2021 Evidence Update Worksheet

Appendix B2 ALS 1

ALS 444 : Algorithm for transition from shockable to non-shockable rhythm and vice versa (EvUp)

Worksheet author(s): Tonia Nicholson Date Completed: Jan 2021

PICO / Research Question: Among adults who are in cardiac arrest who were initially in a) a non-shockable rhythm but who develop a shockable rhythm or b) were in a shockable rhythm and develop a non-shockable rhythm, in any setting (P), does any specific alteration in treatment algorithm (I), compared with standard care (according to 2010 treatment algorithm) (C), change (O)?

Outcomes: Primary outcome assessed was *Survival to Hospital Discharge*. Secondary outcomes considered were *Survival to Hospital Discharge with Favorable Neurological Functional and Adverse Drug-Related Effects.*

Type (intervention, diagnosis, prognosis): Intervention Additional Evidence Reviewer(s): Conflicts of Interest (financial/intellectual, specific to this question): None Year of last full review: (Not clear to me) 2000. 2010. Worksheet done as EvUp in 2020 (but not included in CoSTR)

Last ILCOR Consensus on Science and Treatment Recommendation: Unable to identify a specific CoSTR on this topic. The most relevant CoSTR identified from 2010 was that regarding Timing of Drug Delivery (During Cardiac Arrest):

Consensus on Science There are no studies that addressed the order of drug administration. Subgroup analyses from 2 clinical studies reported decreased survival for every minute drug delivery was delayed, measured from call received at EMS dispatch (LOE 4).^{190,191} This finding was likely to be biased by a concomitant delay in onset of ALS. In 1 study the interval from the first shock to the injection of the drug was a significant

predictor of survival (LOE 4).¹⁹⁰ One animal study reported lower coronary perfusion pressure when delivery of vasopressor was delayed (LOE 5).¹⁹² Time to drug administration was a predictor of ROSC in a retrospective analysis of cardiac arrest in swine (LOE 5).¹⁹³

Treatment Recommendation There is inadequate evidence to define the optimal timing or order for drug administration. An incomplete review of animal studies suggests that timing of vasopressor administration may affect circulation, and further investigations are important to help guide the timing of drug administration.

Current Search Strategy: Updated 25 Aug 2020 1 year= 54 results

(((((((((((((((asystole [mesh]) OR pulseless electrical activity [tiab]) OR PEA [tiab]) AND ventricular fibrillation [mesh]) OR ventricular tachycardia [mesh]) AND ("2009/01/01"[PDat] : "3000/12/31"[PDat]))) AND ((((((((((((((ife support care[MeSH Terms]) OR "life support"[Title/Abstract]) OR cardiopulmonary resuscitation[MeSH Terms]) OR "cardiopulmonary resuscitation"[Title/Abstract]) OR "CPR"[Title/Abstract]) OR "return of spontaneous circulation"[Title/Abstract]) OR "ROSC"[Title/Abstract]) OR heart arrest[MeSH Terms]) OR "cardiac arrest"[Title/Abstract])))) AND ("2009/01/01"[PDat] : "3000/12/31"[PDat]))) AND ((((((asystole [mesh]) OR pulseless electrical activity [tiab]) OR PEA [tiab]) AND ventricular fibrillation [mesh]) OR ventricular tachycardia [mesh]) *AND ("2009/01/01"[PDat] : "3000/12/31"[PDat])))* NOT animals Filters: Publication date from 2008/01/01

Database(s) searched: PubMed

Date Search(es) Completed: Aug 25th 2020

Search Results (Number of articles identified / number identified as relevant): 2020 – 256 Articles identified, 1 relevant 2021 (Search done in Aug 2020) - 54 articles identified – none thought relevant.

Inclusion/Exclusion Criteria: Included only studies published from 2008/01/01

Link to Article Titles and Abstracts (if available on PubMed):

Summary of Evidence Review:

No relevant studies were identified.

(Number of studies identified: SRs . . . , RCTs . . . , Non-RCTs . . .)

Relevant Guidelines or Systematic Reviews: No

Organization (if	Guideline or	Торіс	Number of articles	Key findings	Treatment recommendations
relevant);	systematic	addressed	included in review		
Author;	review	or PICO(S)T			
Year Published					

RCT: Yes

Study Acronym;	Aim of Study; Study	Patient Population	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if any);
Author;	Туре;		(# patients) /	(Absolute Event	Study Limitations; Adverse Events
Year Published	Study Size (N)		Study Comparator	Rates, P value; OR or	
			(# patients)	RR; & 95% Cl)	
Antiarrhythmic	Study Aim:	Inclusion Criteria:	Intervention:	<u>1° endpoint:</u>	2° Endpoint :
Drugs for Non-	To determine the clinical	18 years of age or	Administration of	Survival to hospital	Survival to hospital discharge with
shockable-Turned-	effects of amiodarone or	older with atraumatic,	antiarrhythmic	discharge, adjusted (for	favorable neurological functional
Shockable Out- of-	lidocaine compared to	OHCA with	medication (150mg	baseline differences in	(Modified Ranking scale 3)-No difference
Hospital Cardiac	placebo in those with	established IV or IO	amiodarone N=389,	the shockable vs non-	For all initial non-shockable rhythms, Absolute
Arrest: The	initial non-shockable-	access, with an initial	or 60mg lignocaine	shockable group -See*)	difference in survival to hospital discharge with
Amiodarone,	turned-shockable OHCA.	non-shockable rhythm	N=358)	For all initial non-	MRS \leq 3 between Amiodarone & Placebo =
Lidocaine or		that subsequently		shockable rhythms,	1.2
Placebo Study	Study Type:	became shock-		Absolute difference in	(95%Cl -0.6-3.0%, p= 0.20);
(ALPS) .	Prospective, randomized,	refractory VF/VT.	Comparison:	survival between	Absolute difference in survival to discharge with
	double-blind, placebo-		Normal saline	Amiodarone (4.1%) &	MRS \leq 3 between Lignocaine &Placebo =
Kudenchuk,	controlled multicenter		placebo (N=316)	Placebo (1.9%) = 2.3%	0.8%
et al 2017	trial. Pre-planned cohort			(95%Cl -0.3-4.8%, p=	(-0.9-2.5%, p= 0.37)
	of ALPS trial.			0.08).	For initial rhythm of PEA, absolute difference in

Circulation. 2017		Absolute difference in	survival to discharge with MRS \leq 3 between
<u>Nov 28; 136(22):</u>	Study Size (N):	survival between	Amiodarone & Placebo= 0.5% (-3.5-4.4%, p=
<u>2119–2131.</u>	1,063.	Lignocaine (3.1%) &	0.81).
PMID: 28904070	(29,986 had an initial	Placebo (1.9%) = 1.2%	Absolute difference in survival to discharge with
	non-shockable rhythm.	(-1.1-3.6%, p= 0.3).	MRS \leq 3 between Lignocaine & Placebo =
	In 1,864 of these the		0.9%
	rhythm became	For initial rhythm of	(-2.6-4.4%, p= 0.62).
	shockable.	PEA, absolute	For initial rhythm of asystole, absolute
	1,320 of these were	difference in survival	difference in survival to discharge with MRS \leq 3
	randomized to drug Rx	between	between Amiodarone & Placebo= 0.9% (-0.3-
	1, 063 remained study	Amiodarone(5%) &	2.1%, p= 0.13).
	eligible (rhythm resistant	Placebo (1.9%)= 1.2%	Absolute difference in survival to discharge with
	to \geq 1 shock).	(–3.6-6.5%, p= 0.57).	MRS≤ 3 between Lignocaine & Placebo =
		Absolute difference in	0.5%
	Initial rhythm PEA in 400	survival between	(-0.5-1.5%, p= 0.29).
	(38%), asystole in 587	Lignocaine (4.3%)&	Also, whether the initial rhythm was asystole,
	(55%) and not	Placebo (3.4%) = 0.6%	PEA, or VF/VT did not significantly alter the
	characterized in 76	(-3.9-5.2%, p= 0.79).	response to antiarrhythmic treatment. While not
	patients (7%)		statistically different, survival trends all favored
		For initial rhythm of	use of either antiarrhythmic agent.
		asystole, absolute	Adverse Drug-related effects – Effects
		difference in survival	previously reported with these medications that
		between Amiodarone	occurred within 24 hours of their administration,
		(3.3%)& Placebo	including anaphylaxis, thrombophlebitis
		(0.6%)= 2.3% (-0.3-	requiring treatment, clinical seizures and
		4.9%, p= 0.08).	bradycardia requiring temporary cardiac
		Absolute difference in	pacing.
		survival between	No difference in frequency between groups
		Lignocaine(2.1%) &	Other prespecified mechanistic outcomes -
		Placebo(0.6%) = 1.5%	were also assessed including return of
		(-0.8-3.8%, p= 0.20).	spontaneous circulation (ROSC), survival to
			hospital admission and responses to treatment

		(number of shocks and need for ancillary
		therapies).
		Study Limitations:
		1.Underpowered (study was intended to
		explore but was
		not robustly powered to prove clinical effects).
		2.Comorbid conditions weren't assessed
		prior to randomization (so treatment groups
		may not
		have been balanced in all respects).
		3. Hospital care was not controlled (though no
		significant differences in care were observed
		between treatment arms).

*Multiple logistic regression was done to evaluate the trial's main endpoints of survival and neurological outcome at hospital discharge, adjusting for age, sex, arrest etiology (presumed cardiac versus not), arrest location (public versus private), bystander or EMS-witnessed status of the OHCA, provision of bystander CPR, the incident call to EMS arrival interval and by trial site.

Nonrandomized Trials, Observational Studies

Study Acronym;	Study	Patient Population	Primary Endpoint and	Summary/Conclusion Comment(s)
Author;	Type/Design;		Results (include P value; OR	
Year Published	Study Size (N)		or RR; & 95% Cl)	
	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	

Reviewer Comments (including whether meet criteria for formal scoping review or systematic review):

Since 2010, only 1 article (out of an initial 256 & then 54 articles) has been identified as relevant to the topic of transition from non-shockable to shockable rhythms during CA. This article looked to address the effect of amiodarone and lidocaine vs placebo for shock refractory VF/pVT after an

initial rhythm of PEA or asystole. Although their findings do suggest that these medications are better than placebo there was no deviation from the standard ACLS protocol. Overall there were no studies found that looked to alter the ACLS algorithm specifically when there is a change from an initial rhythm to another initial rhythm

The Task Force decided there is insufficient evidence to do ascoping review or systematic review on this topic.

	Date
Presented to taskforce	8/01/2021
Plan for next presentation	2021

Reference list:

 Kudenchuk PJ, Leroux BG, Daya M, et al. Antiarrhythmic Drugs for Nonshockable-Turned-Shockable Out-of-Hospital Cardiac Arrest: The ALPS Study (Amiodarone, Lidocaine, or Placebo). *Circulation*. 2017;136(22):2119–2131. doi:10.1161/CIRCULATIONAHA.117.02862

2021 Evidence Update Worksheet Appendix B2 ALS 2

ALS 889: Oxygen dose during CPR

Worksheet author(s): Jasmeet Soar Date Submitted: 2 November 2020

PICO / Research Question:

(P) In adults with cardiac arrest in any setting,

(I) Does administering a maximal oxygen concentration (e.g. 100% by face mask or closed circuit),

(C) compared with no supplemental oxygen (e.g. 21%) or a reduced oxygen concentration (e.g. 40-50%),

Outcomes: Survival with favorable neurological/functional outcome at discharge, 30 days, 60 days, 180 days and/or 1 year, Survival only at discharge, 30 days, 60 days, 60 days, 180 days and/or 1 year, ROSC?

Type (intervention, diagnosis, prognosis): intervention

Additional Evidence Reviewer(s):

Conflicts of Interest (financial/intellectual, specific to this question): No relevant conflicts

Year of last full review: 2015 and Evidence Update in 2020

Last ILCOR Consensus on Science and Treatment Recommendation:

In 2020 (unchanged from 2015):

We suggest using the highest possible inspired oxygen concentration during CPR (weak recommendation, very-low-certainty evidence).

2021 Search Strategy:

("Oxygen"[Mesh] OR "oxygen concentration"[TIAB] OR "supplemental oxygen"[TIAB] OR "oxygen therapy"[TIAB] OR "titrated oxygen"[TIAB] OR "inspired oxygen"[TIAB] OR paO2[TIAB] OR "100% oxygen"[TIAB] OR "high flow oxygen"[TIAB] OR "Hyperoxia"[Mesh] OR "Oxidative Stress"[Mesh] OR ((Hyperoxi*[TIAB] OR Hypoxi*[TIAB] OR Normoxi*[TIAB] OR "high flow oxygen"[TIAB] OR "Oxygen Inhalation Therapy"[Mesh:NoExp] OR "Respiration, Artificial"[Mesh: NoExp]))) AND ("Heart Arrest"[Mesh] OR "heart arrest"[TIAB] OR "heart arrests"[TIAB] OR "cardiac arrest"[TIAB] OR "cardiac arrest"[TIAB] OR "cardiovascular arrest"[TIAB] OR asystole*[TIAB] OR "pulseless electrical activity"[TIAB] OR "Cut-of-Hospital Cardiac Arrest"[Mesh]) AND ("resuscitation"[Mesh] OR resuscitat* OR CPR OR prehospital OR pre-hospital OR "out-of-hospital"[TIAB] OR "out of hospital"[TIAB] OR "Emergency Medical Services"[Mesh]) NOT (neonat*OR newborn*) NOT ("letter"[Publication Type] OR "comment"[Publication Type])

Database searched: PubMed

Date Search Completed: Up to 2 November 2020Search Results: 33 new studies new since previous Evidence Update on 2 December 2019Inclusion/Exclusion Criteria: Adult human studies of inspired oxygen during CPR

No relevant adult human studies of oxygen during CPR identified.

Summary of Evidence Update:

There are no new studies of different inspired oxygen concentration and outcome during CPR. Previous indirect evidence suggests that there is an association between arterial partial pressure of oxygen during CPR and ROSC.

Reviewer Comments (including whether meet criteria for formal review):

ALS TF discussion on 2 November 2020 concluded that there was insufficient new data to pursue ScopRev or SR as data very unlikely to change current TR

Task Force discussions included that most patients are hypoxemic immediately after ROSC and require supplemental oxygen. There is no technology currently available that helps guide optimal titration of inspired oxygen during CPR of after ROSC.

There are no trials in progress

	Approval Date
Evidence Update coordinator	2 November 2020
ILCOR board	

*Once approval has been made by Evidence Update coordinator, worksheet will go to ILCOR Board for acknowledgement.

Reference list

2021 Evidence Update Worksheet

Appendix B2 ALS 3

Steroids during CPR (ALS433: EvUp)

Worksheet author(s): Tonia Nicholson Date Submitted: Feb 2021

PICO / Research Question: Among adults who are in cardiac arrest in any setting (P), does the administration of corticosteroids during CPR (I) compared with not using corticosteroids (C), improve outcome (O) (eg. Survival)?

Outcomes: Survival with Favourable neurological outcome at discharge, 30 days, 60 days, 180 days AND/OR 1 year; Survival only at discharge, 30 days, 60 days, 180 days AND/OR 1 year; ROSC.

Type (intervention, diagnosis, prognosis): Intervention

Additional Evidence Reviewer(s): N/A

Conflicts of Interest (financial/intellectual, specific to this question): N/A

Year of last full review: 2015. EvUp in 2020.

Last ILCOR Consensus on Science and Treatment Recommendation:

Consensus on Science:

In-hospital cardiac arrest. For the critical outcome of **survival to discharge with favorable neurological outcome**, there was low-quality evidence (downgraded for indirectness and for imprecision from 1 RCT in 268 patients with IHCA that showed improved outcome with methylprednisolone, vasopressin and epinephrine during cardiac arrest, and hydrocortisone in those with post-ROSC shock compared with only epinephrine and

placebo (18/130 [13.9%] versus 7/138 [5.1%];RR,2.94;95% CI, 1.16-6.50, which translates to 98 more /1000 surviving with good neurological outcome [95% CI, from 8 to 279 more/1000 surviving with good neurologic outcome]).

For the critical outcome of **survival to discharge**, there was low-quality evidence (downgraded for indirectness and for imprecision) from 1 RCT or 100 patients with IHCA that showed improved outcome with the combination of methylprednisolone, vasopressin and epinephrine during cardiac arrest and hydrocortisone after ROSC for those with shock, compared with the use of only epinephrine and placebo (9/48 [19%] versus 2/52 [4%]; RR,4.87; 95% CI, 1.17-13.79, which translates to 149 more /1000 surviving to discharge [95% CI,7-492 more /1000 surviving to discharge]). For the important outcome of **ROSC**, there was low-quality evidence (downgraded for indirectness and imprecision) from 2 RCTs involving 368 patients with IHCA showing improved outcome with the use of methylprednisolone and vasopressin in addition to epinephrine, compared with the use of placebo and epinephrine alone (combined RR,1.34; 95% CI,1.21-1.43, which translates to 130-267 more achieving ROSC with the combination of methylprednisolone ,vasopressin and epinephrine during cardiac arrest, compared with the use of only epinephrine and placebo [95% CI, 130-267 more achieving ROSC]).

Out-of-hospital cardiac arrest. For the critical outcome of **survival to discharge**, there was very-low-quality evidence (downgraded for risk of bias, indirectness and imprecision) from 1 RCT and 1 observational study showing no association with benefit with the use of steroids. Paris had no long-term survivors and Tsai showed survival to discharge in 8% (3/36) receiving hydrocortisone compared with 10% (6/61) receiving placebo (p = 0.805).

For the important outcome of **ROSC**, we found very-low-quality evidence from 1 RCT and 1 observational study with a combined total of 183 patients. The RCT showed no improvement in ROSC (and ICU admission) with dexamethasone given during cardiac arrest compared with placebo (5.4% [2/37] versus 8.7% [4/46]), but observational study showed an association with improved ROSC with hydrocortisone compared with no hydrocortisone (58% versus 38%; p=0.049).

Treatment Recommendation

For IHCA, the task force was unable to reach a consensus recommendation for or against the use of steroids in cardiac arrest. We suggest against the routine use of steroids during CPR for OHCA (weak recommendation, very-low-quality evidence).

