Grassmann extrapolation of density matrices for Born-Oppenheimer molecular dynamics

Supplementary information

Étienne Polack Geneviève Dusson Benjamin Stamm Filippo Lipparini September 17, 2021

Supplementary figure

Figure 1: Total energy (kcal/mol) as a function of simulation time (fs) for 3HF comparing G-Ext(3), G-Ext(6) and XLBO with McWeeny purification, using a convergence threshold for the SCF algorithm of 10^{-6} . The total energy was shifted of $+505\,000\,\mathrm{kcal/mol}$ for readability.

Grassmann Exponential and Logarithm maps

The Grassmann manifold is a differential manifold and, for any given $D_0 = C_0 C_0^{\mathsf{T}} \in \mathcal{G}r(N,\mathcal{N})$ with $D_0 := D_{\mathsf{R}_0}$ and $C_0 := C_{\mathsf{R}_0}$ for fixed R_0 , the tangent space is characterized by

$$\mathcal{T}_{D_0} = \left\{ \Gamma \in \mathbb{R}^{\mathcal{N} \times N} \,\middle|\, C_0^\mathsf{T} \Gamma = 0 \right\} \subset \mathbb{R}^{\mathcal{N} \times N}. \tag{1}$$

Note that the tangent space is a linear space. One can then introduce the Grassmann exponential which maps tangent vectors on \mathcal{T}_{D_0} to the manifold $\mathcal{G}r(N,\mathcal{N})$ in a locally bijective manner around D_0 . Indeed, it is not only an abstract tool from differential geometry, but it can be computed in practice involving the matrix exponential. By complementing C_0 with orthonormal columns to obtain $(C_0, C_{\perp}) \in O(\mathcal{N})$, where $O(\mathcal{N})$ denotes the group of orthogonal matrices of dimension $\mathcal{N} \times \mathcal{N}$, and $\Gamma \in \mathcal{T}_{D_0}$ we have

$$\operatorname{Exp}_{D_0}(\Gamma) = CC^{\mathsf{T}}, \qquad C = \begin{pmatrix} C_0, C_{\perp} \end{pmatrix} \exp \begin{pmatrix} 0 & -B^{\mathsf{T}} \\ B & 0 \end{pmatrix} \mathsf{I}_{\mathcal{N}, N}. \tag{2}$$

Here, exp denotes the matrix exponential function, the matrix $B \in \mathbb{R}^{(\mathcal{N}-N)\times N}$ contains expansion coefficients of columns of Γ in a span of columns of C_{\perp} such that $\Gamma = C_{\perp}B$ and $I_{\mathcal{N},N} = (I_N,0)^{\mathsf{T}} \in \mathbb{R}^{\mathcal{N}\times N}$ are the first N columns of the $\mathcal{N} \times \mathcal{N}$ identity matrix. As described in [1, 2], the Grassmann exponential can then be equivalently expressed by

$$\operatorname{Exp}_{D_0}(\Gamma) = CC^{\mathsf{T}}, \qquad C = \left[C_0 V_e \cos(\Sigma_e) + U_e \sin(\Sigma_e)\right] V_e^{\mathsf{T}}, \tag{3}$$

by means of a singular value decomposition (SVD) of the matrix $\Gamma = U_e \Sigma_e V_e^{\mathsf{T}}$.

The inverse function is the so-called Grassmann logarithm Log_{D_0} (see, e.g., [1, 2]) which maps any $D = CC^{\mathsf{T}} \in \mathcal{G}r(N, \mathcal{N})$ in a neighborhood of D_0 to the tangent space \mathcal{T}_{D_0} by

$$\operatorname{Log}_{D_0}(D) = U_{\ell} \arctan(\Sigma_{\ell}) V_{\ell}^{\mathsf{T}}, \tag{4}$$

using the following SVD decomposition

$$U_{\ell} \Sigma_{\ell} V_{\ell}^{\mathsf{T}} = L \quad \text{with} \quad L = C \left(C_0^{\mathsf{T}} C \right)^{-1} - C_0.$$
 (5)

References

- [1] Alan. Edelman, Tomás A. Arias, and Steven T. Smith. The Geometry of Algorithms with Orthogonality Constraints. SIAM J. Matrix Anal. Appl., 20(2):303–353, 1998-01-01.
- [2] Ralf Zimmermann. Manifold interpolation and model reduction, 2019. http://arxiv.org/abs/1902.06502.