration of the moving blood cells)	* Oral ice packs produced a significant decrease in nasal mucosal blood flow (p<0.05, average decrease=23% [standard error=5.9]) compared to control (average decrease=5%; standard error not calculated).
		examination.				* Oral ice packs produced a fall in flux in 9 of 16 (56%) subjects, a rise in 1 (6%), and 6 (37%) experienced no change.
						* Ice packs to forehead produced a fall in flux in 1 of 16 (6%) subjects, a rise in 1 (6%).
Porter, 1991b United Kingdom	Cross-over, Randomized	13 healthy subjects (mean age=30, range 25-40) with no nasal disease or treatment.	a. Ice pack wrapped in paper toweling held to the forehead by subject for 15 minutes.	No application, baseline	Nasal submucosal temperature (°C)	* A significant difference between the nasal submucosal temperature ice pack to forehead (a) compared to ice cubs in mouth (b) (p=.0.026), favoring ice cubes alone.
			b. Ice cubes sucked in the mouth for 15 minutes.			* A significant difference between nasal submucosal temperature in ice pack to forehead compared to combined stimulus (c) (p=.0.006), favoring combined stimulus.

			c. combination of (a) and (b) for 15 minutes.			*In all subjects (n=13, 100%) ice cubes in mouth (b) produced a lower nasal submucosal temperature. The ice pack to the forehead (a) produced a decrease in nasal mucosal temperature in 7 of 13 (53%) subjects.
Scheibe, 2006, Germany	Cross-over	15 healthy subjects (range 25-40, 7 female) with no reported breathing difficulties, acute nasal allergies, or an acute rhinitis; nasal endoscopy by an ENT specialist revealed no pathology.	Ice collar (4°C) placed onto neck region for 10 minutes.	No application, baseline	Nasal blood volume via optical rhinometry (measured in nm) for whole nose and at septum, randomized.	 *A significant (p<0.01) decrease in blood volume could be seen for regional measurements at the septum. * Decrease in nasal blood volume at the nasal septum was, on average, observed after approximately 2 minutes t₁=111 sec ± 73 sec); decrease reached its maximum after approximately 6 minutes (t₂₌337 sec ± 119 sec).
Teymoortash, 2003, Germany	Cross-over	56 healthy subjects (mean age=30, range 17-48) with normal rhinoscopy and no history of nasal allergy or acute or recurrent symptoms of rhinitis.	Ice pack applied all- round the neck for 5 minutes.	No application, baseline	Nasal mucosal microcirculatory blood flow via laser Doppler flowmetry, nasal mucosal blood content (indirectly via conventional computer- aided anterior rhinomanometer by measuring alternations in nasal airflow and airway patency).	 * After cold application, nasal mucosal blood flow decreased from 1368.8 ± 927.9 to 1130.5 ± 792.2). Difference between before and after cold application was not significant (P=0.11). * Total nasal inspiratory airflow before application was 513.9±190.4cm³/s, and after exposure to cold 471.5±164.6 cm³/s (P=0.08). * Total nasal expiratory airflow before application was 474.2±211.7 cm³/s and after exposure to cold 443.1±162.4 cm³/s (P=0.30)
Yamagiwa, 1990, Denmark	Cross-over	10 healthy subjects (mean age=21±11.0, range 24- 54) with no significant complaints or rhinoscopically overt nasal abnormalities.	Feet cooling (both) in large tub (0-4°C) immersed 30 cm from heel for 5 minutes, (n=10).	No application, baseline	Nasal cavity volume (mL) rhinometry for L and R cavities.	 * Foot cooling arm. In the exposure period, nasal airway volume was significantly higher than preexposure values in 4 of 10 (40%) of subjects, none showed significantly lower values. * Hand cooling arm. In the exposure period, nasal airway volume was
			One hand and forearm cooling in bucket (0-4°C)			significantly higher than preexposure values in 1 of 9 (11%) of subjects, lower in

immersed to around 23 cm from the middle fingertip for 5 minutes (n=9). 2 of 9 (22%), and no difference in 6 of 9 (66%)

Appendix C4

Cryotherapy for Epistaxis: Gray literature study characteristics and findings

Author, year,	Study design,	Intervention	Cryotherapy	Direct Pressure Application Time
country	setting/audience	Concepts	Statements	
Pope, 2005, UK	Narrative:	Direct pressure	"improved by a cold compress or the	NA
	Clinical practice		patient sucking on ice." p.310	
{Pope 2005 309}		Patient position		
		Crushbaran		
Wong 2019	Norrativo	Cryotherapy Direct processor	"Applying ice packs around the pack and	10 min
wong, 2018,	Narrative:	Direct pressure	Applying ice packs around the neck and	TO WIN
Australia	Failing practice	Patient position	on ico significantly reduces pasal mucesa	
{Wong 2018 F13}		Patient position	blood flow and can slow down the	
(Cryotherapy	bleeding.7" p.E16	
Record, 2015,	Practice guideline:	Direct pressure	"Ice compresses to the forehead or neck	10 min
United States	Nursing		may be used, but studies are	
		Patient position	inconclusive as to the usefulness of this	
{Record 2015 484}			maneuver (Teymoortash 2003; Scheibe,	
		Cryotherapy	2006)." p.487	
Unilo 2008	Brotocoli	Direct proceure	" ninching the whole of the	20 min + 20 min
United Kingdom	Linited Kingdom	Direct pressure	cartilaginous tip of the pose for 30 min	50 11111 + 50 11111
office Kingdoffi	Healthcare System.	Cryotherapy	followed by another 30 min of pressure	
{Upile 2008 1349}	first aid		and pack of ice on bridge of nose if	
			bleeding continued."	
O'Sullivan, 2020,	Informational:	Direct pressure	"putting an ice pack on to their	20 min
Ireland	Website		forehead."	
		Cryotherapy		
{O'Sullivan 2020}				
Beck. 2018.	Review:	Direct pressure	"Local application of ice, e.g., at the back	15-20
German	primary and secondary		of the neck, is intended to encourage	
	care	Patient position	vasoconstriction of the blood vessels of	
[Beck 2018 12}			the nose." Its therapeutic value is a	
		Cryotherapy	matter of debate and has been	
			challenged in the literature (38)."	