2015 Search Strategy:

The search performed for the 2015 ILCOR CoSTR used the following terms:

<u>Corticosteroid terms</u>: corticosteroid/exp; corticosteroid*:ti,ab; mineralocorticoids:ti,ab; 'steroid'/exp; steroids:ti,ab; prednisone:ti,ab; prednisolone:ti,ab; dexamethasone:ti,ab; fludrocortisone:ti,ab

<u>Cardiac arrest terms</u>: heart arrest//exp; "cardiac arrest":ti,ab; "cardiac arrests":ti,ab; "cardiovascular arrest":ti,ab; "cardiovascular arrests":ti,ab; "heart arrests":ti,ab; "heart arrests":ti,ab; "heart arrests":ti,ab; "asystole":ti,ab; "pulseless electrical activity":ti,ab; "cardiopulmonary arrest":ti,ab; "cardiopulmonary arrests":ti,ab; "cardiopulmonary:ti,ab; "cardiopulmonary:ti,ab; "cardiopulmonary:ti,ab; "cardiopulmonary:ti,ab; "cardiopulmonary:ti,ab; "cardiopulmonary:ti,ab; "cardiopulmonary:ti,ab; "cardiopulmonary:ti,ab; "thoracic compressions":ti,ab; "thoracic compressions":ti,ab; "thoracic compressions":ti,ab; "basic life support":ti,ab

2021 Search Strategy: Explanation of search strategy approach for updating ALS 433

The search for 2015 PICO on steroids during /after cardiac arrest was run on 18 July 2014. It was re-run for the last EvUp on the PICO to capture studies between 2014 and 2019. It was again repeated and time restricted in 2021 (Dec 1st 2019 – Jan 13th 2021) to try and identify any relevant new articles on the topic since the last EvUp.

#	Search string (developed for the EMBASE.com platform,	Explanation	
	which includes Medline and Embase databases)		
#1	'heart arrest'/exp	Population – Cardiac arrest	
	'heart arrest\$':ti,ab	Terms related to cardiac arrest and/or ROSC should be the focus of the	
	'cardiac arrest\$':ti,ab	article, so these terms must appear in either the title or the abstract, or	
	'cardiovascular arrest\$':ti,ab	the article must be tagged with EMTREE terms for cardiac arrest or	
	'cardiopulmonary arrest'/exp	ROSC.	
	'cardiopulmonary arrest\$':ti,ab	Note, general terms for life support such as 'basic life support' (as used	
	'cardio-pulmonary arrest\$':ti,ab	in prior search) or "advanced cardiac life support' were considered too	
	'resuscitation'/exp	generic, and terms relating to CPR techniques such as chest	
		compressions and heart massage were considered too specifically	
	rosciu,ad	focusing on the process of CPR rather than the post-ROSC patient.	
	'post-rosc':ti,ab		
	'post-resuscitation':ti,ab		

Search string (developed for the EMBASE.com platform,	Explanation
which includes Medline and Embase databases)	
'return of spontaneous circulation':ti,ab	
resuscitat*:ti,ab	
#1 NOT ('animal'/exp NOT 'human'/exp OR 'nonhuman'/exp	Exclude non-human studies
OR 'rodent'/exp OR 'animal experiment'/exp OR 'experimental	The search results must include citations from the newborn population
animal'/exp OR rat:ti,ab OR rats:ti,ab OR mouse:ti,ab OR	string, so a 'non-human studies' filter was applied to it.
mice:ti,ab OR dog\$:ti,ab OR pig\$:ti,ab OR porcine:ti,ab OR	
swine:ti,ab OR chick\$:ti,ab)	
#2 NOT ([conference abstract]/lim OR [conference review]/lim	Exclude publication types
OR [editorial]/lim OR [erratum]/lim OR [letter]/lim OR [note]/lim	Conference abstracts and other ineligible study types were removed
OR [book]/lim OR 'case report'/de)	here.
#3 AND [2014-2020]/py	Date limit
	The date of the last ILCOR search was 18 July 2014.
	This search string can be combined with intervention strings or other
	population strings to produce a final number of records.
'steroid'/de	Intervention terms – steroids
'corticosteroid'/de	To identify steroid studies. These terms must appear in the title or
'mineralocorticoid'/de	abstract, or the article must be tagged with EMTREE terms for steroids.
corticosteroid\$:ti,ab	Note, the EMTREE terms were not exploded as that includes a large
mineralocorticoid\$:ti,ab	number of irrelevant interventions. Instead, studies coded directly to the
steroid\$:ti,ab	steroid EMTREE term (or the corticosteroid EMTREE term, etc.) were
prednisone:ti,ab	captured, along with studies that include these terms as free text, or
prednisolone:ti,ab	include the specific drugs that were included in the search for the 2015
methylprednisolone:ti,ab	
	Search string (developed for the EMBASE.com platform, which includes Medline and Embase databases) 'return of spontaneous circulation':ti,ab resuscitat*:ti,ab #1 NOT ('animal/exp NOT 'human'/exp OR 'nonhuman'/exp OR 'rodent'/exp OR 'animal experiment'/exp OR 'experimental animal'/exp OR rat:ti,ab OR rats:ti,ab OR mouse:ti,ab OR mice:ti,ab OR dog\$:ti,ab OR pig\$:ti,ab OR porcine:ti,ab OR swine:ti,ab OR chick\$:ti,ab) #2 NOT ([conference abstract]/lim OR [conference review]/lim OR [editorial]/lim OR [erratum]/lim OR [letter]/lim OR [note]/lim OR [book]/lim OR 'case report'/de) #3 AND [2014-2020]/py 'steroid'/de 'corticosteroid'/de corticosteroid\$:ti,ab mineralocorticoid\$:ti,ab steroid\$:ti,ab prednisone:ti,ab prednisolone:ti,ab methylprednisolone:ti,ab

#	Search string (developed for the EMBASE.com platform, which includes Medline and Embase databases)	Explanation
	fludrocortisone:ti,ab hydrocortisone:ti,ab dexamethasone:ti,ab	ILCOR CoSTR (hydrocortisone was added to this set of specific drugs as it is mentioned in the 2015 Consensus on science).
#6	#4 AND #5	Population + intervention
#7	(((after OR post) NEAR/4 (rosc OR spontaneous OR circulation OR resuscitation OR cardiac OR arrest)):ti,ab) OR postarrest:ti,ab OR 'post-arrest':ti,ab OR 'post-rosc':ti,ab OR (surviv* NEAR/3 (cardiac OR arrest OR resuscitation OR ohca OR 'oh ca' OR ihca OR 'ih ca'))	Post-arrest terms This string is useful to stratify studies according to whether they include reference to post-ROSC status. However, this string could potentially exclude relevant studies, and should not be relied upon to filter the identified studies.
#8	#6 AND #7	Population + intervention + post-arrest terms
#9	#6 NOT #8	Population + intervention (minus + post-arrest terms)

Database searched: EMBASE.com platform (includes Medline and EMBASE)/Cochrane Reviews/National Clinical Trails database and WHO

Date Search Completed: Jan 13th 2021

Search Results (Number of articles identified / number identified as relevant):

Embase/Medline214Cochrane:26

Trials Registry: 61

Inclusion/Exclusion Criteria:

Inclusion - Adults (>18yrs) with non-traumatic cardiac arrest

Page 15 of 93

Exclusions - Steroids given post-ROSC, paediatric patients, animal studies,

letters, commentaries, editorials, case series, poster presentations only, journal club reviews, interim analyses.

Link to Article Titles and Abstracts (if available on PubMed):

1) Liu B, Zhang Q and Li C (2020). Steroid use after cardiac arrest is associated with favourable outcomes: a systematic review and meta-analysis. Journal of International Medical Research. 48(5).⁽¹⁾

2) Li Y, Zhang J, Cai N & He F. Efficacy and safety of corticosteroid therapy in patients with cardiac arrest: a systematic review of randomised controlled trials. E Journal of Clinical Pharmacology (2020) 76:1631–1638. <u>https://doi.org/</u>10.1007/s00228-020-02964-3

Summary of Evidence Update:

Relevant Guidelines or Systematic Reviews: Two

Org (if	Guideline	Topic addressed	Number of articles	Key findings	Treatment
relevant);	or	or	identified		recommendations
Author;	systematic	PICO(S)T			
Year	review				
Published					
Liu B,	Systematic	To investigate	Identified 4 RCTs & 3	The overall effect size (RR	Current evidence indicates
Zhang Q	review and	whether steroid use	observational studies.	1.44; 95% CI 1.17–1.76; P	that steroid use increases the
and Li C	meta-	after CA increased	(3 published in English	1⁄4 0.02) demonstrated a	rate of ROSC and survival to
(2020) (1)	analysis.	the return of	and 4 in Chinese). Six	significant association	discharge in patients with CA.
		spontaneous	of these studies	between steroid use and	Steroid use may remain an
		circulation (ROSC)	examined the	ROSC.	acceptable option for patients
		rate and survival to	association between	A subgroup analysis (RCTs	with CA; however, high-
		discharge in	steroid use and ROSC	vs cohort studies) was also	quality and adequately
		patients with CA.	- 4 of these studies	conducted. Both study types	powered RCTs are warranted
		Subgroup analysis	were RCTs and 2 were	revealed a significant	
		done based on the	cohort studies.	association between steroid	

[
		time of drug		use and ROSC (RCT: RR	
		administration		1.43; 95%CI: 1.10–1.86, P	
		(during CPR or after		1/4 0.008; cohort studies: RR	
		CA).		1.54; 95%Cl 1.12– 2.12, P	
				1⁄4 0.009).	
				In addition, a subgroup	
				analysis based on the time	
				of steroid administration	
				showed that steroid use	
				during CPR (compared with	
				after CA) was significantly	
				associated with an increased	
				rate of ROSC (RR 1.64; 95%	
				Cl 1.05–2.58, P < 0.005).	
Li Y,	Systematic	Aimed to evaluate	Five studies (551	Given the clinical and	Due to the inherent limitations
Zhang J,	Review	the efficacy and	patients) met the	methodological	of the studies in this review,
Cai N &		safety of	criteria. One of these	heterogeneity across the	we have not been able to
He F.		corticosteroid	was of steroids post	studies, combining data	reach definitive conclusions.
(2020)		therapy in CA	ROSC & hence not	using meta-analysis	Larger-scale and better-
		patients.	relevant to this PICO	methods was not considered	designed studies are
			(Donnino 2016). The	appropriate. Hence the SR	therefore recommended, to
			other four studies have	just summarised the	further evaluate the potential
			all been considered in	evidence of the individual	and rational use of
			the development of	studies identified.	corticosteroid therapy in CA
			previous PICOs on this		patients.
			topic +/or EvUps.		
			(Mentzelopoulos 2009,		
1	1	1	1	1	1

	2013 comparing	
	placebo with steroids in	
	combination with	
	vasopressin &	
	epinephrine; Paris 1984	
	& Bolvardi 2016, both	
	comparing placebo with	
	steroids alone).	

Of the 7 articles identified for inclusion in the systematic review and meta-analysis by Liu, 3 of the studies were published in English (Mentzelopoulos, 2013⁽³⁾; Tsai, 2019⁽⁴⁾; Niimura, 2017⁽⁵⁾). All of these were considered in the 2020 ILCOR EvUp on the use of steroids during cardiac arrest.

4 of the studies were published only in Chinese (Zhang, 2015⁽⁶⁾; Mu 2014⁽⁷⁾; Yang, 2002⁽⁸⁾; He 2001⁽⁹⁾). The latter 3 studies were all small and were conducted before 2005, so would not be included in an ILCOR SR on this PICO because of the significant differences in other aspects of management of cardiac arrest before this time. The first study (Zhang, 2015) was an RCT conducted in China between 2011 and 2014. From the summary tables in the systematic review it was a small study with only 50 patients in each arm of the study (steroids vs no steroids). The study seems to suggest an association between the use of steroids during CPR and a positive outcome (ROSC in 31/50 with the use of steroids and 8/50 without). However, it is unlikely that this study alone would be considered sufficient evidence to result in a change in the current ILCOR COSTR about the use of steroids post CA.

The second systematic review by Li et al didn't include any studies that had not been identified in the 2020 ILCOR EvUp on the use of steroids during cardiac arrest. However, the Bolvardi study ⁽¹⁰⁾ was not described in detail in the previous EvUp, so for completeness is included below.

RCT: None (but Bolvardi study is described here as it wasn't described in the 2020 EVUR)

Study Acronym;	Aim of Study;	Patient	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if
Author;	Study Type;	Population	(# patients) /	(Absolute Event	any);
Year Published	Study Size (N)		Study Comparator	Rates, P value; OR	Study Limitations;
			(# patients)	or RR; & 95% CI)	Adverse Events

Bolvardi	To establish if	OHCA	All patients were given 1mg of	Overall survival to	There was no
2016.	administration of		epinephrine with each cycle	hospital discharge	measurement of
Studying the	methylprednisolone		of CPR. The study arm were	and survival with	demographic information
Influence of	during cardiac		also given 125mg of	positive neurological	of patients before arrival at
Epinephrine Mixed	arrest reduces the		methylprednisolone during	outcome were the	hospital, or factors
with Prednisolone	neurologic side		the 1 st cycle of resuscitation	same - 1/25 with	contributing to CA. There
on The Neurologic	effects after CPR.		or the 2 nd time epinephrine	methylprednisolone	was also a shortage of
Side Effects After			was given. The control group	vs 0/25 for controls	ICU beds so patients
Recovery in	RCT.		were given a saline placebo	(4% vs 0%).	stayed in the ED longer
Patients Suffering	50 patients (25		instead of the		than would generally
From	intervention and 25		methylprednisolone.		occur in other centres.
Cardiopulmonary	control)				
Arrest					

Nonrandomized Trials, Observational Studies: None

Study Acronym;	Study Type/Design;	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Author;	Study Size (N)		(include P value; OR or RR; &	Comment(s)
Year Published			95% CI)	

Reviewer Comments (including whether meet criteria for formal review):

Two systematic reviews have been published in the last year regarding the use of steroids during cardiac arrest. The majority of the studies included in these were considered in the development of the 2020 ILCOR EvUp on the use of steroids during cardiac arrest. An additional study in Chinese (Zhang 2015⁽⁶⁾) that wasn't included in the 2020 EvUp has now been reviewed and thought unlikely to add sufficient evidence to change the current ILCOR COSTR. The Bolvardi study, although considered last time without description, has now been described. Though an additional

RCT, it used methylprednisolone rather than hydrocortisone, so it is questionable whether meta-analysis of the results of this study with the Donnino (2016) study would be appropriate.

No new observational studies or RCTs regarding the use of steroids during cardiac arrest have been published in the last year.

The 2020 EvUp on the use of steroids during cardiac arrest identified 3 relevant studies registered with the Clinical National Trials registry. 1) Nct 02790788 Physiological Effects of Stress Dose Corticosteroids in the Management of In-hospital Cardiac Arrest ⁽¹¹⁾ was a randomized controlled trial by Mentzelopoulos SD, et al. It enrolled 100 patients after in-hospital cardiac arrest, with allocation to a treatment arm of IV methylprednisolone during cardiac arrest and IV hydrocortisone if there was shock present 4hrs after ROSC, compared with a saline placebo. The results of this study were made available on the NCT register in Nov 2019.Likely due to the situation with COVID 19, these results have not yet been published in a peer-reviewed journal, but have been presented at the National symposium on Intensive Care Medicine. The results do not suggest a significant benefit for the use of steroids for patients after in-hospital cardiac arrest, either in terms of post-ROSC haemodynamic status, inflammatory response or survival. It is unknown whether publication of this study is still planned, and this may well depend on the COVID workload of the Greek authors of the study.

2) Nct. 03640949 (2018). Vasopressin and Methylprednisolone for In-Hospital Cardiac Arrest. <u>https://clinicaltrials.gov/show/NCT03640949</u> ⁽¹²⁾ This is an investigator-initiated, multicenter, randomized, placebo-controlled, parallel group, double-blind, superiority trial of vasopressin and methylprednisolone during adult in-hospital cardiac arrest. There are five enrolling sites in Denmark. 492 adult patients with in-hospital cardiac arrest receiving at least one dose of adrenaline are to be enrolled. The primary outcome is return of spontaneous circulation and key secondary outcomes include survival at 30 days and survival at 30 days with a favourable neurological outcome. COVID has had an impact on enrolment in this study and its projected completion date has been extended from 2021 to 2022. (Principle investigator is Lars Wiuff Andersen, Associate Professor, Aarhus University Hospital, Denmark).

3) Nct. (2017). Effect of Vasopressin, Steroid, and Epinephrine Treatment in Patients with Out-of-hospital Cardiac Arrest. This was registered in 2017 as a Multicentre, Double Blind, Randomized, Placebo-controlled Study to compare the Effect of Vasopressin, Steroid & Epinephrine treatment in patients with OOH Cardiac Arrest. <u>https://clinicaltrials.gov/show/NCT03317197</u>^{(13).}

The primary outcome to be assessed was to be survival to discharge and to 1yr, with good neurological outcome (CPC 1 or 2). The study was to compare administration of epinephrine and saline placebo during CPR with administration of epinephrine and vasopressin, epinephrine and methylprednisolone and epinephrine, vasopressin and methylprednisolone in combination. (Principle investigator is Assistant Professor Jung-Youn Kim from the Korean University of Guro Hospital.)

The study was registered with an aim of recruiting 839 patients. It had an anticipated completion date of Aug 2020 – at present however, the study has not commenced recruitment, and it is not clear if it will still go ahead.

As there have been 2 recent systematic reviews including many of the available studies on the use of steroids during cardiac arrest, there is one completed study with results that may be presented for peer review in future, and there is at least one large active RCT relevant to the PICO, it would still seem appropriate to wait further evidence before ILCOR looks to carrying out another Systematic Review on the use of Steroids During Cardiac Arrest.

	Approval Date
Evidence Update coordinator	15 February 2021
ILCOR board	

*Once approval has been made by Evidence Update coordinator, worksheet will go to ILCOR Board for acknowledgement.

Reference list

1) Liu B, Zhang Q and Li C (2020). Steroid use after cardiac arrest is associated with favourable outcomes: a systematic review and meta-analysis. Journal of International Medical Research. 48(5).

2) Li Y, Zhang J, Cai N & He F. Efficacy and safety of corticosteroid therapy in patients with cardiac arrest: a systematic review of randomised controlled trials. E Journal of Clinical Pharmacology (2020) 76:1631–1638. <u>https://doi.org/</u>10.1007/s00228-020-02964-3

3) Mentzelopoulos SD, Malachias S, Chamos C, et al. Vasopressin, steroids and epinephrine and neurologically favourable survival after in-hospital cardiac arrest: a randomized clinical trial. JAMA. 2013;310:270-9

4) Tsai, MS, Chuang, PY, Huang, CH, Tang, CH, Yu, PH, Chang, WT and Chen, WJ. (2019). Post-arrest Steroid Use May Improve Outcomes of Cardiac Arrest Survivors. Critical care medicine. 47(2):167-175.

5) Niimura, T, Zamami, Y, Koyama, T, Izawa-Ishizawa, Y, Miyake, M, Koga, T, Harada, K, Ohshima, A, Imai, T, Kondo, Y, Imanishi, M, Takechi, K, Fukushima, K, Horinouchi, Y, Ikeda, Y, Fujino, H, Tsuchiya, K, Tamaki, T, Hinotsu, S, Kano, MR and Ishizawa, K. (2017). Hydrocortisone administration was associated with improved survival in Japanese patients with cardiac arrest. Scientific reports. 7(1):17919.

6) Zhang F, Yang ZJ, Shen J, et al. Adrenaline combined with methylprednisolone sodium succinate Cardiopulmonary resuscitation Chinese Clinical Medicine 2015; 22: 670–671.

