Supplementary Information

Generation of functional ciliated cholangiocytes from human pluripotent stem cells

Ogawa et al.

48 4 ዮ Ý 4

<~

The

Identification of factors which upregulate DHIC5-4D9 expression by Flow cytometry analysis of hPSC-derived cholangiocytes.

(a) Representative flow cytometry analysis screening of the upregulation of DHIC5-4D9 expression in day 43 hPSC derived cholangiocytes after treatment with different indicated cytokines. (b) Quantification of DHIC5-4D9 positive cells in day 43 hPSC-derived cholangiocytes after treatment with different indicated cytokine combinations (n=3-5). Data are represented as mean \pm SEM.

\$

\$ Ý N.

2

Characterization of hPSC-derived cholangiocytes.

(a) Immunostaining images of day49 cholangiocytes demonstrating CFTR (green) and CK7 (red) in the top panel. ARL13B (green) and SOX9 (red) in the second from the top, ASBT (green) and SOX9 (red) in the third panel, acetylated α -tubulin (green) and ZO-1 (red) in the bottom. Scale bar represents 200 μ m. (b) Side view of immunostaining images of day49 cholangiocytes demonstrating α -tubulin and TGR5. Scale bar represents 5µm. (c) Side view of immunostaining images of day49 cholangiocytes expressing CFTR and CK7. Scale bar represents 25µm. (d) Side view of immunostaining images of day49 cholangiocytes expressing α -tubulin and ZO-1. Scale bar represents 50 μ m.

а

Supplementary Figure 3 Characterization of hPSC-derived cholangiocytes.

(a) Representative flow cytometry analysis showing CK7 (top), EPCAM and DHIC5-4D9 (middle), and ALB and AFP (bottom) positivity in day49 hPSC-derived cholangiocytes. (b) Quantification of the maximum intensity of Apical Chloride Conductance (ACC) in day 37 and day49 cholangiocytes (n=4). Data are represented as mean \pm SEM. **** $p \le 0.0001$ two-tailed Student's t-test.

Cell gating strategy for flow cytometry analysis and cell sorting experiments. APC-A was for DHIC5-4D9. Day49 H9 derived cholangiocytes were sorted for negative (P4) and positive (P6) populations (n=3).

Supplementary Figure 5 Characterization of hPSC-derived cholangiocytes.

(a) Microphotographic images show the bright field images of day 49 cholangiocytes in the presence of indicated treatments. Line traces and arrows indicate the cholangiocyte colonies. Scale bar represents 500µm. (b) The Z factors show the quality of the FLIPR assay measuring Apical Chloride Conductance (ACC) in 96 well plate with hPSC-derived cholangiocytes at day37.

а

С

Supplementary Figure 6 Characterization of WT01 (wild type) iPSCs.

(a) Representative flow cytometric analysis showing OCT4, SOX2, TRA-1-60, and SSEA4 positivity. (b) Immunostaining images of iPS colony demonstrating pluripotent markers NANOG, and SSEA4 in upper panel, OCT4 and TRA-1-60 in the lower panel. Scale bar represents 400µm. (c) G-banding analysis shows normal karyotype. 7

Supplementary Figure 7 Characterization of CF01 (F508del) iPSCs.

(a) Representative flow cytometric analysis showing OCT4, SOX2, TRA-1-60, and SSEA4 positivity. (b) G-banding analysis shows normal karyotype.

Characterization of CF01MC (F508del mutation corrected) iPSCs.

(a) Representative flow cytometric analysis showing OCT4, SOX2, TRA-1-60, and SSEA4 positivity. (b) Sequencing of CFTR region of interest from (A) Genomic DNA extracted from CF01 showing cells homozygous for F508del. (B) Genomic DNA extracted from CF01MC corrected line showing cells homozygous for correction to wildtype. (C) Sequencing of (B) after TOPO cloning the CFTR PCR product showing the complete corrected sequence. (c) G-banding analysis shows normal karyotype. 9

b

Supplementary Figure 9 Characterization of CF02 (F508del) iPSCs.

(a) Representative flow cytometric analysis showing OCT4, SOX2, TRA-1-60, and SSEA4 positivity. (b) G-banding analysis shows normal karyotype.

Characterization of hPSC-derived endoderm and hepatoblasts.

(a) Representative flow cytometry analysis of day9 hPSC-derived endoderm from different cell lines. (b) Representative flow cytometry analysis showing ALB and AFP positivity in day27-33 CF patients-derived hepatoblasts.

b

DHIC5-4D9-APC

С

Characterization of hPSC-derived cholangiocytes.

