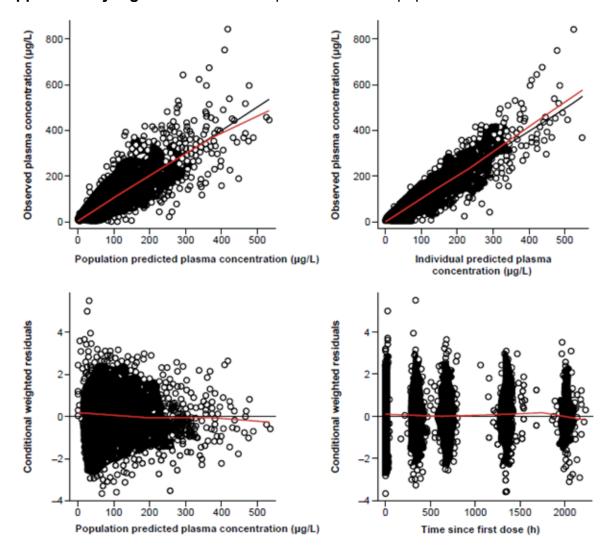
Supplementary Information

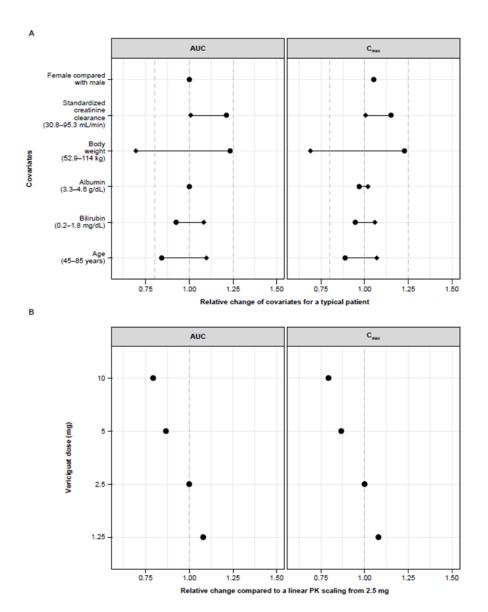
Clinical Pharmacokinetics

Population Pharmacokinetics and Pharmacodynamics of Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction

Hauke Ruehs¹ · Dagmar Klein¹ · Matthias Frei¹ · Joachim Grevel² · Rupert Austin² · Corina Becker³ · Lothar Roessig⁴ · Burkert Pieske^{5,6,7} · Dirk Garmann¹ · Michaela Meyer¹


- 1. Pharmacometrics, Bayer AG, Wuppertal, Germany
- 2. BAST Inc Limited, Loughborough, UK
- 3. Clinical Pharmacology, Bayer AG, Wuppertal, Germany
- 4. Clinical Development, Bayer AG, Wuppertal, Germany
- 5. Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, German Heart Center, Berlin, Germany
- 6. German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
- 7. Berlin Institute of Health (BIH), Berlin, Germany

Corresponding author:


Michaela Meyer. (ORCID ID: 0000-0002-7245-9406)

Email: michaela.meyer@bayer.com; Tel: +49 202 36-3667.

Supplementary Fig. 1 Goodness-of-fit plots for the final population PK model

Supplementary Fig. 2 Forest plots of deterministic simulations visualizing covariate influence on PK exposure (AUC and C_{max} at steady-state)

A) Relative change in PK exposure (AUC and C_{max} at steady state) compared to a typical patient with a daily 2.5 mg vericiguat administration. In the case of continuous covariates, the diamonds indicate the change corresponding to the 95th percentile of the covariate and the circles indicate the change corresponding to the 5th percentile of the covariate.

B) Relative change in PK exposure (AUC and C_{max}) from popPK model with dose-dependence of bioavailability compared with a linear PK scaling from 2.5 mg. Dashed lines indicate the 0.8 and 1.25-fold change.