7) Mu CJ, Li WQ, Zhou YM, et al. Hydrocortisone sodium succinate for cardio- pulmonary resuscitation the influence of patient prognosis. Chinese Journal of Integrated Traditional and Western Medicine 2014; 21: 229–231.

8) Yang GL and Li CX. Clinical study on comprehensive medication for cardiopulmonary cerebral resuscitation. National Coal Industry Medical Journal 2002; 5: 379–380.

9) He WX and Hong Z. Application of high- dose adrenaline combined with aminophyl- line, of clinical study of cardiopulmonary cerebral resuscitation with dexamethasone. Chinese Emergency Medicine 2001; 21: 224–225.

10) Bolvardi, E, Seyedi, E, Seyedi, M, Abbasi, AA, Golmakani, R and Ahmadi, K. (2016). Studying the influence of epinephrine mixed with prednisolone on the neurologic side effects after recovery in patients suffering from cardiopulmonary arrest. Biomedical and Pharmacology Journal. 9(1):209-214.

11) Nct. (2016). Physiologic Effects of Steroids in Cardiac Arrest. https://clinicaltrials.gov/show/NCT02790788

12) Nct. (2018). Vasopressin and Methylprednisolone for In-Hospital Cardiac Arrest. https://clinicaltrials.gov/show/NCT03640949

13) Nct. (2017). Effect of Vasopressin, Steroid, and Epinephrine Treatment in Patients with Out-of-hospital Cardiac Arrest. This was registered in 2017 as a Multicentre, Double Blind, Randomized, Placebo-controlled Study to compare the Effect of Vasopressin, Steroid & Epinephrine treatment in patients with OOH Cardiac Arrest. <u>https://clinicaltrials.gov/show/NCT03317197</u>^{(13).}

2021 Evidence Update Worksheet

Appendix B2 ALS 4

Confirmation of Tracheal Tube Position (ALS469: EvUp)

Worksheet author(s): Markus B Skrifvars

Date Completed: 19.11.2020

PICO / Research Question:

P - Among adults who are in cardiac arrest, needing/with an advanced airway, in any setting,

I – does use of devices (eg, 1. waveform capnography, 2. CO2 detection device, 3. esophageal detector device or 4. tracheal ultrasound),

- C compared with not using devices,
- O change placement of the ET tube between the vocal cords and the carina, success of intubation?

Primary search conducted August 25th 2020
Search author Peter Morley
Outcomes: Verification of placement of an ETT
Type (intervention, diagnosis, prognosis): Diagnostic

Additional Evidence Reviewer(s):

Conflicts of Interest (financial/intellectual, specific to this question): None

Year of last full review: 2015

Last ILCOR Consensus on Science and Treatment Recommendation:

We recommend using waveform capnography to confirm and continuously monitor the position of a tracheal tube during CPR in addition to clinical assessment (strong recommendation, low-quality evidence).

Current Search Strategy:

Database(s) searched: PUBMED

Date Final Search(es) Completed: November 15th 2020, January 25th 2021

Search Results (Number of articles identified / number identified as relevant): 123 new paper since 2015

Inclusion/Exclusion Criteria: Clinical studies assessing/comparing means to identify the placement of an endotracheal tube in the trachea (below the vocal cords)

Summary of Evidence Review:

Compared to the evidence review conducted in 2014 for the 2015 Guidelines, two potentially relevant studies were found (1,2). On systematic review was also identified.

Relevant Guidelines or Systematic Reviews: Yes or No

Organization	Guideline or	Topic addressed or PICO(S)T	Number of	Key findings	Treatment recommendations
(if relevant);	systematic		articles		
Author;	review		included in		
Year			review		
Published					
Sahu et al.	Systematic	The accuracy of US for	5 studies	US less specific in	Consider US if/when
2020	review	determination of ETT placement.		CA than in non-CA	capnography is not available
		A sub analysis of the CA		patients	or unreliable.
		patients.			

Nonrandomized Trials, Observational Studies

Study Acronym; Author;	Study Type/Design; Study Size (N)	Patient Population	Primary Endpoint and Results (include P value; OR or RR; & 95% CI)	Summary/Conclusion Comment(s)
Published				
Fublished				
		Ture enderrore		
Silvestri et al.	Experimental	I wo cadavers	Accuracy of waveform	vvaveform caphography was found to be
2017	study		capnography in two cadavers	100% specific and sensitive for
			(without pulmonary circulation)	verification of ETT placement in the
				trachea.
Karacabey et	Observational	30 patients with	US was not very accurate for the	No evidence that US would be superior to
al.	study	cardiac arrest	verification of correct ETT	waveform capnography in CA patients.
2016			placement in CA	

Reviewer Comments (including whether meet criteria for formal scoping review or systematic review):

The ALS task Force Opinion is that there is no new evidence that would suggest a need to change the treatment recommendation from 2015.

The task force discussed that the use of waveform capnography to confirm tracheal tube position during CPR is now the standard of care in many settings.

	Date
Presented to taskforce	November 19 th 2020
Plan for next presentation	

Reference list

- Silvestri S, Ladde JG, Brown JF, Roa JV, Hunter C, Ralls GA, Papa L. Endotracheal tube placement confirmation: 100% sensitivity and specificity with sustained four-phase capnographic waveforms in a cadaveric experimental model. Resuscitation. 2017 Jun;115:192-198. doi: 10.1016/j.resuscitation.2017.01.002. Epub 2017 Jan 19. PMID: 28111195
- 2. Karacabey S, Sanri E, Gencer EG, Guneysel O. Tracheal ultrasonography and ultrasonographic lung sliding for confirming endotracheal tube placement: Speed and Reliability. Am J Emerg Med. 2016 Jun;34(6):953-6. doi: 10.1016/j.ajem.2016.01.027. Epub 2016 Jan 26.
- Sahu AK, Bhoi S, Aggarwal P, Mathew R, Nayer J, T AV, Mishra PR, Sinha TP. Endotracheal Tube Placement Confirmation by Ultrasonography: A Systematic Review and Meta-Analysis of more than 2500 Patients. Journal of Emergency Medicine, 2020-08-01, Volume 59, Issue 2, Pages 254-264

2021 Evidence Update Worksheet

Appendix B2 ALS 5

Automatic ventilators vs manual ventilation during CPR (ALS 490: EvUp)

Worksheet author(s): Joshua Reynolds, MD, MS Date Submitted: February 17, 2021

PICO / Research Question: In adults and children in cardiac arrest (out-of-hospital [OHCA], in-hospital [IHCA]) and who have advanced airways in place, does the use of automatic ventilators, compared with manual ventilation, improve outcome (e.g. ventilation, oxygenation, reduce hands-off time, allow for continuous compressions and/or improves survival)?

Outcomes: Ventilation, Oxygenation, Hands-off-time, survival **Type (intervention, diagnosis, prognosis):** Intervention

Additional Evidence Reviewer(s):

Conflicts of Interest (financial/intellectual, specific to this question):

Year of last full review: 2010 / 2015 / New question: 2010

Last ILCOR Consensus on Science and Treatment Recommendation:

ILCOR Consensus on Science

One pseudorandomized study suggested that the use of an automatic transport ventilator with intubated patients may enable the EMS team to perform more tasks while subjectively providing ventilation similar to that provided by hand with a resuscitation bag (LOE 2). One study suggested that the use of an automatic transport ventilator with intubated patients provides oxygenation and ventilation similar to that achieved with a bag-valve device but with no difference in survival (LOE 2).

ILCOR Treatment Recommendation

There is insufficient evidence to support or refute the use of an automatic transport ventilator over manual ventilation during resuscitation of the cardiac arrest victim with an advanced airway.

ILCOR Knowledge Gaps

Studies evaluating adequacy of oxygenation, difference between volume and pressure cycled ventilation, and survival and complication rates when comparing manual ventilation versus automatic transport ventilator in cardiopulmonary resuscitation with an advanced airway in place are needed to advance the science in this area.

2010/2015/2020 Search Strategy:

2021 Search Strategy:

Date Search Completed: February 17, 2021

Search Results (Number of articles identified / number identified as relevant): 340 identified / 5 relevant

Inclusion/Exclusion Criteria:

Inclusion criteria

- Studies of adult OHCA or IHCA (potential for inter-facility transfer)
- Studies with reported subgroups of adult cardiac arrest
- Design: Randomized, observational, registry-based
- Language: At least abstract in English

Exclusion criteria

- Design: Case reports, case series, letters to editor, abstract only

- Exclude simulation studies or animal models unless there is now new clinical data, in which case consider indirect evidence from simulation studies or animal models

Link to Article Titles and Abstracts (if available on PubMed):

From 2010 CoSTR

- 1. Johannigman JA, Branson RD, Johnson DJ, Davis K, Hurst JM. Out-of-hospital ventilation: bag–valve device vs transport ventilator. Acad Emerg Med. 1995; *2*:719–724.
- 2. Weiss SJ, Ernst AA, Jones R, Ong M, Filbrun T, Augustin C, Barnum M, Nick TG. Automatic transport ventilator versus bag valve in the EMS setting: a prospective, randomized trial. South Med J. 2005; *98*:970–976.

New articles for 2020 update

- 3. Allen SG, Brewer L, Gillis ES, Pace NL, Sakata DJ, Orr JA. A Turbine-Driven Ventilator Improves Adherence to Advanced Cardiac Life Support Guidelines During a Cardiopulmonary Resuscitation Simulation. Respir Care. 2017 Sep;62(9):1166-1170. PMID: 28807986
- Bergrath S, Rossaint R, Biermann H, Skorning M, Beckers SK, Rörtgen D, Brokmann JCh, Flege C, Fitzner C, Czaplik M. Comparison of manually triggered ventilation and bag-valve-mask ventilation during cardiopulmonary resuscitation in a manikin model. Resuscitation. 2012 Apr;83(4):488-93..PMID: 21958929
- 5. El Sayed MJ, Tamim H, Mailhac A, Mann NC. Impact of prehospital mechanical ventilation: A retrospective matched cohort study of 911 calls in the United States. Medicine (Baltimore). 2019 Jan;98(4):e13990. PMID: 30681557

Summary of Evidence Update:

Evidence Update Process for topics not covered by ILCOR Task Forces

1. This evidence update process is only applicable to PICOs which are not being reviewed as ILCOR systematic and scoping reviews.

Relevant Guidelines or Systematic Reviews

Organization (if relevant);	Guideline or	Торіс	Number of articles	Key findings	Treatment
Author;	systematic	addressed or	identified		recommendations
Year Published	review	PICO(S)T			

RCT:

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	Endpoint Results (Absolute Event Rates, P value; OR or RR; & 95% CI)	Relevant 2° Endpoint (if any); Study Limitations; Adverse Events
	Study Type:	Inclusion	Intervention:	<u>1° endpoints:</u>	Secondary endpoints
Weiss 2005	Open label	<u>Criteria:</u>	Transport ventilator	"Successful	Binary yes/no as to whether O2 or
	randomized	Adults with	(n=15)	management"	EtCO2 data points were recorded
Included for	trial	successful		(Likert scale from	
2010		endotracheal		provider on use	O2 data recorded
guidelines	Study Size:	intubation	Comparison:	compared to other	4/14 vs. 8/14
			BVM (n=15)	device; range from -	
				2 to + 2)	EtCO2 data recorded

N_{-29} (1.1 in	Evolucion		5/11 vc 9/11
N=20 (14 III			5/14 VS. 6/14
each study	<u>Criteria</u> :	Ease of use	
arm)	Age < 18 years;	-0.9 vs0.4	
	Weight < 40 kg		Study Limitations:
22/28 were in		Set-up time	Small sample size
cardiac arrest	<u>Note</u>	-0.6 vs0.2	
	Subject		Open label design
No subgroup	demographics	Expediation of	
analyses	not reported	transport	Outcome data difficult to interpret
		0.3 vs. 0.0	
			No convincing signal for benefit or harm
		Accomplishing	
		additional tasks	Might free up providers to perform other
		0.6 vs0.3	after longer set-up time (akin to
			mechanical CPR)
		Ability to document	
		0.2 vs0.3	
		Patient comfort	
		0.0 vs0.4	
		Ability to provide	
		overall patient care	
		0.4 vs. 0.0	

Bergrath 2012	Study Type	Inclusion	Intervention	Primary outcome:	
	Randomized	<u>criteria for</u>	Ventilator: novel,	ventilation	
Simulation	simulation	volunteers:	compact, pressure-	parameters	
study	study	3 rd year medical	limited ventilator		
		students	with manually	Mean Vt (mL)	
New for 2021	Study Size		triggered	Vent: mean 315	
evidence	74 subjects in		ventilations;	(SD 165)	
update	34 2-person		dynamic adjustment	BVM: mean 408	
	teams		of ventilation	(SD 164)	
	randomized to		pressure to achieve	P=0.10	
	either		selected Vt based		
	ventilator (20		on dynamic	Maximum Vt (mL)	
	teams) or BVM		changes in lung	Vent: mean 565	
	(17 teams)		compliance	(SD 178)	
			(MEDUMAT Easy	BVM: mean 620	
			CPR, Weinmann,	(SD 143)	
			Hammburg,	P=0.31	
			Germany)		
				PAP (mbar)	
			<u>Comparison</u>	Vent: mean 13.6	
			BVM: Total volume	(SD 2.2)	
			1,600 mL with	BVM: mean 13.3	
			pressure relief valve	(SD 2.0)	
			at 40 mbar	P=0.69	
				Inspiratory time	
				(sec)	

				Vent: mean 1.39	
				(SD 0.31)	
				BVM: mean 0.80	
				9SD 0.23)	
				P<0.001	
				Hands-off time CPR	
				(sec)	
				Vent: mean 162	
				(SD 11)	
				BVM: mean 134	
				(SD 18)	
				P=0.001	
Allen 2017	Study Type	Inclusion	Intervention	Primary outcome:	SimMan 3G manikin (Laerdal) used to
	Randomized	Criteria for	Mechanical	Ventilation	collect CPR data
Simulation	crossover	volunteers:	ventilator (8	parameters (Vt, RR,	Test lung adjacent to manikin (covered
Study	simulation	ACLS certified	breaths/min at 22	PAP)	by a shield) used to collect ventilation
	study		cmH20)		data
New for 2021				Vt (L)	
evidence	Study Size		<u>Comparator</u>	Vent: median 0.5	The ventilator delivered remarkably
update	24 subjects in		BVM (Ambubag,	(IQR 0.5 – 0.5)	reliable parameters once it was set
	12 teams of 2		AMBU, Glen	BVM: median 0.6	
	performed 4		Burnie, MD)	(IQR 0.5 – 0.7)	Expected variation in parameters with
	scenarios			P=0.007	BVM
	each				

r	roles) in	Vent: median 7.98	
r	random order	(IQR 7.98-7.99)	
		BVM: median 9.5	
		(IQR 8.2 – 10.7)	
		P=0.11	
		Peak airway	
		pressure (cmH20)	
		Vent: median 22	
		(IQR 22-22)	
		BVM: median 30	
		(IQR 2-35)	
		P<0.001	
		Associated hands-	
		off time CPR	
		(seconds)	
		Vent: mean 5.25	
		(SD 2.11)	
		BVM: mean 6.41	
		(SD 1.45)	
		P<0.001	

Nonrandomized Trials, Observational Studies

Study	Study	Patient	Primary Endpoint and Results (include P	Summary/Conclusion
Acronym;	Type/Design;	Population	value; OR or RR; & 95% Cl)	Comment(s)
Author;	Study Size (N)			
Year				
Published				
Johannigman	Study Type:	Inclusion	<u>1° endpoint:</u>	Some EMS units carried a
1995		<u>Criteria:</u>	ABG on ED arrival (within 5 min)	transport ventilator, while
	Prospective	Subjects	*missing for 70 subjects	others carried a BVM; pseudo-
Included for	convenience	requiring out-of-		randomization through usual
2010 guidelines	sample	hospital	Subset of cardiac arrest (122/160)	dispatch operations
		ventilation		
	N=160 subjects		Manual ventilation (n=20)	BVM: minimum volume 2.0 L
		Male 60%	pH 7.20 (SD 0.16)	and O2 flow rate at 15 L/min
	Metropolitan	Mean age 61	pCO2 42 (SD 21)	
	area with 3	years	pO2 217 (SD 138)	Transport ventilator: Portable,
	neighboring	Endotracheal	HCO3 15 (SD 5)	pneumatically powered,
	counties; large	intubation 83%		electronically controlled, time-
	receiving		Mechanical ventilation (n=32)	cycled machine (Impact Uni-
	university	Data are for	pH 7.17 (SD 0.17)	Vent 706, Impact
	hospital	subset of	pCO2 37 (SD 20)	Instrumentation Inc, West
		122/160 with	pO2 257 (SD 142)	Caldwell, NJ). Option for 5
		cardiac arrest	HCO3 13 (SD 4)	respiratory frequencies and
		(defined as SBP		inspiratory time settings.
		< 50 mmHg)	Esophageal Obturator Airway + manual	Inspiratory flow adjustable from
			ventilation (n=11)	10 – 60 L/min. Tidal volumes

			pH 7.09 (SD 0.13)	range from 100 – 1,500 mL. I-
			pCO2 76 (SD 30)	time fixed at 1.5 seconds
			pO2 75 (SD 35)	(adults) or 0.75 seconds
			HOC3 22 (SD 5)	(pediatrics).
			Secondary Endpoints	No clinically meaningful
			Survival to [not specified by authorseither	differences in ABG between
			ED arrival or hospital admission]	manual and mechanical
				ventilation
			Manual ventilation 3/46 (6.5%)	
				Esophageal obturator airway
			Mechanical ventilation	(EOA) is currently obsolete
			3/64 (4.7%)	
				Small sample size limits
			EOA + manual ventilation 0.12 (0%)	interpretation of survival data
				No convincing signal for benefit
				or harm
El Sayed 2019	Study Type	Inclusion	Primary outcome:	Only 7% of sample was in
	Secondary	<u>criteria:</u>	Mortality at ED discharge	cardiac arrest
New for 2021	analysis of	911 response,	Vent: 8.4%	No subgroup analyses
evidence	NEMSIS (United	ventilator use	No vent: 7.4%	
update	States) dataset	coded in	P=0.19	Longer on-scene and total
	(2011-2014)	dataset, ED		prehospital duration with use of
		vital status in	Secondary outcomes:	a mechanical ventilator – this
	N=5,740 EMS	dataset,	Total on-scene time	might be clinically meaningful in
	activations	complete data	Vent: mean 20.7 (SD 12.1)	
(could be	for matched	No vent: mean 17.2 (SD 8.9)	cases of OHCA (akin to	
--------------------	-------------------	---------------------------------	-------------------------	
multiple	variables	P<0.0001	mechanical CPR devices)	
activations per				
subject)	Exclusion	Total prehospital time		
	<u>criteria</u> :	Vent: mean 45.2 (SD 23.1)		
1:1 case	"call cancelled",	No vent: mean 41.1 (SD 21.2)		
matching on age	patient refused	P<0.0001		
(+/- 2 years, sex,	treatment,			
EMS diagnostic	destination	Mortality at hospital discharge		
impression,	other than	Vent: 29%		
urbanicity, level	"hospital"	No Vent: 21%		
of service)		P=0.01		
	Case			
2,870 ventilator	breakdown:			
(vent without	78% respiratory			
PEEP, vent with	distress			
PEEP, BiPAP, or	7% cardiac			
CPAP)	arrest			
2,870 non-	3% trauma			
ventilator	3% altered LOC			

Reviewer Comments (including whether meet criteria for formal review):

Since the 2010 CoSTR, there is no new direct evidence from clinical data in the target population (adult cardiac arrest). New indirect evidence from two simulation studies (specific to cardiac arrest) and one registry-based observational study (not specific to cardiac arrest) suggest that mechanical ventilation delivers consistent and reliable ventilation parameters compared to manual ventilation. This same indirect evidence also suggests that there is a greater burden of equipment set-up and greater risk of hands-off time during chest compressions when using mechanical ventilation compared to manual ventilation. These findings are similar to those related to mechanical chest compression devices.

