LEGENDS TO SUPPLEMENTAL INFORMATION

Supplemental Figure 1: AICDA gene alterations in patients P3, P4, P5 and P6.

The coding region of exons is in red. Exon 3 encodes the catalytic domain of the AID enzyme.

Supplemental Figure 2: Validation of IgG and IgA-specific ELISA.

Mouse monoclonal antibodies were obtained from a commercial source (IgM standard, Southern Biotechnologies) and from the French National Blood Center (clones BHS17, AY144 and E11) to test the specificity of anti-IgG and anti-IgA antibodies used for ELISA in this study. Serum from a naive AID-deficient mouse (mouse 9990) with spontaneously high IgM and not producing detectable IgG or IgA at Day 0 provided at internal control showing that the rise of IgG and IgA at Day 17 after SRBC immunization was not a cross-reaction with polyclonal IgM.

Supplemental Figure 3: IgM levels do not correlate with IgG or IgA levels.

Serum IgM, IgG and IgA concentrations were determined by ELISA. Each point represents one AID-deficient mouse, before or after SRBC immunization. The linear regression shows that there is no correlation between IgM and IgA concentrations (top), or between IgM and IgG concentrations (bottom) ($R^2 < 0.3$ in both cases).

Supplemental Table 1:

Genomic coordinates used for aligning switch junctions from mouse and human samples are indicated.

Supplemental Table 2:

Example of junction sequences. For each sequence read including a S μ -S γ 1 junction, positions of both DNA breaks in S μ and S γ are given by reference to chromosome GRCh38:14 (start at 105863000:1, reverse orientation). The fifty bases-long sequence centered onto the junction is shown. S μ is in bold, S γ is underlined, microhomologies are bold and underlined, N stand for an inserted nucleotide.

Mutations in AID-deficient patients:

- Patient P3 : W68X termination / N53_F143del
- P4 and P5 : W68X termination / L59_F61del
- P6: homozygous K22X termination

(exon 3) (exon 3) (exon 2)

Supplemental Figure 1

Supplemental Figure 2

Log10 IgM concentration (µg/mL)

Log10 IgM concentration (µg/mL)

Supplemental Figure 3

Mouse sequence alignments:

IgH constant gene cluster 218,000 bp sequence considered for analysis with CSReport algorithm: *Mus musculus, chromosome 12, GRCm38.p3 C57BL/6J, gi*/*372099098: c113208001 (end)-113426000 (start)*

Switch µ	0	3270
Switch γ3	59768	64768
Switch γ1	86477	95477
Switch γ2b	111067	118067
Switch γ2c	129068	137068
Switch ϵ	147752	152752
Switch α	158764	165764

Human sequence alignments:

IgH constant gene cluster 313,000 bp sequence considered for analysis with CSReport algorithm: *Homo sapiens, chromosome 14, GRCh38:14:c105550001 (end):105863000 (start)*

Switch μ	2253	6781
Switch γ3	87094	91594
Switch γ1	115553	119928
Switch α 1	151040	154334
Switch γ2	214709	218209
Switch γ4	232433	236933
Switch ϵ	257290	261271
Switch α 2	271075	274604

Supplemental Table 1: Genomic coordinates used for aligning switch junctions from mouse and human samples are indicated.

Examples of Sµ-Sy1 junctions from AID-/- patients

(patients P3 and P5 with complete homozygous absence the AID catalytic domain)

