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Supplementary Note 1:  Monte Carlo simulations 

 In order to better understand the Santa Fe Ice system, we have run extensive 

Monte Carlo simulations.  We considered a system with 4 x 8 unit cells of the lattice (the 

unit cell is shown in Figure 1a in the main text), which consists of 8 x 8 composite cells or 

1536 spins. We impose periodic boundary conditions and calculate the system energy 

using a vertex model where only nearest-neighbor interactions between collinear and 

perpendicular islands are included (Supplementary Fig. 1). The two spin interaction 

energies, 𝜖𝜖⊥ and 𝜖𝜖∥ correspond to the coupling between moments that are converging in 

the vertex perpendicular and parallel to each other respectively and are defined in 

Supplementary Fig. 1. In other words, in this approximation, the spins only interact with 

other spins that share a common vertex. The value of 𝜖𝜖∥ defines an energy (and thus 

temperature) scale which naturally depends on the details of the island geometry and 

spacing in a real system. 

 

 

Supplementary Fig. 1. Schematics defining the couplings in the Metropolis Monte Carlo 

simulations. 
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The value of 𝜖𝜖⊥
𝜖𝜖∥

 determines the ground state of the system as shown in Supplementary 

Fig. 2.  The two possible ground states are either a long-range-ordered state or a 

disordered string state with strings all of length three excitations. Note that, even in the 

case of a long-range antiferromagnetic ground state, the excitation profile is made of 

strings, due to the topological constraints for the number of unhappy vertices that can 

connect to a given plaquette. In Supplementary Table 1, we show the predicted 

population statistics of vertices at high temperature and zero temperature. Values at high 

temperature are merely the relative counts of the vertex type for a random distribution of 

moments. Values at zero temperature are different for the two different possible ground 

states.  For the disordered string ground state, vertices of coordination two and four are 

all in their lowest energy configuration (Type I2 and Type I4), whereas 3/14 of the z = 3 

vertices in a composite cell are unhappy vertices, i.e., in the Type II3 moment 

configuration. For the long-range-ordered state, vertices of coordination z = 3 and z = 4 

are all in their lowest energy configuration (Type I3 and Type I4), whereas all of the z = 2 

vertices are unhappy vertices, i.e., in the Type II2 moment configuration.  As a full long-

range-ordered state was not seen in the measurements reported in this work, we limit 

ourselves to simulations for ratios below the threshold that would lead to long range order. 
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Supplementary Table 1. Predicted vertex fractions at high temperature and in the 

two ground states (i.e., at zero temperature). 

 

For the simulations, the system was cooled through 500 steps of exponentially 

decaying temperature values which approximately corresponds to setting T(i+1) = 0.99 

T(i) for ith and i+1th steps. At each temperature step, 300,000 trials per spin were 

performed. The system energy was recorded after each of the last 60% of these trials 

(180,000 per spin), and these were used to calculate the heat capacity. The average of 

the vertex counts over the duration of all of the 300,000 updates at each temperature was 

used to calculate the relative populations. 

The simulation procedure is as follows. We start with very high temperature and 

slowly anneal to zero temperature using a standard Metropolis algorithm, which uses 

single spin flips that mimic the thermal evolution seen in the PEEM experiments. We 

Vertex 
type 

High temperature 
state 

Disordered string ground 
state vertex fractions 

Long-range-ordered 
ground state vertex 

fractions 
I4 ≈ 2/16 = 0.125 1 1 
II4 ≈ 4/16 = 0.25 0 0 
III4 ≈ 8/16 = 0.5 0 0 
IV4 ≈ 2/16 = 0.125 0 0 

I3 ≈ 2/8 = 0.25 11/14 ≈ 0.79 1 
II3 ≈ 4/8 = 0.5 3/14 ≈ 0.21 0 
III3 ≈ 2/8 = 0.25 0 0 

I2 ≈ 2/4 = 0.5 1 0 
II2 ≈ 2/4 = 0.5 0 1 
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collect statistics of vertex populations, and we compute the heat capacity and the entropy 

during the annealing process. The heat capacity 𝐶𝐶𝑣𝑣 per spin is calculated from thermal 

fluctuations using the equation 

 