Altogether, this topic does not have sufficient new direct evidence to proceed to a formal systematic review.

	Approval Date
Evidence Update coordinator	15 February 2021
II COR board	

*Once approval has been made by Evidence Update coordinator, worksheet will go to ILCOR Board for acknowledgement.

Reference list

Previously identified studies for 2010 CoSTR

1. Weiss SJ, Ernst AA, Jones R, Ong M, Filbrun T, Augustin C, Barnum M, Nick TG. Automatic transport ventilator versus bag valve in the EMS setting: a prospective, randomized trial. South Med J. 2005; *98*:970–976. PMID: 16295811

 Johannigman JA, Branson RD, Johnson DJ, Davis K, Hurst JM. Out-of-hospital ventilation: bag–valve device vs transport ventilator. Acad Emerg Med. 1995; 2:719–724. PMID: XXXX

New studies for 2021 evidence update

- 3. Allen SG, Brewer L, Gillis ES, Pace NL, Sakata DJ, Orr JA. A Turbine-Driven Ventilator Improves Adherence to Advanced Cardiac Life Support Guidelines During a Cardiopulmonary Resuscitation Simulation. Respir Care. 2017 Sep;62(9):1166-1170. PMID: 28807986
- Bergrath S, Rossaint R, Biermann H, Skorning M, Beckers SK, Rörtgen D, Brokmann JCh, Flege C, Fitzner C, Czaplik M. Comparison of manually triggered ventilation and bag-valve-mask ventilation during cardiopulmonary resuscitation in a manikin model. Resuscitation. 2012 Apr;83(4):488-93..PMID: 21958929
- 5. El Sayed MJ, Tamim H, Mailhac A, Mann NC. Impact of prehospital mechanical ventilation: A retrospective matched cohort study of 911 calls in the United States. Medicine (Baltimore). 2019 Jan;98(4):e13990. PMID: 30681557

Potential studies identified and ultimately excluded

- 6. Fuchs P, Obermeier J, Kamysek S, Degner M, Nierath H, Jürß H, Ewald H, Schwarz J, Becker M, Schubert JK. Safety and applicability of a prestage public access ventilator for trained laypersons: a proof of principle study. BMC Emerg Med. 2017 Dec 4;17(1):37. PMID: 29202698
 - Pilot, prospective observational study of using a transport ventilator in healthy volunteers. Measured ventilator mechanics and air leak.
- El Sayed M, Tamim H, Mailhac A, N Clay M. Ventilator use by emergency medical services during 911 calls in the United States. Am J Emerg Med. 2018 May;36(5):763-768. PMID: 29032875

- Secondary analysis of NEMSIS database (United States) 2011-2014. A descriptive study of ventilator use by EMS in the United States.
 Primary outcome was use of a mechanical ventilator. Authors modeled clinical variables associated with ventilator use. There were no clinical outcomes and this study is not specific to cardiac arrest.
- Nitzschke R, Doehn C, Kersten JF, Blanz J, Kalwa TJ, Scotti NA, Kubitz JC. Effect of an interactive cardiopulmonary resuscitation assist device with an automated external defibrillator synchronised with a ventilator on the CPR performance of emergency medical service staff: a randomised simulation study. Scand J Trauma Resusc Emerg Med. 2017 Apr 4;25(1):36. PMID: 28376849
 - Simulation study. Both study arms used an automatic ventilator.
- Sherren PB, Lewinsohn A, Jovaisa T, Wijayatilake DS. Comparison of the Mapleson C system and adult and paediatric self-inflating bags for delivering guideline-consistent ventilation during simulated adult cardiopulmonary resuscitation. Anaesthesia. 2011 Jul;66(7):563-7.
 PMID: 21668912
 - Simulation study. This study compares two different BVM systems and does not involve use of an automatic ventilator.
- 10. Cordioli RL, Brochard L, Suppan L, Lyazidi A, Templier F, Khoury A, Delisle S, Savary D, Richard JC. How Ventilation Is Delivered During Cardiopulmonary Resuscitation: An International Survey. Respir Care. 2018 Oct;63(10):1293-1301. PMID: 29739857
 - Survey study
- Winkler BE, Muellenbach RM, Wurmb T, Struck MF, Roewer N, Kranke P. Passive continuous positive airway pressure ventilation during cardiopulmonary resuscitation: a randomized cross-over manikin simulation study. Journal of Clinical Monitoring and Computing. 2017 31:93-101. PMID: 26861639
 - Simulation study. This study compares the tidal volumes generated by various mechanical ventilators set to a range of CPAP levels during passive ventilation from mechanical chest compressions.

- 12. Greenslade GL. Single operator cardiopulmonary resuscitation in ambulances: which ventilation device? Anaesthesia. 1991 46:391-4. PMID: 2035790
 - Simulation study. Randomized cross-over study of single rescuer CPR. Measured minute ventilation and compressions/minute during a control period of mouth-to-mouth ventilation, followed by mouth-to-mask, BVM, and an automatic ventilator attached to BVM mask. No advanced airways were placed for any of the ventilation modes.
- 13. Orso D, Vetrugno L, Federici N, Borselli M, Spadaro S, Cammarota G, Bove T. Mechanical ventilation management during mechanical chest compressions. Respiratory Care. 2021 66(2):334-46. PMID: 32934100
 - Narrative review of animal and human literature that summarizes different strategies of mechanical ventilation during mechanical chest compressions. They authors pay particular attention to reviewing strategies to optimize the ventilation mode, tidal volume, PEEP, ventilation rate, I:E ratio, inspiratory trigger, and FiO2.

2021 Evidence Update Worksheet Appendix B2 ALS 6

Cardiac arrest and asthma (ALS492: EvUp)

Worksheet author(s): Katherine Berg Date Submitted: Jan 4, 2021

PICO / Research Question: In adult cardiac arrest due to asthma, does any modification of treatment, as opposed to standard care (according to treatment algorithm), improve outcome? (as worded in 2010 CoSTR)

Outcomes: ROSC, survival to hospital discharge, 30 days or longer, survival with favorable neurologic outcome at hospital discharge, 30 days or longer.

Type (intervention, diagnosis, prognosis): Intervention

Additional Evidence Reviewer(s):

Conflicts of Interest (financial/intellectual, specific to this question): None

Year of last full review: 2010 / 2015 / New question: 2010

Last ILCOR Consensus on Science and Treatment Recommendation:

Consensus on Science

There are no RCTs that specifically evaluate or compare adjuvant treatment with standard treatment for cardiac arrest in asthmatic patients. Most of the literature comprises case reports and case series.

Evidence from 3 non–cardiac arrest case series involving 35 patients suggests that asthmatic patients are at risk for gas trapping during cardiac arrest, especially if their lungs are ventilated with high tidal volumes and/or rapid rates (LOE 5).^{466–468} One volunteer adult study demonstrated that increasing PEEP caused increased transthoracic impedance (LOE 5).⁴⁶⁹

Seven case series involving 37 patients suggested increased ease of ventilation and ROSC with lateral chest compressions at the base of the ribs (LOE 4).^{470–476} In a single case report, lateral chest compressions were associated with cardiac arrest and poor cardiac output (LOE 4).⁴⁷⁷ Three single case reports (2 intraoperative and 1 ED) involving cardiac arrest caused by asthma suggested improvement in ease of ventilation and ROSC with thoracotomy and manual lung compression (LOE 4).^{471,475,476}

Treatment Recommendation

There is insufficient evidence to suggest any routine change to cardiac arrest resuscitation treatment algorithms for patients with cardiac arrest caused by asthma.

2010/2015 Search Strategy:

2021 Search Strategy: ("asthma"[MeSH Terms] OR "asthma"[All Fields] OR "asthmas"[All Fields] OR "asthma s"[All Fields]) AND ("heart arrest"[MeSH Terms] OR ("heart"[All Fields] AND "arrest"[All Fields]) OR "heart arrest"[All Fields] OR ("cardiac"[All Fields] AND "arrest"[All Fields]) OR "cardiac arrest"[All Fields])

Database searched: PubMed

Date Search Completed: January 4, 2021, search limited to January 1, 2009-January 4, 2021

Search Results (Number of articles identified / number identified as relevant): 137 identified, 1 relevant

Inclusion/Exclusion Criteria: Included controlled and uncontrolled studies of treatments/strategies for resuscitation of cardiac arrest related to asthma with a comparison group, case series. Excluded pediatric studies, case reports, animal studies. Also excluded studies looking only at post-ROSC management or studies that did not include cardiac arrest.

Link to Article Titles and Abstracts (if available on PubMed):

Tsai MS, Chuang PY, Yu PH, Huang CH, Tang CH, Chang WT, Chen WJ.Int J Cardiol. <u>Glucocorticoid use during cardiopulmonary resuscitation</u> <u>may be beneficial for cardiac arrest.</u> Nov 1, 2016;222:629-635. PMID: 27517652 **Summary of Evidence Update:** No controlled studies were identified. A single retrospective observational study use propensity matching to compare outcomes in patients presenting to the ED with cardiac arrest who did receive steroids during CPR to those patients who did not receive steroids during CPR. The authors report better adjusted odds of survival in the patients who received intra-arrest steroids, and the effect appeared larger in patients with asthma or COPD. Two case reports describing patients with cardiac arrest due to asthma were also identified but were not included due to the very critical risk of bias from relaying on case reports.

Relevant Guidelines or Systematic Reviews

Organization (if	Guideline or	Торіс	Number of articles	Key findings	Treatment
relevant);	systematic	addressed or	identified		recommendations
Author;	review	PICO(S)T			
Year Published					

RCT:

Study	Aim of Study;	Patient	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if
Acronym;	Study Type;	Population	(# patients) /	(Absolute Event Rates, P	any);
Author;	Study Size (N)		Study Comparator	value; OR or RR; & 95%	Study Limitations;
Year			(# patients)	CI)	Adverse Events
Published					
	Study Aim:	Inclusion	Intervention:	<u>1° endpoint:</u>	Study Limitations:
		<u>Criteria:</u>			

Study Type:	<u>Comparison:</u>	

Nonrandomized Trials, Observational Studies

Study Acronym;	Study Type/Design; Study	Patient Population	Primary Endpoint and	Summary/Conclusion Comment(s)
Author;	Size (N)		Results (include P	
Year Published			value; OR or RR; &	
			95% CI)	
Tsai et al,	Study Type: Retrospective	Inclusion Criteria: adult	<u>1° endpoint:</u>	Study included patients from 2004-
Glucocorticoid	observational study using	(18 or older) patients	Survival to admission,	2011, so this is older data although
use during	propensity matching.	brought to emergency	survival to discharge,	study was published in 2016. Cohort
cardiopulmonary	Patients were matched by	departments for CPR and	1-year survival	was over 140,000 patients, but the
resuscitation	multiple variables including	who received		matched cohort consisted of 2876 who
may be	age, gender, presenting	resuscitation attempt in		received steroids and 8628 who did
beneficial for	complaint, comorbidities,	the emergency		not. The findings were that receiving
cardiac arrest,	previous steroid use, drugs	department.		steroids during CPR was associated
2016	and electric shocks	Exclusion criteria:		with an adjusted OR of 2.97 (2.69-
	delivered during CPR,	trauma, patients in ED >6		3.29) for survival to admission and
	treatment setting (tertiary	hours prior to arrest,		1.71 (1.42-2.05) for survival to
	medical center or not),	patients not triaged as		discharge. In the subgroup of patients
	socioeconomic status,	level 1, patients with a		with a history of asthma the adjusted
	geographic distribution and	history of steroid use		OR for survival to admission was 4.56
	year that cardiac arrest			(3.59-5.81), compare to 2.66 (2.37-
	occurred			2.97) in patients without asthma, with a
				p-value for the interaction being
				<0.0001. ROSC was not reported.
			1	

Reviewer Comments (including whether meet criteria for formal review):

As only a single observational study was identified since this topic was last reviewed in 2010, I do not think a systematic review on this topic is of high priority.

Although quite limited by bias inherent in the study design, the study findings are suggestive, and a formal review of both adult and pediatric data within the next few years may be warranted.

ALS Task Force discussion – insufficient evidence for systematic review.

	Approval Date
Evidence Update coordinator	15 February 2021
ILCOR board	

*Once approval has been made by Evidence Update coordinator, worksheet will go to ILCOR Board for acknowledgement.

Reference list

Tsai MS, Chuang PY, Yu PH, Huang CH, Tang CH, Chang WT, Chen WJ.Int J Cardiol. <u>Glucocorticoid use during cardiopulmonary resuscitation</u> <u>may be beneficial for cardiac arrest.</u> 2016 Nov 1;222:629-635. doi: 10.1016/j.ijcard.2016.08.017. Epub 2016 Aug 4.PMID: 27517652

Case reports (not included)

Lang Y, Zheng Y, Hu X, Xu L, Luo Z, Duan D, Wu P, Huang L, Gao W, Ma Q, Ning M, Li T.J Extracorporeal membrane oxygenation for near fatal asthma with sudden cardiac arrest. Asthma. 2020 Jun 30:1-5. doi: 10.1080/02770903.2020.1781164. PMID: 32543251

Hui Guo, Qian Zhao, Su-Yan Li, Xin Xu, Ning Xu, Chang Lv, Zhang-Shun Shen, Jian-Guo Li Successful treatment of fatal asthma combined with a silent chest: A case report. Int Med Res, 2020 May;48(5):300060520925683. PMID: 32466702

2021 Evidence Update Worksheet

Appendix B2 ALS 7

ECPR versus manual or mechanical CPR (ALS 723: EvUp)

Worksheet author(s): Lars W. Andersen Date Submitted: Jan. 20, 2021

PICO / Research Question:

Population: Adults (≥ 18 years) and children (<18 years) with cardiac arrest in any setting (out-of-hospital or in-hospital) Interventions: ECPR, including extracorporeal membrane oxygenation or cardiopulmonary bypass, during cardiac arrest Control: Manual CPR and/or mechanical CPR

Outcomes: Clinical outcomes, including, but not necessarily limited to, return of spontaneous circulation, survival/survival with a favorable neurological outcome at hospital discharge/30 days, and survival/survival with a favorable neurological outcome after hospital discharge/30 days (e.g. 90 days, 180 days, 1 year).

Type (intervention, diagnosis, prognosis): Intervention

Additional Evidence Reviewer(s): NA

Conflicts of Interest (financial/intellectual, specific to this question): NA

Year of last full review: 2010 / 2015 / New question: 2017, 2019 CoSTR

Last ILCOR Consensus on Science and Treatment Recommendation:

We suggest that ECPR may be considered as a rescue therapy for selected patients with cardiac arrest when conventional CPR is failing in settings in which it can be implemented (weak recommendation, very low-certainty evidence).

2010/2015/2020 Search Strategy:

Provided in:

Resuscitation 2018 Oct;131:91-100. Extracorporeal Cardiopulmonary Resuscitation for Cardiac Arrest: A Systematic Review Holmberg M, Geri G, Wiberg S, Guerguerian AM, Donnino M, Nolan J, Deakin C, and Andersen LW

2021 Search Strategy:

(extracorporeal OR "cardiopulmonary bypass" OR "heart bypass" OR ECPR OR CPB OR ECMO OR ECLS) AND (cardiopulmonary resuscitation[MH] OR cardiac arrest*[TW]) AND (randomized controlled trial[PT] OR controlled clinical trial[PT] OR randomized[TIAB] OR randomly[TIAB] OR trial[TIAB] OR groups[TIAB] OR placebo[TIAB] OR drug therapy[SH]) NOT (animals[MH] NOT humans[MH]) NOT (case reports[PT] OR review[PT])

Database searched: PubMed

Date Search Completed: Nov. 1, 2017 - Nov. 18, 2020

Search Results: One relevant article identified.

Inclusion/Exclusion Criteria: Only RCTs.

Link to Article Titles and Abstracts (if available on PubMed):

https://pubmed.ncbi.nlm.nih.gov/33197396/

Summary of Evidence Update:

RCT:

Study	Aim of Study;	Patient Population	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if
Acronym;	Study Type;		(# patients) /	(Absolute Event Rates,	any);
Author;	Study Size (N)		Study Comparator	P value; OR or RR; &	Study Limitations;
Year			(# patients)	95% CI)	Adverse Events
Published					
	Study Aim:	Inclusion Criteria:	Intervention:	<u>1° endpoint:</u>	Study Limitations:
ARREST;	EPCR vs.	Refractory VF, age 18	ECPR	Survival to hospital	Small study
Yannopoulos;	standard CPR	- 75, estimated	Comparison:	discharge:	
2020		transfer time < 30	Standard CPR	1/15 (7%) vs. 6/14 (43%)	
		min.		RD: 36% (95%CI: 4, 59)	

Reviewer Comments (including whether meet criteria for formal review):

This small new study, while the first RCT, does not change the current recommendation. The ALS task force therefore decided that no formal review is needed at this time. A systematic review is planned at a later stage when more ongoing RCTs are published.

	Approval Date
Evidence Update coordinator	15 February 2021
ILCOR board	

*Once approval has been made by Evidence Update coordinator, worksheet will go to ILCOR Board for acknowledgement.

Reference list

Yannopoulos D, Bartos J, Raveendran G, Walser E, Connett J, Murray TA, Collins G, Zhang L, Kalra R, Kosmopoulos M, John R, Shaffer A, Frascone RJ, Wesley K, Conterato M, Biros M, Tolar J, Aufderheide TP. Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial. Lancet. 2020 Dec 5;396(10265):1807-1816.

2021 Evidence Update Worksheet Appendix B2 ALS 8

Steroids after ROSC (ALS446: EvUp)

Worksheet author(s): Tonia Nicholson Date Submitted: Feb 2021

PICO / Research Question: In adult patients with ROSC after cardiac arrest (prehospital or in-hospital) (P), does treatment with corticosteroids (I) as opposed to standard care (C), improve outcome (O) (eg. survival)?