(a) qPCR analysis shows the expression of indicated genes in different stages of the CF01a (F508del) cholangiocyte differentiation. HB: hepatoblasts, GB: gall bladder, AL: adult liver, FL: fetal liver, PANC: pancreas (n=3). Data are represented as mean \pm SEM. $p \leq 0.05$, $p \leq 0.01$, $p \leq 0.001$, $p \geq 0.001$, $p \leq 0.001$, $p \leq 0.001$, $p \leq 0.001$, $p \leq 0.001$, $p \geq 0.001$, $p \geq 0.001$, $p \leq$

Drug response in CF iPSC-derived cholangiocyte.

(a) Western blotting shows the immature (B) and mature (C) glycosylated CFTR bands after treatment with CFTR modulators in day49 F508del (CF01a) cholangiocyte (right) and CF01MC cholangiocyte (left). (b) Quantification of western blotting of the ratio of mature glycosylated CFTR protein with different CFTR modulators in day49 CF01a patient's iPSCderived cholangiocytes (n=3). (c) Western blotting shows the immature (B) and mature (C) glycosylated CFTR bands after treatment with CFTR modulators in day49 F508del (CF01b) cholangiocyte (right) and CF01MC cholangiocyte (left). (d) Quantification of western blotting of the ratio of mature glycosylated CFTR protein with different CFTR modulators in day49 CF01b patient's iPSC-derived cholangiocytes (n=4). (e) Western blotting shows the immature and mature glycosylated CFTR bands after treatment with CFTR modulators in day49 F508del (CF02a) cholangiocyte. (f) Quantification of western blotting of the ratio of mature glycosylated CFTR protein with different CFTR modulators in day49 CF02a patient's iPSC-derived cholangiocytes (n=4). (g)Western blotting shows the immature (B) and mature (C) glycosylated CFTR bands after treatment with CFTR modulators in day49 F508del (CF02b) cholangiocyte (right) and CF02MC cholangiocyte (left). (h) Quantification of western blotting of the ratio of mature glycosylated CFTR protein with different CFTR modulators in day49 CF02b patient's iPSC-derived cholangiocytes (n=4). One-way ANOVA. $p \le 0.05, p \le 0.01, p \le 0.001, p \le 0.001, p \le 0.0001$

RT-qPCR based expression analysis of indicated genes following 6 days culture with indicated conditions from H9-derived cholangiocyte. HB: day 27 H9 derived hepatoblasts, 2D: day55 monolayer condition, 3D cyst: day55 liquid culture condition, $p \le 0.05$, $p \le 0.01$, $p \le 0.001$, $p \le 0.0001$, $p \le 0.001$, $p \le 0.00$

а

е

b

j

a-tublin OK7 DAPI

time (sec)

Intracellular Calcium release in ciliated hPSCs derived cholangiocyte.

(a) The region of interest (ROI)s correspond to GCaMP derived cholangiocyte cysts (3D) in main Figure 6a. Scale bar represents 100 µm. (b) Representative time lapse images of calcium influx in plated down 3D cholangiocyte cysts from GCaMP hESC in response to ATP. Scale bar represents 100µm. (c) The ROIs mark the GCaMP derived plated down cholangiocyte cysts. Scale bar represents 100 µm. (d) Representative traces showing the intracellular calcium release in plated down cholangiocyte cysts from GCaMP hESC in the response to ATP. The colors of the traces correspond to those for the ROIs in (c). (e) Quantification of maximum fluorescent intensity representing intracellular calcium release in plated down 3D hepatoblast and 3D cholangiocyte cysts from GCaMP hESC in the response to ATP (HB n=4, chol n=3). Data are represented as mean \pm SEM. **** $p \le 0.0001$ two-tailed Student's t-test. (f) Representative microscopic images of plate down 3D cholangiocyte cysts (GCaMP hESC) exhibiting primary cilia (green) and CK19 (red). Scale bar represents 50µm. (g) Representative time lapse images of calcium influx in plated down 3D cholangiocyte cysts from GCaMP hESC in the response to flow. Scale bar represents 100µm. (h) The ROIs mark the GCaMP derived plated down cholangiocyte cysts. Scale bar represents 100 µm. (i) Representative trace of the intra cellular calcium release in plated down 3D cholangiocyte cysts from GCaMP hESC in the response to flow correspond to the ROI in (h). (j) Representative microscopic images of non-ciliated CK7 positive cholangiocytes derived from GCaMP hESC. Scale bar represents 50µm.

f

е

Global gene analysis of hPSC-derived cholangiocytes in monolayer (2D) and cyst (3D).