𝐶𝐶𝑣𝑣
𝑘𝑘𝐵𝐵

= 1
(𝑘𝑘𝐵𝐵𝑇𝑇)2

𝜎𝜎2(𝐸𝐸𝑁𝑁)
𝑁𝑁

                                                   (1) 

 

where EN is the total energy of the system which has N spins, and σ is the standard 

deviation of EN.  The entropy per spin is calculated by 

 

𝑆𝑆(𝑇𝑇)
𝑘𝑘𝐵𝐵

= ln 2 +  ∫ 𝐶𝐶𝑣𝑣
𝑘𝑘𝐵𝐵

𝑇𝑇
∞

𝑑𝑑𝑇𝑇
𝑇𝑇

  .                                              (2) 

 Supplementary Fig. 3 – Fig. 5 show snapshots for 𝜖𝜖⊥
𝜖𝜖∥

= 1.3. For these interactions, 

within the vertex approximation, the ground state corresponds to the disordered string 

ground state. The figures show a relatively high temperature state, 𝑘𝑘𝐵𝐵𝑇𝑇/𝜖𝜖∥ = 1.35, an 

intermediate temperature state, 𝑘𝑘𝐵𝐵𝑇𝑇/𝜖𝜖∥ = 0.40, and a configuration near T = 0. As the 

system is cooled, the high density of strings reduces to the disordered string ground state, 

where strings start and end at nearest interior plaquettes. At sufficiently low temperature, 

essentially all of the z = 4 vertices are of Type I4 due to its low energy. 

 Supplementary Fig. 6 shows the corresponding vertex statistics of z = 4, z = 3, and 

z = 2 vertex types and the curve for entropy as the system is cooled. In the high 

temperature limit, populations are entropic, i.e., proportional to their relative multiplicity, 

as also listed in Supplementary Table 1. Note the two bumps in the specific heat. The 

one at larger temperature denotes the crossover into a regime where the vertices obey 
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the ice rule. The one at lower temperature denotes the crossover to the disordered string 

ground state. Note also the residual entropy at zero temperature demonstrating the 

extensive degeneracy of the ground state. Finally, note that the population of unhappy 

vertices, or Type II3, do not tend to zero as temperature is lowered, because they form 

the strings. Naturally, as for the case of pyrochlore ice and honeycomb ice, the dipolar 

interaction, here neglected, might induce ordering at very low temperature. 
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Supplementary Fig. 2: Santa Fe ice ground states. Schematic of the moment 
configurations and the strings, showing (a) the long-range-ordered ground state, 
and (b) the disordered string ground state. (c) and (d) specific heat (CV) and 
entropy (S) per moment as a function of effective temperature from Monte Carlo 
calculations for 𝜖𝜖⊥

𝜖𝜖∥
= 1.9 and 1.3, respectively. The simulations yield the long-

range-ordered state and the disordered string ground state in these two cases. 
Note the sharp peak associated with the transition to long range order, the broad 
peak associated with the evolution to the disordered ground state, and the 
shoulder in each case associated with the development of short-range order on 
the vertices (the small low-temperature peaks are noise in the simulation). Note 
the residual entropy in the entropy curve for the disordered state. Entropy at 
infinite temperature is ln2 (dashed blue line). 
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Supplementary Fig. 3. Snapshots from Monte Carlo simulation for 𝑘𝑘𝐵𝐵𝑇𝑇/𝜖𝜖∥ =1.35 
and 𝜖𝜖⊥

𝜖𝜖∥
= 1.3. Red lines show the strings of unhappy vertices, and the full system 

size of 8 × 8 composite cells is shown. Note that, at this relatively high temperature, 
the high density of excitations leads to a higher density of strings and the presence of 
longer strings and loops. 
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Supplementary Fig. 4. Snapshots from Monte Carlo simulation for 𝑘𝑘𝐵𝐵𝑇𝑇/𝜖𝜖∥= 0.40 
and 𝜖𝜖⊥