Supplementary Table 1 Pharmacokinetic sampling scheme for the population PK analysis

Measurement			9	Sampling schem	ie		
Visit	Screening	1	2	3	4	5°	Follow-up
Day/Window	-28-0ª	0	14±2 ^b	28±2 ^b	56±2 ^b	84±2 ^b	+30±5 ^d
PKe		х	Х	Х	х	Х	
Blood ^f		x	x	X	x	х	х
BP/HR ^g	x	x	X	х	x	x	х

BP blood pressure, HR heart rate

^aCan start from hospitalization (or equivalent) up to 4 weeks after discharge (or after clinical stabilization upon hospitalization equivalent) and no more than 4 weeks before randomization

^bAllows for timeframes of 5 days, e.g. visit 2 can take place on days 12–16

^cCompletion or premature discontinuation visit (in case of premature stop of study drug, the same measurements and procedures should be performed as at visit 5)

d After last intake of study drug

^eBlood samples were taken at baseline/trough at Visits 2–4 (prior to study drug) and at Visit 5; at Visits 1 and 3, 1–3 hours and 4–6 hours post-study drug dosing; and at Visits 2 and 4, 1–3 hours post-study drug dosing. Optional additional pre-dose sample on Day 1 (trough 24 hours after first study drug) for hospitalized patients

fNT-proBNP, clinical chemistry, hematology, coagulation (prior to drug intake or on visit 5 ~24 hours after last drug intake)

⁹Three measurements, 2 min apart; measurements are taken prior to and at 2h post study-drug dosing

Supplementary Table 2 Run record of key runs in base model development

Run name	Parent run	OFV	$\Delta {\sf OFV}$	Comments
0	_	26,194.906	n/a	One-compartment model with first-order absorption, proportional error model, no lag-time
1	0	26,131.062	-63.844	Test of residual error model
2	0	26,050.443	-144.463	Combined error model
3	2	26,048.332	-2.111	Lag-time
4	2	25,940.152	-110.291	Correlation between CL/F and V/F included
5	2	26,047.805	-2.638	Two-compartment model
6	4	25,985.740	45.588	Variability on ka removed

CL/F apparent clearance, k_a absorption rate constant, OFV objective function value, V/F apparent volume of distribution.

Supplementary Table 3 Stepwise covariate modeling results

Runa	Covariates included ^a	Covariate relationship	ΔOFV		IIV of		Chanç	ge in IIV o	f (%)°:
		included/eliminated ^b		k a	CL/F	V/F	k a	CL/F	V/F
0	-	-		0.696	0.1300	0.0732			
1	-	WGHT on CL/F, exponent fixed: 0.75, WGHT on V/F, exponent fixed: 1.0	-160.836	0.923	0.0909	0.0504	32.60	-30.10	-31.10
2	on CL/F: WGHT on V/F: WGHT	AGE on CL/F	-46.887	0.951	0.0775	0.0491	3.00	-14.70	-2.60
3	on CL/F: WGHT, AGE on V/F: WGHT	BILI on CL/F	-18.098	0.949	0.0731	0.0485	-0.20	-5.70	-1.20
4	on CL/F: WGHT, AGE, BILI on V/F: WGHT	ALB on ka	-19.199	0.856	0.0724	0.0485	-9.80	-1.00	0.00
5	on CL/F: WGHT, AGE, BILI on V/F: WGHT on k _a : ALB	CRCL on CL/F	-16.064	0.856	0.0685	0.0485	0.00	-5.40	0.00
6	on CL/F: WGHT, AGE, BILI, CRCLST on V/F: WGHT on k _a : ALB	SEX on V/F	-15.219	0.861	0.0686	0.0437	0.60	0.10	-9.90
7	on CL/F: WGHT, AGE, BILI, CRCLST on V/F: WGHT, SEX on k _a : ALB	WGHT on ka	-15.198	0.795	0.0683	0.0400	- 7.70	-0.40	-8.50
8	on CL/F: WGHT, AGE, BILI, CRCLST on V/F: WGHT, SEX on k _a : ALB, WGHT	RACE on V/F	-10.806	0.817	0.0679	0.0366	2.8	-0.6	-8.5

on CL/F: WGHT, AGE, BILI, CRCLST on V/F: WGHT, SEX, RACE on ka: ALB, WGHT	RACE on V/F (eliminated)	+10.806	0.795	0.0683	0.04	-2.7	0.6	9.3
on CL/F: WGHT, AGE, BILI, CRCLST 10 on V/F: WGHT, SEX, RACE on ka: ALB, WGHT on F: DOSE	DOSE on F	-126.699	0.867	0.061	0.043	9.1	-10.3	7.5

ALB albumin, BILI bilirubin, CL/F apparent clearance, CRCLST standardized creatinine clearance, IIV inter-individual variability, k_a absorption rate constant, RSE relative standard error, V/F apparent volume of distribution, WGHT weight.