(a) Dot plots displaying the top 5 genes in the 12 clusters of hPSC-derived cholangiocyte. (b) UMAP plots showing the expression of core cholangiocyte genes. (c) UMAP plots showing the expression of cell cycle genes including *BRCA2*, *CDC6*, and *CDK1*. (d) UMAP plots showing the expression of primary cilia target genes. (e) Dot plots displaying the top 10 genes of monolayer (2D) dominant, cyst (3D) dominant, and combine (2D and 3D) populations. Size of the dot represents proportion of the population that express each gene. Color indicates the average expression level. (f) Gene ontology analysis (biological process) of monolayer (2D) dominant, and combine (2D and 3D) populations.

Supplementary Figure 16 Global gene analysis of human adult liver.

(a) UMAP projection of human adult liver cells labelled by cell cluster. (b) UMAP projection of human hepatocyte, immune cell, endothelium and cholangiocyte. (c) Dot plots displaying the representative core genes in the 4 main cell types in the human adult liver dataset. (d) UMAP projection of the integrated hPSC-derived cholangiocyte and human adult liver data.

Supplementary Tables

ClusterID	G1	G2M	S
0	1444	24	401
1	1171	8	373
2	915	18	310
3	677	42	498
4	740	16	95
5	454	4	31
6	305	9	44
7	0	209	131
8	90	9	3
9	8	0	23
10	22	0	1
11	17	0	3

Supplementary Table 1. Cell cycle status in hPSC-derived cholangiocyte clusters.

Supplementary Table 2. Quantification of cell distribution of monolayer and cyst population in 2D dominant, 3D dominant and combine clusters.

	2D	3D
Chol_combine	0.715580239695995	0.284419760304005
Chol_3D_dominant	0.293089430894309	0.706910569105691
Chol_2D_dominant	0.979321753515302	0.0206782464846981
Chol_hepatic_progenitor	0.0143149284253579	0.985685071574642
Chol_proliferative_cell	0.697058823529412	0.302941176470588
GI secretory cell (c8)	0.382352941176471	0.617647058823529
GI secretory cell (c9)	0	1
GI secretory cell (c10)	0.0869565217391304	0.91304347826087
GI secretory cell (c11)	0.5	0.5

Supplementary Table 3. Pearson correlation coefficient between hPSC-derived cholangiocyte clusters and human adult liver clusters (related to Figure 8h).