𝜖𝜖∥
= 1.3. Red lines show the strings of unhappy vertices, and the full system 

size of 8 × 8 composite cells is shown. The picture shows an excited string state 
where strings are generally longer than the three unhappy vertices predicted in 
the ground state and can run between interior plaquettes farther away. 
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Supplementary Fig. 5. Snapshots from Monte Carlo simulation for 𝑘𝑘𝐵𝐵𝑇𝑇/𝜖𝜖∥ = 0.05 
and 𝜖𝜖⊥

𝜖𝜖∥
= 1.3. Red lines show the strings of unhappy vertices, and the full system 

size of 8 × 8 composite cells is shown. The system here is in the disordered string 
ground state. 
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Supplementary Fig. 6. Simulated vertex statistics for  𝜖𝜖⊥
𝜖𝜖∥

= 1.3. Relative counts of 
vertices for coordination numbers z = 4, z = 3, z = 2 as well as entropy and specific 
heat are shown (same as for Supplementary Fig. 2, included here for easy 
comparison). Note that all vertex types tend to their ground states except z=3 
vertices: the unhappy vertices, or Type 𝐼𝐼𝐼𝐼3, do not tend to zero as temperature is 
lowered, because they form the strings. The two bumps in the specific heat signal 
onset of the ice-rule, and then of the string state. Note also the residual entropy 
at T=0. Dashed red line in the entropy graph indicates ln 2.  
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Supplementary Note 2:  Peripheral and Interior Plaquettes:  Numbers of Connected 
Unhappy Vertices 
 

Santa Fe Ice has multiple coordination numbers at the different vertices, in that 

vertices can have two, three and four islands, or coordination numbers of z = 2, 3, and 4. 

Within the SFI structure, the interior and peripheral plaquettes differ in that the interior 

plaquette has a z = 2 vertex, while the peripheral plaquette vertices are z = 3 or 4. This 

can be readily seen in Supplementary Fig. 7. 

For the interior plaquettes, to enable each of the z = 3 vertices to be “happy”, i.e., 

in its vertex ground state, the z = 2 vertex must be in its excited “unhappy” state of the 

two moments in opposite directions, as can be readily seen in Supplementary Fig. 7 b.  

Flipping one of the moments in the z = 2 vertex to put it into its ground state would simply 

make one of the z = 3 vertices “unhappy”.  The structure thus requires that the interior 

plaquettes be connected by at least one unhappy vertex around its edges, although it is 

easy to see that reversing other moments could produce any odd number of unhappy 

vertices, e.g., either one or three or five.  Those plaquettes are therefore intrinsically 

frustrated in that they cannot have all vertices in a ground state, and their frustration 

affects nearby, unfrustrated peripheral plaquettes. 

For the peripheral plaquettes, it is possible to put all of the vertices around the 

plaquette in their lowest energy “happy” state, as demonstrated in Supplementary Fig.7 

c and d.  By flipping any of the moments, one would create a pair of unhappy vertices on 

either side of that moment, and one could create either four or six unhappy vertices by 

strategic choice of which moments to flip. Therefore, the peripheral plaquettes must be 

connected by an even number of unhappy vertices (including possibly zero vertices as 
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shown in the figure). These two conditions lead naturally to the string construction 

described in the main text 

.  