Outcomes: Survival to Hospital discharge with good neurological outcome / Survival to hospital discharge (+/- Time to Shock Reversal / Shock Reversal)

Type (intervention, diagnosis, prognosis): Intervention

Additional Evidence Reviewer(s): N/A

Conflicts of Interest (financial/intellectual, specific to this question): N/A

Year of last full review: 2010 (but similar literature search done to address 2015 PICOT 433)

Last ILCOR Consensus on Science and Treatment Recommendation:Consensus on Science : There were nohuman or animal studies that directly ad- dressed the use of the estrogen, progesterone, insulin, or insulin-like growth factor in cardiac arrest. Earlyobservational studies of the use corticosteroids during cardiac arrest suggested possible benefit (LOE 4).229,230 One complex randomized pilotstudy (LOE 1)231 and 1 nonrandomized human study (LOE 2)232 suggested benefit with corticosteroids, whereas 1 small, older, humanprehospital controlled clinical trial suggested no benefit (LOE 1).233 One animal study of corticosteroids suggested possible benefit (LOE 5).

Treatment Recommendation : There is insufficient evidence to support or refute the use of corticosteroids alone or in combination with other drugs during cardiac arrest.

2010 Search Strategy: Cochrane Library search:

("Heart Arrest"[Mesh] OR "Cardiopulmonary Resuscitation"[Mesh]) AND ("Pituitary-Adrenal System"[Mesh] OR "Adrenal Insufficiency"[Mesh] OR "Adrenal Cortex Hormones"[Mesh] OR "Glucocorticoids"[Mesh] OR "Hydrocortisone"[Mesh] OR "Cortisone"[Mesh] OR "Prednisolone"[Mesh] OR "Prednisone"[Mesh] OR "Methylprednisolone"[Mesh] OR "Dexamethasone"[Mesh] OR "Betamethasone"[Mesh]). 5 results.

PubMed search:

("Heart Arrest"[Mesh] OR "Cardiopulmonary Resuscitation"[Mesh]) AND ("Pituitary-Adrenal System"[Mesh] OR "Adrenal Insufficiency"[Mesh] OR "Adrenal Cortex Hormones"[Mesh] OR "Adrenal Cortex Hormones "[Pharmacological Action] OR "Glucocorticoids"[Mesh] OR "Hydrocortisone"[Mesh] OR "Cortisone"[Mesh] OR "Prednisolone"[Mesh] OR "Prednisone"[Mesh] OR "Methylprednisolone"[Mesh] OR "Dexamethasone"[Mesh] OR "Betamethasone"[Mesh]). 184 results.

EMBASE search:

('heart arrest'/exp/mj OR 'resuscitation'/exp/mj) AND 'corticosteroid'/exp/mj 347 results.

AHA Endnote database search: ("arrest" OR "CPR") AND ("adrenal" OR "glucocorticoids" OR "steroid" OR "hydrocortisone" OR "cortisone" OR "prednisolone" OR "prednisolone" OR "methylprednisolone" OR "dexamethasone" OR "betamethasone"): 379 results. Titles and abstracts (where appropriate) of all results were examined for relevance. Where doubt existed the full papers were reviewed to identify relevant papers.

The reference lists of relevant papers were searched for other relevant papers. Forward searching of relevant papers was performed using SCOPUS.

2021 Search Strategy: Table Error! No text of specified style in document..**1 Explanation of search strategy approach** This search is a re-run of the last search performed for the EVUR done on this PICO in 2019. It was time restricted (Dec 1st 2019 – Jan 13th 2021) to try and identify any relevant new articles on the topic in the past year.

#	Search string (developed for the	Explanation
	EMBASE.com platform, which includes	
	Medline and Embase databases)	
#1	'heart arrest'/exp	Population – Cardiac arrest
	'heart arrest\$':ti,ab	Terms related to cardiac arrest and/or ROSC should be the focus of the article, so these
	'cardiac arrest\$':ti,ab	terms must appear in either the title or the abstract, or the article must be tagged with
	'cardiovascular arrest\$':ti,ab	EMTREE terms for cardiac arrest or ROSC.
	'cardiopulmonary arrest'/exp	Note, general terms for life support such as 'basic life support' (as used in prior search) or
	'cardiopulmonary arrest\$':ti,ab	"advanced cardiac life support' were considered too generic, and terms relating to CPR
	'cardio-pulmonary arrest\$':ti,ab	techniques such as chest compressions and heart massage were considered too
	'resuscitation'/exp	specifically focusing on the process of CPR rather than the post-ROSC patient.
	rosc:ti,ab	
	'post-rosc':ti,ab	
	'post-resuscitation':ti,ab	
	'return of spontaneous circulation':ti,ab	
	resuscitat*:ti,ab	
#2	#1 NOT ('animal'/exp NOT 'human'/exp OR	Exclude non-human studies
	'nonhuman'/exp OR 'rodent'/exp OR 'animal	The search results must include citations from the newborn population string, so a 'non-
	experiment'/exp OR 'experimental animal'/exp	human studies' filter was applied to it.
	OR rat:ti,ab OR rats:ti,ab OR mouse:ti,ab OR	
	mice:ti,ab OR dog\$:ti,ab OR pig\$:ti,ab OR	
	porcine:ti,ab OR swine:ti,ab OR chick\$:ti,ab)	
#3	#2 NOT ([conference abstract]/lim OR	Exclude publication types
	[conference review]/lim OR [editorial]/lim OR	Conference abstracts and other ineligible study types were removed here.

#	Search string (developed for the	Explanation
	EMBASE.com platform, which includes	
	Medline and Embase databases)	
	[erratum]/lim OR [letter]/lim OR [note]/lim OR	
	[book]/lim OR 'case report'/de)	
#4	#3 AND [2014-2020]/py	Date limit
		The date of the last ILCOR search was 18 July 2014.
		This search string can be combined with intervention strings or other population strings to
		produce a final number of records.
#5	'steroid'/de	Intervention terms – steroids
	'corticosteroid'/de	To identify steroid studies. These terms must appear in the title or abstract, or the article
	'mineralocorticoid'/de	must be tagged with EMTREE terms for steroids.
	corticosteroid\$:ti,ab	Note, the EMTREE terms were not exploded as that includes a large number of irrelevant
	mineralocorticoid\$:ti,ab	interventions. Instead, studies coded directly to the steroid EMTREE term (or the
	steroid\$:ti,ab	corticosteroid EMTREE term, etc.) were captured, along with studies that include these
	prednisone:ti,ab	terms as free text, or include the specific drugs that were included in the search for the
	prednisolone:ti,ab	2015 ILCOR CoSTR (hydrocortisone was added to this set of specific drugs as it is
	methylprednisolone:ti,ab	mentioned in the 2015 Consensus on science).
	fludrocortisone:ti,ab	
	hydrocortisone:ti.ab	
	dexamethasone:ti.ab	
#6	#4 AND #5	Population + intervention
#0		
#7	(((after OR post) NEAR/4 (rosc OR	Post-arrest terms
	spontaneous OR circulation OR resuscitation	

#	Search string (developed for the EMBASE.com platform, which includes Medline and Embase databases)	Explanation
	OR cardiac OR arrest)):ti,ab) OR postarrest:ti,ab OR 'post-arrest':ti,ab OR 'post- rosc':ti,ab OR (surviv* NEAR/3 (cardiac OR arrest OR resuscitation OR ohca OR 'oh ca' OR ihca OR 'ih ca'))	This string is useful to stratify studies according to whether they include reference to post- ROSC status. However, this string could potentially exclude relevant studies, and should not be relied upon to filter the identified studies.
#8	#6 AND #7	Population + intervention + post-arrest terms
#9	#6 NOT #8	Population + intervention (minus + post-arrest terms)

Database searched: EMBASE.com platform (includes Medline and EMBASE)/Cochrane Reviews/National Clinical Trials Database and WHO International Clinical Trials Registry

Date Search Completed: Jan 13th 2021

Search Results (Number of articles identified / number identified as relevant):

Embase/Medline 10

Cochrane: 26

Trials Registry 61

Inclusion/Exclusion Criteria:

Inclusion – Adults (>18yrs) with non-traumatic cardiac arrest

Exclusions - Steroids given during CPR (ie. Prior to ROSC), paediatric patients, animal studies,

letters, commentaries, editorials, case series, poster presentations only, journal club reviews, interim analyses.

Link to Article Titles and Abstracts (if available on PubMed):

Summary of Evidence Update:

Evidence Update Process for topics not covered by ILCOR Task Forces

Relevant Guidelines or Systematic Reviews – *One*

Organisation (if	Guideline	Topic addressed or	Number of articles identified	Key findings	Treatment
relevant);	or	PICO(S)T			recommendations
Author;	systemati				
Year Published	c review				
Liu B, Zhang Q	Systemati	To investigate whether	Identified 4 RCTs & 3 observational	Subgroup analysis of patients	The conclusion of the article
and Li C. (2020).	c review	steroid use after CA	studies. 3 of the studies were	given steroids after cardiac arrest	was that current evidence
Steroid use after	and meta-	increased the return of	published in English and 4 in	found a significant association	indicates that steroid use
cardiac arrest is	analysis.	spontaneous circulation	Chinese.		
associated with		(ROSC) rate and survival	4 of the studies included	with increased rate of survival to	increases the rate of ROSC
favourable		to discharge in patients	administration of steroids post	discharge (RR 1.35; 95% CI	& survival to discharge in
outcomes: a		with CA. Subgroup	cardiac arrest and the data from	1.23-1.48, p < 0.05). However, it	patients with CA. However,
systematic		analysis done based on	these studies was pooled.	is not clear from the data whether	though steroid use may
review and meta-		the time of drug	However, this pooling is	these patients ALSO received	romain an accontable
analysis. Journal		administration (during	questionable, since in all but one of	These patients ALSO received	
of International		CPR or after CA).	the studies (Tsai 2019), steroids	steroids during cardiac arrest or	option for patients with CA,
Medical			were also administered during CA	ONLY received them after	high-quality and adequately
Research.			not just post ROSC, and in one	ROSC.	powered RCTs are
48(5). ⁽¹⁾			study vasopressin was also given		werented
			during CA.		warranteo.

Of the 7 articles identified for inclusion in this systematic review and meta-analysis, 3 of the studies were published in English (Mentzelopoulos, 2013⁽²⁾; Tsai, 2019⁽³⁾; Niimura, 2017⁽⁴⁾). All of these were considered in the 2020 ILCOR EvUp on the use of steroids post cardiac arrest.

4 of the studies were published only in Chinese (Zhang, 2015⁽⁵⁾; Mu 2014⁽⁶⁾; Yang, 2002⁽⁷⁾; He 2001⁽⁸⁾). The latter 3 studies were all small and were conducted before 2005, so would not be included in an ILCOR SR on this PICO because of the significant differences in other aspects of management of cardiac arrest before this time.

The first study (Zhang, 2015) was an RCT conducted in China between 2011 and 2014. From the summary tables in the systematic review it was a small study with only 50 patients in each arm of the study (steroids vs no steroids). It is clear that those patients who achieved ROSC after steroids must have been given them during cardiac arrest, and although the systematic review reports a subgroup analysis of those receiving steroids after cardiac arrest, it is probable that those patients receiving steroids post arrest also received them *during* arrest, since the total number of subjects in each group is the same (50). Therefore, inclusion of this study into a SR would be unlikely alone to result in a modification of the current ILCOR COSTR.

RCT: None

Study	Aim of Study;	Patient	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if
Acronym;	Study Type;	Population	(# patients) /	(Absolute Event	any);
Author;	Study Size (N)		Study Comparator	Rates, P value; OR or	Study Limitations; Adverse
Year Published			(# patients)	RR;& 95%CI)	Events

Nonrandomized Trials, Observational Studies – *None*

1 article was identified as possibly relevant at initial abstract screening, but due to a small time overlap in the search strategies for 2019 & 2020, this had already been considered and included in the development of the 2020 EVUR (Tsai, 2019).

Study Acronym;	Study	Patient Population	Primary Endpoint and	Summary/Conclusion
Author;	Type/Design;		Results (include P value; OR	Comment(s)
Year Published	Study Size (N)		or RR; & 95% CI)	

Clinical trials registry: Nine

Nine studies were identified in the Clinical trials registry of potentially being relevant to this PICO. Four of these were subsequently identified as completed studies, which had been considered in either the generation of the last COSTR on the topic, or the EVUR in 2020 (Botnaru, 2015⁽⁹⁾; Mentzelopoulos 2009 and 2013; Donnino 2016⁽¹⁰⁾).

Two of the studies are registered on the WHO data base (one in 2019, the other in 2020). No details regarding these studies are currently available as the WHO website is dedicated to issues related to COVID-19.

One study (Pappa, 2020⁽¹¹⁾) has been completed and was presented at the 40 th International Symposium on Intensive Care in March 2020. It has not yet however, been presented in a format subject to peer review. This was an RCT involving 100 patients with IHCA, conducted by the CORTICA study group (Mentzelopoulos et al). Forty-six patients were randomly assigned to receive methylprednisolone 40 mg during resuscitation, and 54 to receive saline (placebo). After resuscitation, steroid-treated patients received hydrocortisone 240 mg daily for up to 7 days, followed by tapering over the next 2 days. The study concluded that steroids post cardiac arrest had no significant physiological benefit, including no effect on neurological survival at discharge. Detailed data is not included in the Symposium summary. Of note however, this is the first study by this group that has not suggested a beneficial effect with steroids post cardiac arrest.

Trail Nct4591990 ⁽¹²⁾ was registered in Oct 2020 but has not commenced recruitment of patients yet. This study has been planned to be conducted across 17 ICUs in France with the primary objective of demonstrating the superiority of arginine-vasopressin (AVP) and hydrocortisone compared with norepinephrine regarding day-30 survival and neurological recovery in post-cardiac arrest patients with hemodynamic failure.

Trial Nct 4624776 ⁽¹³⁾ was registered in Nov 2020 and is currently recruiting patients. This is a randomized, multicenter, double-blind, placebocontrolled clinical trial (lead by C. Hassager in Denmark). A minimum of 120 unconscious OHCA patients are to be randomized 1:1 after 5 minutes of sustained ROSC to a bolus infusion of 250 mg (4 mL) methylprednisolone in the pre-hospital setting. Patients allocated to placebo will receive 4 mL of isotonic saline (NaCl 0.9%). Secondary outcomes to be assessed include survival to discharge and neurological outcome.

Reviewer Comments (including whether meet criteria for formal review):

Since the 2020 Evidence update review on the use of steroids post ROSC after cardiac arrest, no new RCTs or observational studies have been identified as being published. One systematic review has been conducted, but this did not include any recent, methodologically sound studies that would be likely to result in a change of the current ILCOR COSTR regarding the use of steroids post cardiac arrest.

Review of the Clinical Trials registry suggests that the results of one study on this topic were presented in a non-peer reviewed format last year. The 2020 EvUp on this topic suggested waiting peer review and publication of this study (Nct 02790788) before conducting a new systematic review. It is likely that the current situation with COVID has delayed the submission of the study for publication, and it was presented at a symposium instead.

Additionally, in the last year however, one new study has been registered with a plan to start recruiting soon, and another is already recruiting. Therefore, at this time it would seem sensible to delay a formal systematic review regarding the utility of steroids following ROSC after cardiac arrest, to allow peer-review assessment of the completed study by the CORTICA group, and completion of the two new active trials registered on the topic.

	Approval Date
Evidence Update coordinator	15 February 2021
ILCOR board	

*Once approval has been made by Evidence Update coordinator, worksheet will go to ILCOR Board for acknowledgement.

Reference list

1) Liu, B, Zhang, Q and Li, C. (2020). Steroid use after cardiac arrest is associated with favourable outcomes: a systematic review and metaanalysis. Journal of International Medical Research. 48(5).

2) Mentzelopoulos SD, Malachias S, Chamos C, et al. Vasopressin, steroids and epinephrine and neurologically favourable survival after in-hospital cardiac arrest: a randomized clinical trial. JAMA. 2013;310:270-9.

3) Tsai, MS, Chuang, PY, Huang, CH, Tang, CH, Yu, PH, Chang, WT and Chen, WJ. (2019). Post-arrest Steroid Use May Improve Outcomes of Cardiac Arrest Survivors. Critical care medicine. 47(2):167-1

4) Niimura, T, Zamami, Y, Koyama, T, Izawa-Ishizawa, Y, Miyake, M, Koga, T, Harada, K, Ohshima, A, Imai, T, Kondo, Y, Imanishi, M, Takechi, K, Fukushima, K, Horinouchi, Y, Ikeda, Y, Fujino, H, Tsuchiya, K, Tamaki, T, Hinotsu, S, Kano, MR and Ishizawa, K. (2017). Hydrocortisone administration was associated with improved survival in Japanese patients with cardiac arrest. Scientific reports. 7(1):17919.

5) Zhang F, Yang ZJ, Shen J, et al. Adrenaline combined with methylprednisolone sodium succinate Cardiopulmonary resuscitation Chinese Clinical Medicine 2015; 22: 670–671.

6) Mu CJ, Li WQ, Zhou YM, et al. Hydrocortisone sodium succinate for cardio- pulmonary resuscitation the influence of patient prognosis. Chinese Journal of Integrated Traditional and Western Medicine 2014; 21: 229–231.

7) Yang GL and Li CX. Clinical study on com- prehensive medication for cardiopulmonary cerebral resuscitation. National Coal Industry Medical Journal 2002; 5: 379–380.

8) He WX and Hong Z. Application of high- dose adrenaline combined with aminophyl- line, of clinical study of cardiopulmonary cerebral resuscitation with dexamethasone. Chinese Emergency Medicine 2001; 21: 224–225.

9) Botnaru, T, Altherwi, T and Dankoff, J. (2015). Improved neurologic outcomes after cardiac arrest with combined administration of vasopressin, steroids, and epinephrine compared to epinephrine alone. Canadian Journal of Emergency Medicine. 17(2):202-205.

10) Donnino, MW, Andersen, LW, Berg, KM, Chase, M, Sherwin, R, Smithline, H, Carney, E, Ngo, L, Patel, PV, Liu, X and et al. Corticosteroid therapy in refractory shock following cardiac arrest: a randomized, double-blind, placebo-controlled, trial. Critical care (London, England). 2016; 20(1)

11) Pappa, E, Ischaki, E, Malachias, S, Giannopoulos, A, Vrettou, K, Karlis, G, Pantazopoulos, I, Makris, D, Zakynthinos, S and Mentzelopoulos, S. (2020). Physiologic effects of steroids in in-hospital cardiac arrest (CORTICA study group1,2). Critical care (London, England). 24

12) HYdrocortisone and VAsopressin in Post-RESuscitation Syndrome. https://clinicaltrials.gov/show/NCT04591990

13) Steroid Treatment After Resuscitated Out-of-Hospital Cardiac Arrest. https://clinicaltrials.gov/show/NCT04624776.

2021 Evidence Update Worksheet Appendix B2 ALS 9

Oxygen dose after ROSC (ALS 448: EvUp)

Worksheet author(s): Mathias J. Holmberg Date Submitted: February 9, 2021

PICO / Research Question:

Population: Unresponsive adults and children with sustained return of spontaneous circulation (ROSC) after cardiac arrest in any setting.

Interventions: A ventilation strategy targeting specific SpO2, PaO2, and/or PaCO2 targets.

<u>Control</u>: Treatment without specific targets or with an alternate target to the intervention.