	Chol_ combine	Chol_3D_ dominant	Chol_2D_ dominant	Chol_prolife rative_cell	GI secretory cell (c8)	GI secretory cell (c11)	Chol_hepatic_ progenitor	GI secretory cell (c10)	GI secretory cell (c9)	human_chol angiocyte	human_im mune_cell	human_he patocyte	human_en dothelium
Chol_combine	1	0.8655675 9273305	0.93700360 6412429	0.906610728 950812	0.43100485 9719989	0.38331469 5051695	0.5475343213 68245	0.09864341 69503258	0.40668996 0931043	0.297603094 180693	0.28959365 8647243	0.12424965 9707914	0.24315928 624624
Chol_3D_dominant	0.86556759 273305	1	0.79644178 858359	0.868802133 962525	0.44905622 6666486	0.53175091 3894766	0.7454891125 76346	0.14019755 2322878	0.56535226 7777755	0.444857758 97689	0.46753363 3339467	0.19975365 3393421	0.37505424 2030586
Chol_2D_dominant	0.93700360 6412429	0.7964417 8858359	1	0.856940299 113817	0.61223231 5623656	0.37932508 9047852	0.5700987456 16535	0.08867864 71406535	0.43839131 8525312	0.265134805 03985	0.29666210 6728521	0.10628557 2557229	0.26865800 3327273
Chol_proliferative_cell	0.90661072 8950812	0.8688021 33962525	0.85694029 9113817	1	0.44382163 6658391	0.41449221 2504687	0.5886892061 49809	0.10097567 7919983	0.45910038 5560331	0.340901167 03361	0.29182458 9744359	0.13893413 8026821	0.25126452 9639942
GI secretory cell (c8)	0.43100485 9719989	0.4490562 26666486	0.61223231 5623656	0.443821636 658391	1	0.27998121 5033299	0.4469197386 71561	0.06081163 98217735	0.36402599 1323051	0.173397558 116614	0.25907606 3199433	0.05960731 16562302	0.33332028 2852697
GI secretory cell (c11)	0.38331469 5051695	0.5317509 13894766	0.37932508 9047852	0.414492212 504687	0.27998121 5033299	1	0.4956777175 29169	0.09761091 80764678	0.37762209 0867502	0.236782644 686379	0.42949291 8334866	0.13002610 0026159	0.30238528 4628785
Chol_hepatic_progenitor	0.54753432 1368245	0.7454891 12576346	0.57009874 5616535	0.588689206 149809	0.44691973 8671561	0.49567771 7529169	1	0.15490516 6796591	0.60609570 50663	0.374434286 222846	0.47726385 8278797	0.22132379 9677211	0.35432527 070485
GI secretory cell (c10)	0.09864341 69503258	0.1401975 52322878	0.08867864 71406535	0.100975677 919983	0.06081163 98217735	0.09761091 80764678	0.1549051667 96591	1	0.07677364 22908112	0.073554043 1667983	0.07928333 46798614	0.10020452 6723651	0.06023966 7974537
GI secretory cell (c9)	0.40668996 0931043	0.5653522 67777755	0.43839131 8525312	0.459100385 560331	0.36402599 1323051	0.37762209 0867502	0.6060957050 663	0.07677364 22908112	1	0.219836250 585716	0.37076989 7974125	0.08279371 91648274	0.28392671 2975513
human_cholangiocyte	0.29760309 4180693	0.4448577 5897689	0.26513480 503985	0.340901167 03361	0.17339755 8116614	0.23678264 4686379	0.3744342862 22846	0.07355404 31667983	0.21983625 0585716	1	0.22816288 8010546	0.53519187 0324963	0.30329768 8992009
human_immune_cell	0.28959365 8647243	0.4675336 33339467	0.29666210 6728521	0.291824589 744359	0.25907606 3199433	0.42949291 8334866	0.4772638582 78797	0.07928333 46798614	0.37076989 7974125	0.228162888 010546	1	0.15436464 31444	0.44031845 4863807
human_hepatocyte	0.12424965 9707914	0.1997536 53393421	0.10628557 2557229	0.138934138 026821	0.05960731 16562302	0.13002610 0026159	0.2213237996 77211	0.10020452 6723651	0.08279371 91648274	0.535191870 324963	0.15436464 31444	1	0.26390975 7481258
human_endothelium	0.24315928 624624	0.3750542 42030586	0.26865800 3327273	0.251264529 639942	0.33332028 2852697	0.30238528 4628785	0.3543252707 0485	0.06023966 7974537	0.28392671 2975513	0.303297688 992009	0.44031845 4863807	0.26390975 7481258	1

Supplementary Table 4. Primary Antibodies used for Immunohistochemistry and Flow Cytometry analysis.

Antibody	Company	Product Codes	IgG Species	Conjugate	Dilution
CFTR (24-1)	R and D	MAB25031	Mouse	none	1:200
CFTR (13-1)	R and D	MAB1660	Mouse	none	1:200
CK7	Abcam	ab68459	Rabbit	none	1:200
Acethylated alpha tubulin	Sigma-Aldrich	T7451	Mouse	none	1:800
ZO-1	Themo Fisher	40-2200	Rabbit	none	1:400
ARL13b	Proteintech	17711 1-AP	Rabbit	none	1:600
human CK19	Abcam	ab52625	Rabbit	none	1:400
human CK19	DAKO	M0888	Mouse	none	1:20
mouse CK19	Abcam	133496	Rabbit	none	1:400
Mitochondria (113-1)	Millipore	MAB1273	Mouse	none	1:100
AFP	DAKO	A0008	Mouse	none	1:2000
SOX9	Abcam	ab76997	Mouse	none	1:400
ASBT (C14)	Santa Cruz	sc27493	Goat	none	1:50
SCTR	Sigma-Aldrich	HPA007269	Rabbit	none	1:50
SLC4A2	Sigma-Aldrich	HPA019339	Rabbit	none	1:50
TGR5	Invitrogen	PA5-27076	Rabbit	none	1:100
ALB	Bethyl	A80-129A	Goat	none	1:200
DHIC5-4D9	gift from oregon		Mouse (IgM)	none	1:20
CD117 (c-KIT)	BD pharmingen	BD340529	Mouse (IgG1)	PE	1:50
CD184 (CXCR4)	BD pharmingen	BD555976	Mouse (IgG1)	APC	1:50
CD326 (EPCAM)	eBioscience	12-9326-73	Mouse (IgG1)	PE	1:200
SSEA4	BD Horizon	561156	Mouse (IgG3)	V450	1:100
TRA-1-60	Biolegend	330605	Mouse (IgM)	Alexa Fluor 647	1:100
OCT3/4	BD pharmingen	560791	Mouse (IgG1)	Alexa Fluor 488	1:100
SOX2	BD pharmingen	561556	Mouse (IgG1)	PE	1:100
NANOG	BD pharmingen	561506	Mouse (IgG1)	PerCP-Cy5.5	1:100