Supplementary Fig. 7. Santa Fe Ice structure and sample plaquettes. (a) A full unit 
cell of the SFI structure with interior and peripheral plaquettes highlighted in green 
(interior) and pink and orange (peripheral). (b) The sample interior plaquette with 
moment directions indicated. There is a single unhappy vertex associated with 
the z = 2 vertex, emphasized with a red circle. Flipping a moment around the 
edges of the plaquette would simply place one of the z = 3 vertices into an 
unhappy state or add a pair of unhappy vertices – therefore the plaquette must 
have an odd number of unhappy vertices. (c,d) Sample peripheral plaquettes with 
moment directions indicated.  The two plaquettes have all z = 3 vertices (for c), 
or a single z = 4 vertex (for d). In both cases the moments can be assigned as 
shown, so that all of the vertices are in their ground state, i.e., all are happy. 
Flipping any moment around the plaquette would result in a pair of unhappy 
vertices, and therefore these plaquettes must have an even number of unhappy 
vertices (including zero as a possible even number). 
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Supplementary Note 3:  Additional MFM data 

Below we provide sample MFM images after high-temperature annealing (details 

of annealing provided in the Methods section). We repeated the annealing experiment 

two times on two different samples. To minimize the sample variance and location 

variance, we took two MFM images at different locations on each array after each 

annealing run and calculated the vertex fraction, shown in Figure 3 in the main text. 

Supplementary Fig. 8 gives examples of MFM images of SFI arrays with different lattice 

constants. 

 

Supplementary Fig. 8. MFM images of SFI lattice with lattice constant a) 300 nm, b) 320 
nm, c) 360 nm, d) 440 nm, e) 480 nm after annealing at 818 K for 15 mins.  
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Supplementary Note 4:  Additional PEEM data 

We performed five different runs of PEEM measurements on SFI, with different 

samples in each case. The exact island dimensions for each run are shown in 

Supplementary Table 2 For the first, second, fourth, and fifth PEEM runs, we focused on 

dynamics, taking a series of 100 PEEM images at each temperature as samples were 

stepwise heated or cooled. The 100 PEEM images consisted of ten exposures at the Fe 

L3 edge with a left-circularly polarized X-ray beam followed by ten exposures with a right-

circularly polarized beam, repeated five times. The exposure time was set to 0.2 to 0.5 

seconds and the total acquisition time at each temperature was about 130 to 150 seconds 

including computer read-out between exposures. The PEEM images were analyzed as 

described in the Methods section in the main text.  For the third PEEM run, we took two 

PEEM-XMCD images at 10 different locations at each temperature point to obtain better 

statistics. Each image was constructed from four PEEM images with a left-polarized X-

ray beam and four with a right-polarized beam; we took the average of every four PEEM 

images and subtracted the averaged images with left-polarized X-rays from the right-

polarized X-rays to obtain a PEEM-XMCD image. The exposure time for each PEEM 

image was 0.7 seconds for better intensity statistics per image. 

We did not observe significant temperature dependence in the moment 

configuration from the first four PEEM experiments. Presumably the moments were 

trapped in metastable states for those samples in our temperature range, due to the 

topological complexity of the lattice combined with structural disorder associated with the 

lithography. The detailed results for these experiments are therefore not included in this 

paper, but they are available upon request. The data in the remainder of this section and 
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in the main text is from the fifth run, where significant temperature dependence was 

observed at the upper end of the temperature range measured, enabling us to study the 

thermal properties of the strings.  The results in the remainder of this section focus on 

data from the fifth run. 

 

 

 

PEEM 

Experiments 

600 nm SF array 700 nm SF array 800 nm SF array 

Length (nm) Width(nm) Length (nm) Width(nm) Length (nm) Width(nm) 

First 430±3.9 143±6.2 455±2.8 160±2.6 484±4.3 175±2.2 

Second 439±6.5 146±6.5 448±5.2 156±2.2 471±1.2 169±3.2 

Third 455±5.2 173±2.1 484±4.5 192±2.4 498±1.7 193±1.6 

Fourth 470±3.6 191±8.6 501±3.7 205±5.2 511±6.3 210±2.6 

Fifth 482±1.5 189±1.5 477±4.9 186±3.8 477±1.2 179±1.5 

 
Supplementary Table 2. Island dimensions for all five PEEM runs. 
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We calculated the vertex statistics and island flip rate as shown in Supplementary 

Fig. 9.  Supplementary Fig. 10 shows the plot of k vs. 1/T with a linear fitting for (a) 700 

nm and (b) 800nm. The ϕ0, the slope of k vs. 1/T, is compatible with ΔE3/kB, where the 

exact numbers are given in Supplementary Table 3.  