<u>Outcomes</u>: Clinical outcome including survival/survival with a favorable neurological outcome at hospital discharge/30 days, and survival/survival with a favorable neurological outcome after hospital discharge/30 days (e.g., 90 days, 180 days, 1 year).

Type (intervention, diagnosis, prognosis): Intervention

Additional Evidence Reviewer(s): NA

Conflicts of Interest (financial/intellectual, specific to this question): NA

Year of last full review: 2010 / 2015 / New question: 2020

Last ILCOR Consensus on Science and Treatment Recommendation:

Treatment Recommendation in Adult Patients:

We suggest the use of 100% inspired oxygen until the arterial oxygen saturation or the partial pressure of arterial oxygen can be measured reliably in adults with ROSC after cardiac arrest in any setting (weak recommendation, very low-certainty evidence).

We recommend avoiding hypoxemia in adults with ROSC after cardiac arrest in any setting (strong recommendation, very low-certainty evidence).

We suggest avoiding hyperoxemia in adults with ROSC after cardiac arrest in any setting (weak recommendation, low-certainty evidence).

2010/2015/2020 Search Strategy:

Provided in:

Resuscitation 2020, Jul;152:107-115 Oxygenation and ventilation targets after cardiac arrest: A systematic review and meta-analysis Holmberg MJ, Nicholson T, Nolan JP, Schexnayder S, Reynolds J, Nation K, Welsford M, Morley P, Soar J, Berg KM

2021 Search Strategy:

((heart arrest[MH] OR cardiopulmonary resuscitation[MH] OR heart massage[MH] OR advanced cardiac life support[MH] OR ventricular fibrillation[MH] OR heart massage[TW] OR heart arrest*[TW] OR cardiac arrest*[TW] OR OHCA[TW] OR IHCA[TW] OR CPR[TW] OR advanced cardiac life support[TW] OR ACLS[TW] OR asystole[TW] OR pulseless electrical activity[TW] OR pulseless ventricular tachycardia[TW] OR ventricular fibrillation[TW] OR return of circulation[TW] OR return of spontaneous circulation[TW] OR ROSC[TW] OR chest compression*[TW] OR cardiopulmonary resuscitation[TW]) AND (oxygen[MH] or carbon dioxide[MH] OR hypoxia[MH] OR hypercapnia[MH] OR hyperoxia[MH] OR hypocapnia[MH] OR oxygen inhalation therapy[MH] OR respiration, artificial[MH] OR ventilators, mechanical[MH] OR oxygen[TW] OR carbon dioxide[TW] OR hyperoxi*[TW] OR hyperoxi*[TW]

reoxygenation[TW] OR ventilation strategy[TW] OR CO2[TW] OR O2[TW] OR PaO2[TW] OR SpO2[TW] OR PaCO2[TW] OR FiO2[TW] OR inspired oxygen[TW]) NOT (animals[MH] NOT humans[MH]) NOT (case reports[PT] OR review[PT]))

Database searched: PubMed

Date Search Completed: Aug. 22, 2019 - Feb. 01, 2021

Search Results: 469 records screened; 1 systematic review, 1 RCT subgroup analysis, and 12 observational studies were identified as relevant

Inclusion/Exclusion Criteria: RCTs, non-randomized trials, and observational studies.

Link to Article Titles and Abstracts (if available on PubMed):

Young, Resuscitation, 2020 https://pubmed.ncbi.nlm.nih.gov/33058991/

Schjørring, NEJM, 2021 https://pubmed.ncbi.nlm.nih.gov/33471452/

Mckenzie, Resuscitation, 2021 https://pubmed.ncbi.nlm.nih.gov/33232752/

Zhou, American Journal of Emergency Medicine, 2021 https://pubmed.ncbi.nlm.nih.gov/32001056/

Humaloja, Neurocritical Care, 2021 https://pubmed.ncbi.nlm.nih.gov/33403587/

Young, Intensive Care Medicine, 2020 https://pubmed.ncbi.nlm.nih.gov/32809136/

McGuigan, Critical Care, 2020 https://pubmed.ncbi.nlm.nih.gov/32532312/

Zhou, Resuscitation, 2020 https://pubmed.ncbi.nlm.nih.gov/32057947/

Peluso, Resuscitation, 2020 https://pubmed.ncbi.nlm.nih.gov/32169607/

Ebner, Scandinavian Journal or Trauma, Resuscitation, and Emergency Medicine, 2020 https://pubmed.ncbi.nlm.nih.gov/32664989/

Diehl, Critical Care Medicine, 2020 https://pubmed.ncbi.nlm.nih.gov/32574466/

Kang, Resuscitation, 2020 https://pubmed.ncbi.nlm.nih.gov/32531406/

Halter, American Journal of Emergency Medicine, 2020 https://pubmed.ncbi.nlm.nih.gov/31303537/

Chang, Critical Care Medicine, 2019 https://pubmed.ncbi.nlm.nih.gov/31356478/

Summary of Evidence Update:

Relevant Guidelines or S	ystematic Reviews
---------------------------------	-------------------

Author;	Guideline or	Торіс	Number of	Key findings	Treatment
Year	systematic	addressed or	articles		recommendations
Published	review	PICO(S)T	identified		
Young;	Systematic	Comparison of	8 RCTs;	In analysis of patient-level data, conservative oxygen	Certainty of
2020	review,	conservative vs	patient-level	was associated with reduced mortality at last follow-up	evidence low or very
	meta-	liberal oxygen	data from 7	compared with liberal oxygen: 90/221 (41%) vs 103/206	low due to bias,
	analysis, and	in post-cardiac	RCTs	(50%); adjusted OR, 0.58; 95%CI, 0.35-0.96; P = 0.04.	imprecision, and
	analysis of	arrest patients			indirectness.
	patient-level			Secondary outcomes (30, 90, 180-days mortality, and	
	data			neurological outcome at 180 days) were not different in	
				adjusted analyses (all P >0.05).	
				Findings in aggregate meta-analyses were similar to	
				analyses of patient-level data.	

RCTs

Study	Aim of Study;	Patient	Study Intervention	Endpoint Results	Relevant 2° Endpoint (if
Acronym;	Study Type;	Population	(# patients) /	(Absolute Event Rates, P	any);
Author;	Study Size (N)		Study Comparator	value; OR or RR; & 95%	Study Limitations; Adverse
Year			(# patients)	CI)	Events
Published					
HOT-ICU;	Study Aim:	Inclusion	Intervention:	<u>1° endpoint:</u>	Study Limitations:
Schjørring;	Low vs high oxygen	<u>Criteria:</u>	PaO2 60 mmHg	No difference in 90-day	Subgroup analysis of post-
2021	targets;	Age <u>></u> 18 years,	Comparison:	mortality between groups:	cardiac arrest
	2017-2020;	ICU admission,	PaO2 90 mmHg		

N = 332	FiO2 <u>></u> 0.50 or	96/147 (65%) vs 111/185	
	receiving <u>></u> 10 L	(60%);	
	O2/min	RR, 1.09 (95%Cl, 0.92-	
		1.28);	
		RD, 5.58 (95%Cl, -4.88-	
		16.05)	

Nonrandomized Trials, Observational Studies

Study	Study	Patient Population	Primary Endpoint and Results	Summary/Conclusion
Acronym;	Type/Design;		(include P value; OR or RR; &	Comment(s)
Author;	Study Size (N)		95% CI)	
Year				
Published				
Mckenzie;	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	Exposure defined as mean PaO2
2021	Observational;	Age <u>></u> 18 years,	Survival to hospital discharge:	within 24 hours of ICU admission.
	2012-2017;	OHCA, mechanical ventilation		
	N = 491	upon ICU admission	PaO2 <100 vs 100-180 mmHg;	Mild/moderate hyperoxemia was
			adjusted OR, 0.50; 95%CI, 0.30-	associated with higher survival
			0.84	compared to normoxemia or severe
				hyperoxemia.
			PaO2 >180 vs 100-180 mmHg;	
			adjusted OR, 0.41; 95%CI, 0.18-	
			0.92	
			<u>2° endpoint:</u>	
			12-month survival:	

				PaO2 <100 vs 100-180 mmHg;	
				adjusted OR, 0.46; 95%Cl, 0.27-	
				0.77	
				PaO2 >180 vs 100-180 mmHg;	
				adjusted OR, 0.43; 95%Cl, 0.19-	
				0.99	
Zho	ou;	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	The proportion of time spent in
202	21	Observational;	Adult patients, cardiac arrest,	Hospital mortality	SpO2 of <u><</u> 89%, 90%, 91%, and
		2014-2015;	index ICU admission		92% during first 24 hours of ICU
		N = 2836			admission were associated with
					higher hospital mortality in adjusted
					analyses.
Hu	maloja;	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	Exposure defined as lowest PaO2
202	21	Observational;	Age <u>></u> 18 years, cardiac arrest,	1-year mortality:	within 24 hours of ICU admission.
		2003-2013;	mechanical ventilation during		
		N = 3446	first 24 hours in ICU	PaO2 >18.3 vs 8.2-18.3 kPa; OR,	There was no association between
				1.21; 95%Cl, 0.76-1.93	hyperoxemia or hypoxemia and
					mortality as compared to
				PaO2 <8.2 vs 8.2-18.3 kPa; OR,	normoxemia.
				1.17; 95%Cl, 0.86-1.58	
Υοι	ung;	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	Conservative oxygen therapy was
202	20	Post-hoc	Age >18 years, less than 2h of	Hospital mortality:	not associated with a reduction in
		analysis of	invasive or non-invasive		in-hospital mortality compared to
		ICU-ROX;	ventilation in ICU, OHCA/IHCA,	Conservative oxygen therapy (SAT	usual oxygen therapy in post-
		2015-2018;	any rhythm	90-97%) vs usual oxygen therapy	cardiac arrest.

	N = 166		(SAT >90%); 37/87 (43%) vs 43/79	
			(54%); adjusted OR, 0.65; 95%Cl,	Longer-term outcomes were
			0.30-1.42; P = 0.28	reported in the original RCT and
				included in the previous 2020
				ILCOR review.
McGuigan;	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	PaO2, PaCO2, FiO2 were recorded
2020	Observational;	Age <u>></u> 16 years, OHCA, survival	Hospital mortality:	from the ABG with lowest PaO2
	2011-2018;	over 24 hours		within 24 hours after ICU
	N = 22,765		PaO2/FiO2 <u><</u> 100 vs 300 mmHg;	admission.
			adjusted OR, 1.79; 95%CI, 1.48-	
			2.15; P <0.001	Low PaO2/FiO2 ratio, hypoxemia,
				and hypocapnia were associated
			PaO2 <60 vs >100 mmHg;	with higher mortality; Hypercapnia
			adjusted OR 1.35; 95%Cl, 1.10-	was associated with lower
			1.65; P <0.001	mortality.
			PaCO2 <u><</u> 35 vs 36-45 mmHg;	
			adjusted OR, 1.91; 95%CI, 1.63-	
			2.24); P <0.001	
			PaCO2 >55 vs 36-45 mmHg;	
			adjusted OR 0.40; 95%Cl, 0.23-	
			0.70; P = 0.001	
Zhou;	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	PaCO2 defined as time-weighted
2020	Observational;	Adult patients, cardiac arrest,	Hospital mortality:	means within 24 hours of ICU
	2014-2015;	index ICU admission		admission.
	N = 2783			

			PaCO2 <35 vs 35-45 mmHg; adjusted OR, 1.37; 95%Cl, 1.12- 1.67; P = 0.002 PaCO2 45-55 vs 35-45 mmHg:	PaCO2 had U-shaped association with hospital mortality.
			adjusted OR, 1.08; 95%Cl, 0.84- 1.38; P = 0.56	
			PaCO2 >55 vs 35-45 mmHg; adjusted OR, 1.98; 95%Cl, 1.43- 2.74; P <0.001	
Peluso;	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	There were no differences in
2020	Observational;	Age <u>></u> 18 years, IHCA/OHCA,	CPC score at 3 months	highest/lowest PaO2/PaCO2, AUC,
	2009-2017;	survival <u>></u> 24 hours		or times over various thresholds of
	N = 356			PaO2/PaCO2 within 24 hours after
				ICU admission between patients
				with favorable and unfavorable
				outcomes (effect estimates not
				reported).
Ebner;	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	PaO2 and PaCO2 measured 7
2020	Observational;	Age <u>></u> 18 years, GCS <8,	CPC 3-5 at hospital discharge:	times per patient within 24 hours
	2008-2018;	OHCA, sustained ROSC		after ROSC.
	N = 2135		PaO2 >40 vs 8.0-40 kPa; adjusted	
			OR, 1.33; 95%Cl, 0.92-1.92; P =	Exposure to extreme PaO2 or
			0.13	PaCO2 was not associated with
				poor neurological outcome in
				adjusted analyses.

			PaO2 <8.0 vs 8.0-40 kPa; adjusted	
			OR, 1.26; 95%Cl, 0.87-1.82; P =	
			0.22	
			PaCO2 >6.7 vs 4.0-6.7 kPa;	
			adjusted OR, 0.0.89; 95%CI, 0.64-	
			1.24; P = 0.49	
			PaCO2 <4.0 vs 4.0-6.7 kPa;	
			adjusted OR, 1.28; 95%CI, 0.90-	
			1.83; P = 0.18	
Kang;	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	Exposure defined as time-weighted
2020	Observational;	Adult patients,	CPC 3-5 at 3 months:	means within 24 hours after ROSC.
	2018-2019;	OHCA		
	N = 42		PaCO2 <35.3 vs >43.5 mmHg;	Proportion of patients with
			9/10 (90%) vs 3/13 (23%); P <0.01	unfavorable neurological outcome
				was higher in those with low CO2
				compared to high CO2.
Halter;	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	Exposure defined as PaO2 within
2020	Observational;	OHCA, ECPR in prehospital or	Mortality at 28 days:	30 minutes of ECPR.
	2011-2017;	ICU setting		
	N = 66		PaO2 >300 vs 60-300 mmHg;	Hyperoxemia was associated with
			adjusted OR, 1.89; 95%CI, 1.74-	higher mortality at 28 days
			2.07	compared to normoxemia.
Diehl;	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	Exposure defined as PaCO2 within
2020	Observational;	Age <u>></u> 18 years, ECPR	Hospital mortality:	6 hours prior to ECPR
	2003-2016;			
	N - 1500		$P_{2}CO_{2} < 30 vc 35 4 mmHa$	Mild and moderate hypercarbia
--------	----------------	------------------------------------	---------------------------------	------------------------------------
	11 - 1390		Facoz <50 vs 55-44 mm ig,	
			adjusted OR, 1.12; 95%CI, 0.79-	was associated with higher
			1.59; P = 0.52	mortality compared to normocarbia.
			PaCO2 30-34 vs 35-44 mmHg;	
			adjusted OR, 1.33; 95%Cl, 0.87-	
			2.05; P = 0.19	
			PaCO2 45-60 vs 35-44 mmHg;	
			adjusted OR, 1.40; 95%CI, 1.01-	
			1.94: P = 0.05	
			- ,	
			PaCO2 >60 vs 35-44 mmHg;	
			adjusted OR 2 01: 95%CL 1 46-	
			2 76: P <0.001	
			2.70, 1 <0.001	
Chang;	Study Type:	Inclusion Criteria:	<u>1° endpoint:</u>	Exposure defined as first PaO2
2019	Observational;	Age \geq 18 years, IHCA or OHCA,	CPC 1-2 at hospital discharge:	within 24 hours after ROSC.
	2000-2014;	cardiac cause, ECPR		
	N = 291		PaO2 77-220 vs <77 or >220	PaO2 77-220 mmHg was
			mmHg; adjusted OR, 2.29; 95%CI,	associated with favorable
			1.01-5.22; P = 0.05	neurological outcome and survival
				to hospital discharge.
			Survival to hospital discharge:	
			PaO2 77-220 vs <77 or >220	
			mmHg; adjusted OR, 2.10; 95%CI,	
			1.08-4.14; P = 0.03	
1				

Reviewer Comments (including whether meet criteria for formal review):

This update includes 1 systematic review, 1 subgroup analysis of an RCT, and 12 observational studies. The studies are limited by risk of bias, the inherent study designs, and heterogeneity in measurements and exposures. These studies are, therefore, unlikely to change the current recommendations. A formal systematic review may be warranted at a later stage when ongoing RCTs are published.

	Approval Date
Evidence Update coordinator	15 February 2021
ILCOR board	

*Once approval has been made by Evidence Update coordinator, worksheet will go to ILCOR Board for acknowledgement.

Reference list

Young, P.J., et al., Conservative or liberal oxygen therapy in adults after cardiac arrest: An individual-level patient data meta-analysis of randomised controlled trials. Resuscitation, 2020. 157: p. 15-22.

Schjørring, O.L., et al., Lower or Higher Oxygenation Targets for Acute Hypoxemic Respiratory Failure. N Engl J Med, 2021.

Mckenzie, N., et al., Non-linear association between arterial oxygen tension and survival after out-of-hospital cardiac arrest: A multicentre observational study. Resuscitation, 2021. 158: p. 130-138.

Zhou, D.W., et al., The optimal peripheral oxygen saturation may be 95-97% for post-cardiac arrest patients: A retrospective observational study. Am J Emerg Med, 2021. 40: p. 120-126. Humaloja, J., et al., The Association Between Arterial Oxygen Level and Outcome in Neurocritically III Patients is not Affected by Blood Pressure. Neurocrit Care, 2021.

Young, P., et al., Conservative oxygen therapy for mechanically ventilated adults with suspected hypoxic ischaemic encephalopathy. Intensive Care Med, 2020. 46(12): p. 2411-2422.

McGuigan, P.J., et al., The interaction between arterial oxygenation and carbon dioxide and hospital mortality following out of hospital cardiac arrest: a cohort study. Crit Care, 2020. 24(1): p. 336.

Zhou, D., et al., Association between mild hypercapnia and hospital mortality in patients admitted to the intensive care unit after cardiac arrest: A retrospective study. Resuscitation, 2020. 149: p. 30-38.

Peluso, L., et al., Oxygen and carbon dioxide levels in patients after cardiac arrest. Resuscitation, 2020. 150: p. 1-7.

Ebner, F., et al., The association of partial pressures of oxygen and carbon dioxide with neurological outcome after out-of-hospital cardiac arrest: an explorative International Cardiac Arrest Registry 2.0 study. Scand J Trauma Resusc Emerg Med, 2020. 28(1): p. 67.

Diehl, A., et al., Association Between Arterial Carbon Dioxide Tension and Clinical Outcomes in Venoarterial Extracorporeal Membrane Oxygenation. Crit Care Med, 2020. 48(7): p. 977-984.

Kang, C., et al., Impact of low and high partial pressure of carbon dioxide on neuron-specific enolase derived from serum and cerebrospinal fluid in patients who underwent targeted temperature management after out-of-hospital cardiac arrest: A retrospective study. Resuscitation, 2020. 153: p. 79-87.

Halter, M., et al., Association between hyperoxemia and mortality in patients treated by eCPR after out-of-hospital cardiac arrest. Am J Emerg Med, 2020. 38(5): p. 900-905.