P3	
>2491-119076-mHomo-2	GTGCAGGAACCCGGCAATGAGAT <u>GG</u> GAGGAGGTGGGCTGGTGGCCGAGAA
>4262-119823-mHomo-5	CTGATTTGGGCTGGGTTGAGCAGACACTGGACGCTGAACCTCGCGGACAG
>3010-119769-mHomo-2	GCTGAGCTGGGCTGGGCTGAGCTGGGCTAAGGTGACGCAGGTGGCGCCAGC
>2812-118856-mHomo-4	TGAGCTGGGCTGGGCTGGGCT <u>GGGC</u> GCTTAGCCTCCTCAGAGGTCAGGGG
>2521-118278-Blunt-0	GCTGAGACAAGCAGGTCTGGTGGGCGGCAGGACGAGCAGGGGACAGGCAC
>2520-116813-mHomo-6	AGCTGAGACAAGCAGGTCT <u>GGTGGG</u> AAGCATGGGGAGCAGGTGGGCAGCC
>2520-116654-mHomo-8	AGCTGAGACAAGCAGGT <u>CTGGTGGG</u> AGGCGGGGGGAACAGGGGGGCAGCTC
>2516-118881-mHomo-2	CTTTAGCTGAGACAAGCAGGTCTGGGGCACACCCCACCTGCAGTGGGACT
>2513-117954-Blunt-0	TGGCTTTAGCTGAGACAAGCAGGTCCAGGTGGGGGGGCAGGAGGAGCAGGG
>2511-118287-mHomo-6	GATGGCTTTAGCTGAGACAAGCAGGGGACAGGCACTAGAGCTCAGGGCAA
P5	
>2474-117725-mHomo-8	TGGAAGCCAGCCTGGCT <u>GTGCAGGA</u> GGAGCAGGGGGGCAGGCACTGGAGCT
>4912-118286-mHomo-4	TGAGCCGGACTGGGTTGGGCT <u>GAGC</u> AGGGGACAGGCACTAGAGCTCAGGG
>2997-118523-mHomo-1	TGGGCTGGGCTGCGCTGAGCTGGGCAGGGCTGAGCTCTCAGGCAGG
>2512-117350-mHomo-7	ATGGCTTTAGCTGAGACA <u>AGCAGGT</u> GGGCAGCCCCTGGAGCTCAGAGAGC
>2512-116970-mHomo-6	ATGGCTTTAGCTGAGACAAGCAGGTGGGAGGCAGAATAAGCAGGGGACAG
>2466-116496-mHomo-5	ACAAAAGATGGAAGCCAGCC <u>TGGCT</u> AGTGGGAGATGGGCAAGCAGGGGGC

Examples of Sµ-Sy1 junctions from a healthy human control

>2646-119430-Blunt-0 >2472-118763-mHomo-4 >2464-118345-mHomo-2 >2489-118566-Blunt-0 >2455-119150-mHomo-4 >3478-118971-Blunt-0 >2667-119677-mHomo-2 >2692-117317-mHomo-4 >2526-118312-Blunt-0 >2487-118505-mHomo-1 >2621-118522-Blunt-0 >2686-118513-Insert-1 >2631-119304-mHomo-5 >2684-119725-mHomo-1 >2587-118330-Blunt-0 >2711-118904-mHomo-1 **GCTGAGCTGAGCTGAACTGGGCTGA**CCACGCTGGGGCGGCAGGGTCAGGG **GATGGAAGCCAGCCTGGCTGTGCAG**AGTCAGCCAGAGCCTGTGGTGCAGG AGACAAAAGATGGAAGCCAGCCTGGAGGCATCACTCAGCTCCTAGACTTT CTGTGCAGGAACCCGGCAATGAGATAACGTGTGCTTGAGACCAGGAGGGT **AGTAGAGGGAGACAAAAGATGGAAG**TAATGCAGGACACTGGGAGGCAGGG GAGCTGAGCTTAGCTGGGCTGAGCTCCATGCAGGGTGGGGAGGGCCAAGG CTGAGTTGAACTGGGTTGAGCTG<u>AGGGGTGCCTGCAGAAGGGCACCACAG</u> GACAAGCAGGTCTGGTGGGGCTGACCGGGGCAAGGCAGCCACAGGTGAGCAG **GGCTGTGCAGGAACCCGGCAATGAGGAAGGCGTTCCAGGGCTCAGGGCTG CCTAGACTAAACAAGGCTGAACTGG**TCAGGGCTGAGCTCTCAGGCAGGGG **GCTGAGCTGAGCTGAGCTGGGCTAA**N<u>TTCCAGGGCTCAGGGCTGAGCTCT</u> ACAAGGCTGAACTGGGCTGAGCTGAAGGGCGCCGACCCTATGCAGTGTCT **GAGCTGAGCTGAGCTGAGCTGGGCT**CTGGGGCAGGCCGGGCCTGACCTTG ATGGACTCAGATGGGCAAAACTGACTGAGCAGGGCTGGTGGGAGGCATCA GTTGCACCAGGTGAGCTGAGCTGAGACTCCAGGGCCACTGGGCCAGCGGC

(S μ is in bold, <u>S γ is underlined</u>, <u>microhomologies are bold and underlined</u>, N stand for an inserted nucleotide).

Supplemental Table 2. Example of junction sequences.