Supplementary Table 5. Secondary Antibodies used for Immunohistochemistry and Flow Cytometry analysis.

Antibody	Company	Product Codes	Dilution
IgG Donkey anti-Mouse Alexa488	Invitrogen	A21202	1:400
IgG Donkey anti-Rabbit Alexa555	Invitrogen	A31572	1:400
IgG Donkey anti-Mouse Alexa555	Invitrogen	A31570	1:400
IgG Donkey anti-Rabbit Alexa488	Invitrogen	A21206	1:400
IgG Donkey anti-Goat Alexa488	Invitrogen	A11055	1:400
IgG Donkey anti-Goat Alexa647	Invitrogen	A21447	1:400
IgM Goat anti-Mouse APC	Jackson ImmunoResearch	115-136-075	1:200

Supplementary Table 6. Primers used for RT-PCR analysis.

Gene	Sequences (Forward)	Sequences (Reverse)
CFTR	5'-AGGACTATGGACACTTCGTGCCTT-3'	5'-ATTTGGAACCAGCGCAGTGTTGAC-3'
CK7	5'-AAGGATGCTCGTGCCAAG-3'	5'-AGCTTCACGCTCATGAGTTC-3'
SPP1	5'-CGAGGAGTTGAATGGTGCATA-3'	5'-TCCAGCTGACTCGTTTCATAAC-3'
TRPV4	5'-AGGTGAACTGGTCTCACTGG-3'	5'-GCGAGAAGCCATAATACTGGTAG-3'
PKD1	5'-GGACAAGGTGTGAGCCTGAG-3'	5'-AGCTGGTAGACGTCCTCTGT-3'
PKD2	5'-TTCCCAGATCAGTCATGGTTTAG-3'	5'-CCTTCCATGCCTTCTGTAGATT-3'
ALB	5'-GTGAAACACAAGCCCAAGGCAACA-3'	5'-TCAGCCTTGCAGCACTTCTCTACA-3'
AFP	5'-ACAGAGGAACAACTTGAGGCTGTC-3'	5'-AGCAAAGCAGACTTCCTGTTCCTG-3'
TMEM16A	5'-AAGTACTCGACGCTCCCGGCC-3'	5'-ATAAGGAGTTCAGCAGCGTGCCC-3'
AQP1	5'-TCTTCCGTGCCCTCATGTA-3'	5'-CAAGCGAGTTCCCAGTCAG-3'
SLC5A1	5'-TCAGGAGAGCCTATGACCTATT-3'	5'-GGTGTCCGTCATCTTCATCTT-3'
SLC4A2/AE2	5'-GGCATCTGTGCCCTCTTT-3'	5'-TCCTGAATCTTGGGCTTGTC-3'
ITPR3	5'-CGAGATGCTGCCCTTTGA-3'	5'-CAGAGACGGGCAAACTTGA-3'
P2YR	5'-GACTTCTTGTACGTGCTGACT-3'	5'-GCTGCCATAGAGGTTCACAT-3'
SOX9	5'-TGCATTTCCTCCTGCCTTTGCTTG-3'	5'-GGGCACTTATTGGCTGCTGAAACA-3'
SCTR	5'-TGCATCATGGCCAACTACTC-3'	5'-AATCCCTGGAGGTACTTTCTTTC-3'
ТВР	5-'TGAGTTGCTCATACCGTGCTGCTA-3'	5'-CCCTCAAACCAACTTGTCAACAGC-3'

Supplementary Table 7. RNA control samples used for RT-PCR analysis.