Chang, W.T., et al., Optimal Arterial Blood Oxygen Tension in the Early Postresuscitation Phase of Extracorporeal Cardiopulmonary Resuscitation: A 15-Year Retrospective Observational Study. Crit Care Med, 2019. 47(11): p. 1549-1556.

2021 Evidence Update Worksheet Appendix B2 ALS 10

Neuroprognostication following ROSC (ALS 450, 458, 460, 484, 487, 713: EvUp)

Worksheet author(s): Claudio Sandroni, Sofia Cacciola, Sonia D'Arrigo

Date Submitted: 11 February 2021

PICO / Research Question:

Population: Adults who are comatose after resuscitation from cardiac arrest (either in-hospital or out-of-hospital), regardless of target temperature.

Interventions: index tests based on clinical examination, electrophysiology, serum biomarkers and neuroimaging recorded within 7 days from return of spontaneous circulation (ROSC)

Comparison: the accuracy of the index test was assessed by comparing the predicted outcome with the final outcome.

Outcomes: poor neurological outcome, defined as Cerebral Performance Categories (CPC) 3-5 or Glasgow Outcome Scale (GOS) 1-3, or modified Rankin Score (mRS) 4-6 at hospital discharge/1 month or later.

Type (intervention, diagnosis, prognosis): prognosis.

Additional Evidence Reviewer(s): none

Conflicts of Interest (financial/intellectual, specific to this question):

- Sofia Cacciola, Sonia D'Arrigo and Claudio Sandroni are co-authors of a systematic review on predictors of poor neurological outcome in comatose survivors of cardiac arrest (Sandroni 2020 1803-1851).
- Claudio Sandroni is member of editorial board, Resuscitation, and associate editor, Intensive Care Medicine.

Year of last full review: 2020

Last ILCOR Consensus on Science and Treatment Recommendation: 2020

We recommend that neuroprognostication always be undertaken by using a multimodal approach because no single test has sufficient specificity to eliminate false positives (strong recommendation, very low-certainty evidence).

Clinical examination: We suggest using pupillary light reflex (PLR) at 72 hours or more after ROSC for predicting neurological outcome of adults who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence). We suggest using quantitative pupillometry at 72 hours or more after ROSC for predicting neurological outcome of adults who are comatose after cardiac arrest (weak recommendation, low-certainty evidence). We suggest using bilateral absence of corneal reflex at 72 hours or more after ROSC for predicting poor neurological outcome in adults who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence). We suggest using presence of myoclonus or status who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence). We suggest using presence of myoclonus or status myoclonus within 7 days after ROSC, in combination with other tests, for predicting poor neurological outcome in adults who are cordiac arrest (weak recommendation, very low-certainty evidence). We also suggest recording EEG in the presence of myoclonic jerks to detect any associated epileptiform activity (weak recommendation, very low-certainty evidence).

Electrophysiology: We suggest using a bilaterally absent N20 wave of SSEP in combination with other indices to predict poor outcome in adult patients who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence).

We suggest against using the absence of EEG background reactivity alone to predict poor outcome in adult patients who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence).

We suggest using the presence of seizure activity on EEG in combination with other indices to predict poor outcome in adult patients who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence).

We suggest using burst suppression on EEG in combination with other indices to predict poor outcome in adult patients who are comatose and effects of sedation after cardiac arrest have cleared (weak recommendation, very low-certainty evidence).

Serum biomarkers: We suggest using neuron-specific enolase (NSE) within 72 hours after ROSC, in combination with other tests, for predicting neurological outcome of adults who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence). There is no consensus on a threshold value. We suggest against using S-100B protein for predicting neurological outcome of adults who are comatose after cardiac arrest

(weak recommendation, low-certainty evidence). We suggest against using serum levels of glial fibrillary acidic protein, serum tau protein, or neurofilament light chain (Nfl) for predicting poor neurological outcome of adults who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence)

Neuroimaging: We suggest using GWR on brain computed tomography for predicting neurological outcome of adults who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence). However, no GWR threshold for 100% specificity can be recommended. We suggest using diffusion-weighted brain MRI for predicting neurological outcome of adults who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence). We suggest using ADC on brain MRI for predicting neurological outcome of adults who are comatose of adults who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence). We suggest using ADC on brain MRI for predicting neurological outcome of adults who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence).

2010/2015/2020 Search Strategy: (("Heart Arrest"[Mesh]) OR ("Cardiopulmonary Resuscitation"[Mesh]) OR ("Death, Sudden, Cardiac"[Mesh])
OR("Hypoxia-Ischemia, Brain"[Mesh])) AND (("Coma"[Mesh]) AND ("Prognosis"[Mesh])).
2021 Search Strategy: "Cardiac arrest [all fields]" AND "Coma" [all fields] AND "Prognosis" [all fields].

Database searched: PubMed. In addition, the websites of the most relevant Journals and the reference list of relevant papers were searched for additional studies.

Date Search Completed: 10 Feb 2021

Search Results (Number of articles identified / number identified as relevant): 36/10

Inclusion/Exclusion Criteria:

- Inclusion: adult (≥16 years); resuscitated from cardiac arrest (either in-hospital or out-of-hospital). Comatose (unconscious, unresponsive, and/or having a Glasgow Coma Score (GCS)≤8 at the time of study enrolment). Predictor assessed within 7 days from CA. We included only studies where sensitivity and FPR could be calculated, i.e., those where the 2×2 contingency table of true/false negatives and positives for prediction of poor outcome was reported or could be calculated from reported data.
- Exclusion: Studies including non-comatose patients or patients in hypoxic coma from causes other than cardiac arrest (e.g., respiratory arrest, carbon monoxide intoxication, drowning, and hanging).

Link to Article Titles and Abstracts (if available on PubMed):

https://pubmed.ncbi.nlm.nih.gov/?term=%22Cardiac+arrest+%5Ball+fields%5D%22+AND+%22Coma%22+%5Ball+fields%5D+AND+%22Prognosi s%22+%5Ball+fields%5D.&filter=years.2020-2021&size=50

Summary of Evidence Update:

This update identified 10 relevant studies that were not included in the 2020 ILCOR evidence review.

Concerning **clinical examination**, one study (Nakstad 2020 170-179) showed that absence of PLR later than four days after ROSC predicts poor neurological outcome with 100% specificity. A study by Obinata et al. (Obinata 2020 77-84) showed that absence of PLR detected using automated pupillometry within 72h from arrest also predicted poor neurological outcome with 100% specificity, confirming previous results from the ILCOR 2020 evidence review. Unlike the studies included in that review, however, the study from Obinata et al. showed that the most accurate predictor among the parameters of pupillometry was constriction velocity (area under the receiver operating characteristic [AUROC[curve = 0.82) while the values of neurological pupil index (NPi) were not significantly different across outcome groups. Pupillometry had greater sensitivity for prediction of poor neurological outcome at a 100%-specificity threshold than absence of the wave V of the auditory brainstem response (51% vs. 44%).

Concerning **electrophysiology**, a study by Nakstad et al. confirmed that bilateral absence of the N20 SSEP wave after 72h from arrest predicts poor neurological outcome with 100% specificity. A *post-hoc* analysis from Glimmerveen et al of a previous cohort study (Glimmerveen 2020 335) provided a quantitative analysis of SSEPs and showed that a SSEP N20 wave amplitude <0.4 µV within 48–72 h predicted poor neurological outcome with 100% specificity. The same study also showed that a suppressed EEG background or a synchronous EEG pattern on a suppressed background at 12h or 24h from ROSC is accurate for prediction of poor neurological outcome (specificity 100%; sensitivity from 30% to 58%). The definitions of these EEG patterns were consistent with the terminology recommended by the American Society of Clinical Neurophysiology (ACNS) in 2013 (Hirsch 2013 1-27) and recently updated (Hirsch 2021 1-29).

Concerning **biomarkers**, a study by Wihersaari et al (Wihersaari 2021 39-48) confirmed that increased blood levels of Nfl measured at 24h, 48h, and 72h from arrest accurately predicts poor outcome in comatose resuscitated patients (AUROC 0.98 at all time points). In that study, no patients with Nfl blood levels higher than 390 pg/ml at any time point had a good outcome. However, the Nfl thresholds associated with 100% specificity for

prediction of poor outcome were lower than those described in the major study included in the 2020 ILCOR evidence review (Moseby-Knappe 2019 64-71). In a study by You et al (You 2019 185-191), NSE measured in the cerebrospinal fluid (CSF) was more accurate for prediction of poor neurological outcome than NSE measured in the blood. Similar results were shown in a study by Son et al. (Son 2020 744). This study also showed that CSF NSE combined with diffusion changes on magnetic resonance imaging (MRI) had better performance in terms of AUC than each individual methods.

Concerning **imaging**, a study by Hirsch et al. (Hirsch 2020 e1684-e1692) assessed the accuracy of a previously identified threshold of apparent diffusion coefficient (ADC), a quantitative measure of diffusion changes on MRI. The study showed that the prespecified threshold of >10% of brain tissue with an ADC <650 $\times 10^{-6}$ mm²/s predicted poor outcome with a sensitivity of 0.63 [0.42–0.80], a specificity of 0.96[0.77–0.99].

A series of studies (Bongiovanni 2020 963-972; Moseby-Knappe 2020 1852-1862; Scarpino 2021) retrospectively measured the accuracy of the multimodal **combination of predictors** recommended in the 2015 ERC-ESICM guidelines for Post-resuscitation Care (Nolan 2015 2039-2056). This had been assessed for the first time in a previous study by Zhou et al (Zhou 2019 343-350) included in the ILCOR evidence review. Two of these studies (Bongiovanni 2020 963-972; Moseby-Knappe 2020 1852-1862) showed that the ERC-ESICM prognostication algorithm had 100% specificity for poor outcome. The sensitivity of the algorithm was similar (54% and 57%). In the study by Scarpino et al (Scarpino, 2021), the ERC-ESICM algorithm had 7 [1-18]% false positive rate for prediction of poor outcome. However, a strategy consisting of combining ≥2 abnormal test results as a criterion for poor neurological outcome yielded a 0% false positive rate. This supports the current ILCOR recommendation to use multiple predictors for neurologic prognostication. The study by Scarpino et al. also showed that the sensitivity of malignant EEG patterns interpreted according to the 2013 ACNS was higher than that of the EEG patterns recommended in the 2015 ERC-ESICM Guidelines, which were not defined according to ACNS. This result was confirmed by the paper by Moseby-Knappe et al (Moseby-Knappe 2020 1852-1862). The study from Bongiovanni et al (Bongiovanni 2020 963-972) showed that standardized malignant EEG patterns had equal specificity but higher sensitivity than NSE for poor outcome prediction in patients who were not identified by clinical examination or SSEPs in the first step of the ERC-ESICM algorithm. The study by Moseby-Knappe also showed that using a Glasgow Coma Scale motor score (GCS-M)≤3 instead of a GCS-M≤2 as an entry point for the 2015 ERC-ESICM prognostication algorithm increased algorithm sensitivity with no decrease in specificity.

Relevant Guidelines or Systematic Reviews

Organization	Guideline	Торіс	Number	Key findings	Treatment
(if relevant);	or	addressed	of		recommendations
Author;	systematic	or	articles		
Year	review	PICO(S)T	identified		
Published					
Sandroni C	Systematic	Same as	94	Bilaterally absent pupillary or corneal reflexes after	In comatose resuscitated
et al., 2020	review	this		day 4 from ROSC, high blood values of neuron-	patients, clinical,
		Evidence		specific enolase from 24 h after ROSC, absent	biochemical,
		Update		N20 waves of short-latency somatosensory-	neurophysiological, and
				evoked potentials (SSEPs) or unequivocal	radiological tests have
				seizures on electroencephalogram (EEG) from the	a potential to predict poor
				day of	neurological outcome with
				ROSC, EEG background suppression or burst-	no false-positive predictions
				suppression from 24 h after ROSC, diffuse	within the first week after
				cerebral oedema on brain CT from 2 h after	CA.
				ROSC, or reduced diffusion on brain MRI at 2–5	Guidelines should consider
				days after ROSC had 0% FPR for poor outcome in	the methodological concerns
				most studies. Risk of bias assessed using the	and limited sensitivity for
				QUIPS tool was high for all predictors.	individual modalities.

Note: the results of this systematic review largely coincided with these of the ILCOR evidence update 2020 on the same topic. Four additional studies (Hirsch 2020 e1684-e1692, Nakstad 2020 170-179, Son 2020 744, You 2019 185-191) were not present in the ILCOR evidence update, since the relevant literature search was conducted up to December 2019, while for the systematic review the last search was conducted on April 10, 2020.

Nonrandomized Trials, Observational Studies

Study	Study	Patient Population	Primary Endpoint and Results (include P	Summary/Conclusion
Acronym;	Type/Design;		value; OR or RR; & 95% Cl)	Comment(s)
Author;	Study Size (N)			
Year				
Published				
Bongiovanni	Study Type:	Inclusion Criteria:	1st endpoint: to quantify the rate of patients	In the majority of comatose
et al, 2020	single-center	Consecutive, adult,	remaining with an initial indeterminate outcome at	CA patients, the outcome
	prospective	comatose patients	3 months after applying the 2015 ERC/ESICM	remains indeterminate after
	observational	after cardiac arrest	guidelines.	application of ERC/ESICM
	study. Four-	admitted to the ICU.		prognostication algorithm.
	hundred-		Results: 330/485 (68%) of comatose cardiac	
	eighty-five	Exclusion criteria:	arrest patients had an indeterminate prognosis	Standardized EEG analysis
	patients	Brain death within 24	after application of the 2015 ERC/ESICM	allows accurate prediction
	included.	h, incomplete data	guidelines.	of good and poor recovery,
		about SSEPs and/or		thereby reducing early
		brainstem reflexes,	2nd endpoint: to evaluate whether specific	prognostic uncertainty.
		EEG and/or NSE,	electroencephalogram (EEG) patterns, based on	
		and outcome.	a standardized analysis, and serum neuron-	
			specific enolase (NSE) levels, can be used to	
			reduce prognostic uncertainty in this patient	
			population.	
			Desults, the shapped of a bighty matter at 550	
			Results: the absence of a highly malignant EEG	
			by day 3 had 99.5 [97.4–99.9]% sensitivity for	
			good recovery, which was superior to NSE < 33	

			µg/L (84.9 [79.3–89.4]% when used alone; 84.4	
			[78.8–89]% when combined with EEG, both p <	
			0.001). Highly malignant EEG had equal	
			specificity (99.5 [97.4–99.9] %) but higher	
			sensitivity than NSE for poor recovery.	
Glimmerveen	Study Type:	Inclusion Criteria:	<u>1st endpoint:</u> to analyze the association between	Absent SSEP response, a
et al, 2020	post hoc	Consecutive, adult,	SSEP amplitude and neurological outcome (CPC	N20 wave amplitude <0.4
	analysis of a	comatose patients	3-5) at 6 months.	μV within 48–72 h, and
	multicenter	after cardiac arrest		suppressed or synchronous
	prospective	(Glasgow Coma	<u>Results:</u> SSEP N20 wave amplitude <0.4 μV	EEG with suppressed
	cohort study.	Scale score ≤ 8),	within 48–72 h predicted poor neurological	background at 12 or 24 h
	One-hundred-	admitted to the ICU.	outcome with 100% specificity.	after CA were associated
	thirty-eight			with a poor outcome with
	patients	Exclusion criteria:		100% specificity.
	included.	concomitant acute		Combined, these tests
		stroke, traumatic		reached a sensitivity for
		brain injury,		prediction of poor outcome
		preexisting		up to 58 at 100% specificity.
		dependency in daily		
		life, or progressive		
		neurodegenerative		
		disease.		
Hirsch et al,	Study Type:	Inclusion Criteria:	1st endpoint: to determine whether the	An ADC <650 ×10-6
2020	Prospective,	Consecutive	previously identified threshold of having >10% of	mm2/s in >10% of brain
	clinician-	comatose post-	brain tissue with an ADC value $<650 \times 10^{-6}$ mm ² /s	tissue in an MRI obtained
	blinded. Fifty-	cardiac arrest adult	identified patients with poor outcome (GOS 1-2)	by post arrest day 7 is
		(≥18 y) patients who	at 6 months.	highly specific for poor

	one patients	underwent MRI	Results: the prespecified threshold of >10% of	outcome in comatose
	included.	within 7 days after	brain tissue with an ADC <650 ×10-6 mm2/s	patients after cardiac arrest.
		CA.	predicted poor outcome with a sensitivity of 0.63	
			[0.42–0.80], a specificity of 0.96[0.77–0.99], and a	
		Exclusion criteria:	positive predictive value (PPV) of 0.94[0.71-	
		preexisting "do not	0.997].	
		resuscitate" status,		
		prearrest modified		
		Rankin Scale score		
		≥3, severe coexisting		
		or terminal disease		
		that would be		
		expected		
		to interfere with long-		
		term outcome		
		assessments,		
		pregnancy, brain		
		death determined		
		before MRI.		
Moseby-	Study Type:	Inclusion Criteria:	1st endpoint: to assess the performance of the	All exploratory multimodal
Knappe et al,	Retrospective	Adult comatose	2015 ERC/ESICM algorithm to predict poor	variations thereof
2020	descriptive	patients after out-of-	neurological outcome (CPC 3-5) at 6 months.	investigated in this study
	analysis with	hospital cardiac		predicted poor outcome
	data from the	arrest.	Results: the ERC/ESICM algorithm identified	without false positive
	Target		poor outcome patients with 54% sensitivity and	predictions.
	Temperature	Exclusion criteria:	100% specificity, and patients who were not	Despite explorative versions
	remperature			