 

 

Supplementary Fig. 9. Vertex statistics for Type I vertices and Type II vertices for vertex 
coordination of four, three, and two, colored in red, blue, and green, respectively for (a) 
600 nm, (b) 700 nm, and (c) 800 nm SFI. (d) Average islands flip rate as a function of 
temperature for a= 600 nm (red), 700 nm (violet), and 800 nm (yellow) SFI. The error bars 
represent the standard deviations of the data. 
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Supplementary Fig. 10, The string tension fit from the Boltzmann distribution as a 
function of inverse temperature for (a) 700 nm for 320 K ≤ T ≤ 360 K and (b) 800 nm 
SFI for 280 K ≤ T ≤ 360. The error bars are the standard errors of the fit parameters. 
 
 
 
 
 
 

SFI 
array 

EI2 
(E-18 J) 

EII2 
(E-18 J) 

EI3 
(E-18 J) 

EII3  
(E-18 J) 

ΔE3/kB 
(1000 K) 

ϕ0 
(100 K) ϕ1  

ϕ0/ϕ1 
(K) 

600 nm 1.42 1.55 2.00 2.06 4.57 27.98 7.69 364 
700 nm 1.41 1.47 2.07 2.10 2.39 15.14 4.00 378 
800 nm 1.39 1.42 2.05 2.07 1.41 8.60 2.25 382 

 

Supplementary Table 3. Magnetostatic energies for the ground state and the first excited 
state of Z = 2 and 3 vertices, calculated by micromagnetic simulation program MUMAX3 
[1], using the island dimensions for the fifth PEEM run.  Also shown are the fit parameters 
ϕ0 and ϕ1.  As described in the text, ϕ0/ ϕ1 gives an approximate value of the Curie 
temperature of the permalloy films. 
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Supplementary Fig. 11. Examples of digitized PEEM images with both the moments and 
strings represented for SFI of a = 600 nm at (a) 250 K and (b) 350 K, 700 nm at (c) 250 
K and (d) 350 K, and 800 nm at (e) 250 K and (f) 350 K.  Broken lattice lines indicate that 
the islands were outside of the PEEM image boundary. Green lines indicate that the 
moment directions were not resolvable from PEEM images. Dashed blue lines give the 
possible string configurations around missing moments. 
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Supplementary Note 5:  Calculation of String Length Distribution. 
 
We use a simple graph theory approach to calculate the string length distribution from 

our experimental maps of the moments acquired from PEEM and MFM measurements. 

We created an adjacency matrix A for each PEEM image in which each row or column 

index corresponds to a vertex in the PEEM image. If the ith vertex and the jth vertex are 

connected by a string, the aij and aji entries in the matrix A are 1. Otherwise, the entries 

are 0. An example is shown in Supplementary Fig. 12. If aij(L) is a non-zero number in 

the matrix AL, the ith vertex and the jth vertex are connected by a string of length L. We 

calculate the matrix AL for integral L = 1 to N where N is the maximum string length. The 

number of strings of length L comes from the number of entries aij(L) > 0 (i<j).  Note that 

aij(L) must satisfy three conditions: (1) both the ith vertex and the jth vertex have a string 

that directly go into an interior plaquette, (2) aij(m) = 0 for all m<L, and (3) there is no 

such index t (the tth vertex is also directly connect to an interior plaquette), where ait(p) > 

0, atj(q) > 0, and p+q=L. The first condition guarantees that we only look at the strings 

connecting interior plaquettes. The second condition makes sure every segment on a 

string is counted only once. And the third condition excludes the strings that go from 

interior plaquettes A to B through C.  
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Supplementary Fig. 12. An example of a spin map and its adjacency matrix A. The 9th 
and 10th vertices and 16th and 17th vertices are connected by strings. Therefore, the a9,10, 
a10,9, a16,17, and a17,16 are 1, marked in red. Other entries are 0. 
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