^bCovariate parameter relationships included in the current step, additionally to the previously included relationship or relationships eliminated in the current step, of the relationship included.

°Change vs. result of the previous run from the stepwise covariate model development, i.e. as documented in column "IIV of ..."

^aCovariate parameter relationships previously included.

Supplementary Table 4 Descriptive statistics of PK estimates of vericiguat (including dose dependency)

PK parameter	Vericiguat dose	n	Arithmetric mean	Arithmetric std	Geometric mean	Geometric std	Min	Median	Max	5th percentile	95th percentile
AUC _{τ,ss} (μg*h/L)	1.25	68	1142.328	440.881	1069.344	1.433	507.558	1000.559	2646.634	611.949	1850.920
	2.5	71	2156.314	701.038	2053.981	1.366	1015.985	1998.008	4251.011	1215.585	3465.766
	5	64	3703.806	1220.686	3513.932	1.39	1878.42	3668.427	7934.754	2063.794	5908.759
	10	40	6588.793	2136.623	6247.014	1.398	3375.199	6327.505	11018.953	3471.135	10049.354
C _{max,ss} (µg/L)	1.25	68	63.373	21.741	60.140	1.378	28.398	55.732	137.769	37.046	100.703
	2.5	71	119.732	33.872	115.505	1.305	64.948	114.708	212.901	71.921	198.263
	5	64	203.337	58.024	195.378	1.331	112.302	205.521	374.067	126.212	307.057
	10	40	370.173	103.866	355.809	1.334	194.387	348.508	611.790	212.723	532.722
$C_{trough,ss} \\ (\mu g/L)$	1.25	68	32.313	14.797	29.437	1.535	12.662	27.838	81.906	15.769	59.820
	2.5	71	61.27	24.997	56.706	1.488	22.932	55.82	142.389	26.658	110.379
	5	64	107.225	45.007	98.428	1.529	40.522	105.169	280.943	48.310	185.855
	10	40	180.993	73.705	166.055	1.538	69.933	176.512	343.245	78.348	314.342
PTR _{ss}	1.25	68	2.078	0.391	2.043	1.202	1.258	2.027	3.404	1.521	2.823
	2.5	71	2.082	0.458	2.037	1.233	1.300	2.022	3.784	1.457	2.818
	5	64	2.036	0.490	1.985	1.250	1.331	1.948	3.885	1.388	2.993

	10	40	2.190	0.483	2.143	1.233	1.444	2.110	3.453	1.519	3.241
t _{1/2} (h)	1.25	98	21.787	5.695	21.085	1.293	10.857	21.457	41.205	13.939	32.158
	2.5	114	21.606	5.633	20.912	1.293	11.809	21.365	40.253	12.278	32.175
	5	87	22.049	7.679	20.955	1.366	11.462	20.702	49.550	12.700	40.002
	10	58	20.181	5.609	19.483	1.302	11.138	18.616	35.020	12.913	32.841

 $\overline{AUC}_{T,ss}$ area under the plasma concentration—time curve at steady state, $C_{max,ss}$ maximum plasma drug concentration at steady state, $C_{trough,ss}$ trough plasma concentration at steady state, PTR peak-to-trough ratio, $t_{1/2}$ elimination half-life.

Supplementary Table 5 Linear regression parameter table

	Visit 1	Visit 4
Intercept (SBP change from pre- to post-dose [mmHg])	-5.857 (<i>p</i> < 0.001)	−5.124 (<i>p</i> < 0.001)
Slope (vericiguat C _{max} [µg/L])	-0.039 (p = 0.047)	-
Slope (vericiguat C _{max,ss} [µg/L])	_	-0.003 (p = 0.528)

 $\overline{C_{max}}$ maximum plasma drug concentration, $C_{max,ss}$, maximum plasma drug concentration at steady state, \overline{SBP} systolic blood pressure.