	(TTM) Trial, in	Residual sedation	identified often had a non-neurological presumed	also correctly predicted
	a cohort of 585	and muscle-	cause of death.	poor outcome with 100%
	patients.	relaxants, presence		specificity, these results
		of flexor or better	<u>2nd endpoint</u>: to identify strengths and	should be validated,
		motor response	weaknesses of the current algorithm, using an	preferably in patients
		(GCS-M), no	alternative cut-off for serum neuron-specific	where withdrawal of life-
		outcome, missing	enolase, an alternative EEG-classification and	sustaining therapy is
		data.	variations of the GCS-M (GCS-M≤3 instead of a	uncommon, to reduce the
			GCS-M≤2).	risk of self-fulfilling
				prophecies.
			Results: the use of exploratory variations as an	
			entry point for the 2015 ERC-ESICM	
			prognostication algorithm increased algorithm	
			sensitivity with no decrease in specificity.	
Nakstad et	Study Type:	Inclusion Critoria	1st and noint: to assess the ability of currently	The chaspes of pupillary
Nakštad et	Study Type.	Inclusion Criteria.	The endpoint. to assess the ability of currently	The absence of pupiliary
al, 2020	Prospective,	adult (>18 years)	recommended diagnostic tools (clinical,	light reflex (PLR) later than
al, 2020	Prospective, observational.	adult (>18 years) comatose (GCS <9)	recommended diagnostic tools (clinical, neurophysiological, and biochemical) to identify	light reflex (PLR) later than four days after ROSC and
al, 2020	Prospective, observational. Two hundred	adult (>18 years) comatose (GCS <9) OHCA patients of	recommended diagnostic tools (clinical, neurophysiological, and biochemical) to identify patients with a poor prognosis (CPC 3-5) at 6	light reflex (PLR) later than four days after ROSC and the bilaterally absent N20
al, 2020	Prospective, observational. Two hundred and fifty-nine	adult (>18 years) comatose (GCS <9) OHCA patients of cardiac and non-	recommended diagnostic tools (clinical, neurophysiological, and biochemical) to identify patients with a poor prognosis (CPC 3-5) at 6 months.	light reflex (PLR) later than four days after ROSC and the bilaterally absent N20 SSEP wave after 72h from
al, 2020	Prospective, observational. Two hundred and fifty-nine patients	adult (>18 years) comatose (GCS <9) OHCA patients of cardiac and non- cardiac causes with	recommended diagnostic tools (clinical, neurophysiological, and biochemical) to identify patients with a poor prognosis (CPC 3-5) at 6 months.	light reflex (PLR) later than four days after ROSC and the bilaterally absent N20 SSEP wave after 72h from cardiac arrest predicted
al, 2020	Prospective, observational. Two hundred and fifty-nine patients included.	adult (>18 years) comatose (GCS <9) OHCA patients of cardiac and non- cardiac causes with stable ROSC (>20	recommended diagnostic tools (clinical, neurophysiological, and biochemical) to identify patients with a poor prognosis (CPC 3-5) at 6 months. <u>Results:</u> the absence of PLR and N20 wave	light reflex (PLR) later than four days after ROSC and the bilaterally absent N20 SSEP wave after 72h from cardiac arrest predicted poor neurological outcome
al, 2020	Prospective, observational. Two hundred and fifty-nine patients included.	adult (>18 years) comatose (GCS <9) OHCA patients of cardiac and non- cardiac causes with stable ROSC (>20 min).	recommended diagnostic tools (clinical, neurophysiological, and biochemical) to identify patients with a poor prognosis (CPC 3-5) at 6 months. <u>Results:</u> the absence of PLR and N20 wave SSEPs as well as an increased serum NSE	light reflex (PLR) later than four days after ROSC and the bilaterally absent N20 SSEP wave after 72h from cardiac arrest predicted poor neurological outcome with 100% specificity.
al, 2020	Prospective, observational. Two hundred and fifty-nine patients included.	adult (>18 years) comatose (GCS <9) OHCA patients of cardiac and non- cardiac causes with stable ROSC (>20 min).	recommended diagnostic tools (clinical, neurophysiological, and biochemical) to identify patients with a poor prognosis (CPC 3-5) at 6 months. <u>Results:</u> the absence of PLR and N20 wave SSEPs as well as an increased serum NSE values later than 24 h to >80ng/ml predicted poor	light reflex (PLR) later than four days after ROSC and the bilaterally absent N20 SSEP wave after 72h from cardiac arrest predicted poor neurological outcome with 100% specificity.
al, 2020	Prospective, observational. Two hundred and fifty-nine patients included.	adult (>18 years) comatose (GCS <9) OHCA patients of cardiac and non- cardiac causes with stable ROSC (>20 min).	recommended diagnostic tools (clinical, neurophysiological, and biochemical) to identify patients with a poor prognosis (CPC 3-5) at 6 months. Results: the absence of PLR and N20 wave SSEPs as well as an increased serum NSE values later than 24 h to >80ng/ml predicted poor neurological outcome with 100% specificity. A	light reflex (PLR) later than four days after ROSC and the bilaterally absent N20 SSEP wave after 72h from cardiac arrest predicted poor neurological outcome with 100% specificity.
al, 2020	Prospective, observational. Two hundred and fifty-nine patients included.	adult (>18 years) comatose (GCS <9) OHCA patients of cardiac and non- cardiac causes with stable ROSC (>20 min).	recommended diagnostic tools (clinical, neurophysiological, and biochemical) to identify patients with a poor prognosis (CPC 3-5) at 6 months. <u>Results:</u> the absence of PLR and N20 wave SSEPs as well as an increased serum NSE values later than 24 h to >80ng/ml predicted poor neurological outcome with 100% specificity. A GCS-M 1-3 had 73% specificity. Malignant EEG	light reflex (PLR) later than four days after ROSC and the bilaterally absent N20 SSEP wave after 72h from cardiac arrest predicted poor neurological outcome with 100% specificity.
al, 2020	Prospective, observational. Two hundred and fifty-nine patients included.	adult (>18 years) comatose (GCS <9) OHCA patients of cardiac and non- cardiac causes with stable ROSC (>20 min). Exclusion criteria: OHCA following trauma/acute onset	recommended diagnostic tools (clinical, neurophysiological, and biochemical) to identify patients with a poor prognosis (CPC 3-5) at 6 months. Results: the absence of PLR and N20 wave SSEPs as well as an increased serum NSE values later than 24 h to >80ng/ml predicted poor neurological outcome with 100% specificity. A GCS-M 1-3 had 73% specificity. Malignant EEG (BS/epileptic activity/flat) predicted poor	light reflex (PLR) later than four days after ROSC and the bilaterally absent N20 SSEP wave after 72h from cardiac arrest predicted poor neurological outcome with 100% specificity.
al, 2020	Prospective, observational. Two hundred and fifty-nine patients included.	adult (>18 years) comatose (GCS <9) OHCA patients of cardiac and non- cardiac causes with stable ROSC (>20 min). Exclusion criteria: OHCA following trauma/acute onset intra-cerebral	recommended diagnostic tools (clinical, neurophysiological, and biochemical) to identify patients with a poor prognosis (CPC 3-5) at 6 months. Results: the absence of PLR and N20 wave SSEPs as well as an increased serum NSE values later than 24 h to >80ng/ml predicted poor neurological outcome with 100% specificity. A GCS-M 1-3 had 73% specificity. Malignant EEG (BS/epileptic activity/flat) predicted poor neurological outcome with 95% specificity.	light reflex (PLR) later than four days after ROSC and the bilaterally absent N20 SSEP wave after 72h from cardiac arrest predicted poor neurological outcome with 100% specificity.

Obinata et al, 2020	Study Type: Retrospective, observational. One hundred twenty-four patients included.	pathology, CPR <5 min followed by spontaneous awakening, admission >6h after OHCA, and treatment withdrawal in the emergency room. Inclusion Criteria: Adult comatose patients after cardiac arrest. Exclusion criteria: age <18 y; known factors that interfered with AIP or ABR assessments (cataracts, cerebrovascular disease, had injuries, or drug	1st endpoint: to assess the ability of Automated Infrared Pupillometry (AIP) and auditory brainstem response (ABR), recorded simultaneously at ≤72h to predict CPC 3-5 at discharge. Results: the absence of PLR (AIP) had 51% sensitivity and 100% specificity to predict poor neurological outcome, while absence of ABR V wave had 44% sensitivity and 100% specificity.	AIP was significantly superior as compared with ABR (pupil constriction velocity AUC 0.819 vs. ABR AUC 0.560). NPi did not differ among outcome groups.
		injuries, or drug		
		intoxication).		
Scarpino et	Study Type:	Inclusion Criteria:	1st endpoint: to compare the sensitivity and	In this study the ERC-
al, 2021	secondary	consecutive	specificity for predicting poor neurological	ESICM algorithm had 7 [1-
	analysis of	comatose adult	outcome (CPC 3-5) at 6 months of the stepwise	18]% false positive rate for

	analysis of			before TTM improved the
2020	retrospective	adult comatose	NSE levels and MRI immediately after ROSC may	levels and HSI in DWI
Son et al,	Study Type:	Inclusion Criteria:	1st endpoint: to investigate if combining CSF	Combining CSF/serum NSE
			51]% respectively).	
			the ERC-ESICM criterion (52 [44-60]% vs. 43 [36-	
			an absent/low voltage criterion for abnormality vs.	
			49[39-55]%. The same occurred for SSEP using	
			[9-20]% when using the ERC-ESICM criteria to	
			classification increased EEG sensitivity from 14	
			Results: using an ACNS-based EEG	
				Guidelines.
			abnormality of those tests	the 2015 ERC-ESICM
			by using more recent classifications to define the	patterns recommended in
		hrain death	accuracy of EEG and SSEPs could be improved	than that of the EEG
		than six months, and	2nd and notifies to investigate if the prograstic	(Hirsch, 2013) was higher
		disability, a life	sensitivity 49[41-57] but 0[0-8]% FPR.	ACNS 2013 terminology
		diaghility o life	outcome. A ≥2 abnormal test strategy had lower	interpreted according to the
		cause of arrest, pre-	18]% FPR for predicting poor neurological	malignant EEG patterns
		traumatic/surgical	algorithm had 63[56-71]% sensitivity and 7[1-	that the sensitivity of
	included.	Exclusion criteria:	Results: The ERC-ESICM prognostication	rate. The study also showed
	ten patients			yielded a 0% false positive
	hundred and		second-line predictors.	neurological outcome
	study. Two		without distinguishing between first-line and	criterion for poor
	multicentre	cardiac arrest.	any of the tests recommended in the algorithm	abnormal test results as a
	prospective	resuscitation from	strategy combining at least 2 abnormal results of	consisting of combining ≥2
	ProNeCA	the ICUs following	prognostication algorithm vs. a prognostic	However, a strategy
	data from the	patients admitted to	approach recommended in the 2015 ERC/ESICM	prediction of poor outcome.

	prospectively collected data. Fifty-eight patients included.	OHCA survivors treated with TTM. <u>Exclusion criteria</u> : <18 years; traumatic CA; interrupted TTM; patients not eligible for TTM; extracorporeal membrane oxygenation; and patients ineligible for lumbar puncture.	better predict CPC 3-5 at 6 months in TTM- treated patients than any single analysis. <u>Results:</u> CSF NSE levels showed better prognostic performance than serum NSE levels (AUC 0.873 vs. 0.792). Combining CSF NSE levels and High Signal Intensity (HIS) in DWI had better prognostic performance (AUC 0.925) than each individual methods. The combination between serum NSE levels and HSI on DWI had AUC 0.901.	prognostic performance compared to either each individual method or other combinations.
Wihersaari et al, 2021	Study Type: prospective, randomised pilot study of 120 patients.	Inclusion Criteria: adult comatose OHCA patients resuscitated from an initial shockable rhythm, treated with TTM. Exclusion criteria: no blood samples available.	<u>1st endpoint:</u> to assess the ability of plasma NfL to predict outcome (CPC 1-2 vs. 3-5) at 6 months. <u>Results:</u> Forty-eight hours after OHCA, the median [IQR] NfL concentration was significantly lower in patients with good outcome vs. poor outcome (19 [11–31] pg/ml vs. 2343 [587–5829] pg/ml, p < 0.001). NfL predicted poor outcome with an area under the receiver operating characteristic curve (AUROC) of 0.98 at 24, 48 and 72h.	Compared to NSE, NfL seems to be a more accurate biomarker for prognostication after CA, and if validated in further samples, it has potential to replace NSE in the multimodal prognostication algorithms.

You et al,	Study Type:	Inclusion Criteria:	1st endpoint: to investigate the prognostic	NSE measured in the
2019	single-centre,	adult comatose	performance between serum NSE and CSF NSE	cerebrospinal fluid (CSF)
	prospective,	OHCA survivors	for 6-month poor neurologic outcome (CPC 3-5)	was more accurate for
	observational.	treated with TTM.	in OHCA survivors who had undergone TTM.	prediction of poor
	Thirty-four			neurological outcome than
	patients	Exclusion criteria:	Results: CSF NSE values showed better	NSE measured in the blood.
	included.	traumatic CA;	performance than serum NSE at any time	
		ineligible for lumbar	investigated (day 0, 1, 2, 3) with 100% specificity.	
		puncture (LP);	The best predictive value (81.3% sensitivity and	
		extracorporeal	100% specificity) for serum NSE was found at day	
		membrane	2 with a cut-off of 54.6 ng/ml.	
		oxygenation;		
		responsible relatives		
		from the patient's		
		family unable to		
		consent to an LP,		
		and; the provision of		
		further patient		
		treatment declined		
		by the next of kin.		

Reviewer Comments (including whether meet criteria for formal review):

The ten studies included in this evidence update largely confirmed the results of both the ILCOR 2020 evidence review and the 2020 systematic review. The evidence found does not justify a new systematic review at present. We did not find any evidence that would suggest a need to change the 2020 ILCOR recommendations.

	Approval Date
Evidence Update coordinator	15 February 2021
ILCOR board	

*Once approval has been made by Evidence Update coordinator, worksheet will go to ILCOR Board for acknowledgement.

Reference list

- Sandroni C, D'Arrigo S, Cacciola S, Hoedemaekers CWE, Kamps MJA, Oddo M, Taccone FS, Di Rocco A, Meijer FJA, Westhall E, Antonelli M, Soar J, Nolan JP, Cronberg T. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: A systematic review. Intensive care medicine. 2020;46:1803-1851
- Nakstad ER, Stær-Jensen H, Wimmer H, Henriksen J, Alteheld LH, Reichenbach A, Drægni T, Šaltyte-Benth J, Wilson JA, Etholm L, Øijordsbakken M, Eritsland J, Seljeflot I, Jacobsen D, Andersen G, Lundqvist C, Sunde K. Late awakening, prognostic factors and long-term outcome in out-of-hospital cardiac arrest - results of the prospective norwegian cardio-respiratory arrest study (norcast). *Resuscitation*. 2020;149:170-179
- Obinata H, Yokobori S, Shibata Y, Takiguchi T, Nakae R, Igarashi Y, Shigeta K, Matsumoto H, Aiyagari V, Olson DM, Yokota H. Early automated infrared pupillometry is superior to auditory brainstem response in predicting neurological outcome after cardiac arrest. *Resuscitation*. 2020;154:77-84
- 4. Glimmerveen AB, Keijzer HM, Ruijter BJ, Tjepkema-Cloostermans MC, van Putten M, Hofmeijer J. Relevance of somatosensory evoked potential amplitude after cardiac arrest. *Frontiers in neurology*. 2020;11:335
- Hirsch LJ, LaRoche SM, Gaspard N, Gerard E, Svoronos A, Herman ST, Mani R, Arif H, Jette N, Minazad Y, Kerrigan JF, Vespa P, Hantus S, Claassen J, Young GB, So E, Kaplan PW, Nuwer MR, Fountain NB, Drislane FW. American clinical neurophysiology society's standardized critical care eeg terminology: 2012 version. *Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society*. 2013;30:1-27

- 6. Hirsch LJ, Fong MWK, Leitinger M, LaRoche SM, Beniczky S, Abend NS, Lee JW, Wusthoff CJ, Hahn CD, Westover MB, Gerard EE, Herman ST, Haider HA, Osman G, Rodriguez-Ruiz A, Maciel CB, Gilmore EJ, Fernandez A, Rosenthal ES, Claassen J, Husain AM, Yoo JY, So EL, Kaplan PW, Nuwer MR, van Putten M, Sutter R, Drislane FW, Trinka E, Gaspard N. American clinical neurophysiology society's standardized critical care eeg terminology: 2021 version. *Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society*. 2021;38:1-29
- 7. Wihersaari L, Ashton NJ, Reinikainen M, Jakkula P, Pettilä V, Hästbacka J, Tiainen M, Loisa P, Friberg H, Cronberg T, Blennow K, Zetterberg H, Skrifvars MB. Neurofilament light as an outcome predictor after cardiac arrest: A post hoc analysis of the comacare trial. Intensive care medicine. 2021;47:39-48
- Moseby-Knappe M, Mattsson N, Nielsen N, Zetterberg H, Blennow K, Dankiewicz J, Dragancea I, Friberg H, Lilja G, Insel PS, Rylander C, Westhall E, Kjaergaard J, Wise MP, Hassager C, Kuiper MA, Stammet P, Wanscher MCJ, Wetterslev J, Erlinge D, Horn J, Pellis T, Cronberg T. Serum neurofilament light chain for prognosis of outcome after cardiac arrest. *JAMA neurology*. 2019;76:64-71
- You Y, Park JS, Min J, Yoo I, Ahn HJ, Cho Y, Ryu S, Lee J, Kim S, Cho S, Oh S, Jeong W, Kang C, Oh E, Lee IH, Lee B, Lee D, Youn CS. The usefulness of neuron-specific enolase in cerebrospinal fluid to predict neurological prognosis in cardiac arrest survivors who underwent target temperature management: A prospective observational study. *Resuscitation*. 2019;145:185-191
- 10. Son SH, Lee IH, Park JS, Yoo IS, Kim SW, Lee JW, Ryu S, You Y, Min JH, Cho YC, Jeong WJ, Oh SK, Cho SU, Ahn HJ, Kang C, Lee DH, Lee BK, Youn CS. Does combining biomarkers and brain images provide improved prognostic predictive performance for out-of-hospital cardiac arrest survivors before target temperature management? *Journal of clinical medicine*. 2020;9:744
- Hirsch KG, Fischbein N, Mlynash M, Kemp S, Bammer R, Eyngorn I, Tong J, Moseley M, Venkatasubramanian C, Caulfield AF, Albers G.
 Prognostic value of diffusion-weighted mri for post-cardiac arrest coma. *Neurology*. 2020;94:e1684-e1692
- 12. Bongiovanni F, Romagnosi F, Barbella G, Di Rocco A, Rossetti AO, Taccone FS, Sandroni C, Oddo M. Standardized eeg analysis to reduce the uncertainty of outcome prognostication after cardiac arrest. *Intensive care medicine*. 2020;46:963-972
- Moseby-Knappe M, Westhall E, Backman S, Mattsson-Carlgren N, Dragancea I, Lybeck A, Friberg H, Stammet P, Lilja G, Horn J, Kjaergaard J, Rylander C, Hassager C, Ullén S, Nielsen N, Cronberg T. Performance of a guideline-recommended algorithm for prognostication of poor neurological outcome after cardiac arrest. *Intensive care medicine*. 2020;46:1852-1862
- 14. Scarpino M, Lolli F, Lanzo G, Carrai R, Spalletti M, Valzania F, Lombardi M, Audenino D, Celani MG, Marrelli A, Contardi S, Peris A, Amantini A, Grippo A, Sandroni C. Does a combination of ≥2 abnormal tests vs. The erc-esicm stepwise algorithm improve prediction of poor neurological outcome after cardiac arrest? A post-hoc analysis of the proneca multicentre study. *Resuscitation*. 2021

- 15. Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, Bottiger BW, Friberg H, Sunde K, Sandroni C. European resuscitation council and european society of intensive care medicine 2015 guidelines for post-resuscitation care. *Intensive care medicine*. 2015;41:2039-2056
- 16. Zhou SE, Maciel CB, Ormseth CH, Beekman R, Gilmore EJ, Greer DM. Distinct predictive values of current neuroprognostic guidelines in post-cardiac arrest patients. *Resuscitation*. 2019;139:343-350