RNA	Source	Sex	Lot	Company	Product number
human gall bladder	normal gall bladder from 34-years old	Female	A509245	BioChain	R1234118-10
human adult liver	normal livers pooled from 3 Asians (22-64-years old)	Male	1402003	Clonetech	636531
human fetal liver (Fig1b)	pooled from 63 spontaneously aborted fetus, aged 22-40 weeks	Male and Female	7030173	Clonetech	636540
human fetal liver (Fig2d,3e,Supp11a)	fetal liver from 24-weeks gestation	Male	1394	cell applications	1F21-50
human pancreas	normal pancreas from a 35-years old Caucasian	Male	1703157A	Clonetech	636577

WT01

Test Description	Method	Expected Result	Result
Expression of pluripotency- associated proteins	Flow cytometry	≥ 80% of population is positive for expression of surface markers (SSEA4, Tra-1-60), and intracellular markers (OCT4, SOX2).	Antigen % Expressing-cells SSEA4*/Tra-1-60* 96.8% OCT4*/SOX2* 99.5% (Histograms shown in Figure 1A) 10
	Immunofluorescence	markers (SSEA4, TRA-1-60) and intracellular markers (OCT4, NANOG)	antibodies (Representative images in Figure 1B)
Gene expression of pluripotency markers	qRT-PCR	≥ 80% expression measured in hESC reference standard (HES2 hESCs on Matrigel).	Gene Relative Expression OCT4 102% NANOG 94% DNMT3B 88%
Germ layer differentiation	Directed differentiation followed by qRT-PCR analysis	Increased expression of germ lineage- specific marker relative to starting pluripotent cell population	Germ Layer Gene Fold Induction Endoderm SOX17 832 Mesoderm HAND1 12,708 Ectoderm SOX1 666
Mycoplasma	Lonza MycoAlert Plus kit	None detected	None detected
Identity	STR: PCR profiling of 9 STR regions plus Amelogenin for gender determination.	Consistent with expected ¹	Consistent with parental - Amel: XX CSF1P0:10,12 D21511:28,30 THOI:6,7 D135317:12,12 D55818:11,13 TPOX: 8,11 D165539:11,12 D75820:10,12 WWA:17,19
Karyotype	G-banding analysis detecting structural abnormality of size >3-10Mb	Normal karyotype, 46 XX or 46 XY 19/20 cells normal ²	Normal karyotype, 46 XX at passage 5
Post-Thaw Viability	Cell count and viability using Nucleocounter	Viable cell count and viability 6 days post thaw	Viable cell count 1.23 E+06 Viability 90%
Residual Sendai	RT-PCR against Sendai viral elements	None detected in PCR amplification	None detected

CF01a

Test Description	Method	Expected Result	Result
Expression of	Flow cytometry	≥ 80% of population is positive for	Antigen % Expressing-cells
pluripotency-		expression of surface markers (SSEA4,	SSEA4 99.6%
associated proteins		Tra-1-60), and intracellular marker	Tra-1-60 99.7%
		(OCT4).	OCT4 99.3%
			SOX2 99.7%
			(Histograms shown in Figure 1)
Gene expression of	qRT-PCR	≥ 80% expression measured in hESC	Gene Relative Expression
pluripotency		reference standard (HES2 hESCs on	OCT4 96%
markers		Matrigel).	NANOG 99%
			DNMT3B 89%
Germ layer	Directed Differentiation	Increased expression of germ lineage-	Germ Layer Gene Fold Induction
differentiation	Followed by qPCR	specific marker relative to starting	Endoderm SOX17 9,500
		pluripotent cell population	Mesoderm HAND1 68,000
			Ectoderm SOX1 362
Definitive	Directed Differentiation	Increased expression of additional	Gene Fold Induction
endoderm	Followed by qPCR	endoderm lineage-specific marker	GATA 6 9,400
differentiation -		relative to starting pluripotent cell	GATA 4 2,200
gene expression		population	FOXA2 1,300
Definitive	Directed Differentiation	≥ 80% of population is double positive	% Expressing-cells
endoderm	Followed by Flow cytometry	for expression of DE markers (cKIT and	97.5%
differentiation -		CXCR4)	(Histograms shown in Figure 2)
protein expression			
Mycoplasma	Lonza MycoAlert Plus kit	None detected	None detected
Identity	STR: PCR profiling of 9 STR	Consistent with expected ¹	Consistent with parental - Amel: XY
	regions plus Amelogenin for		CSF1PO:12,12 D21S11:29,29 THOI:9.3,9.3
	gender determination.		D13S317:11,12 D5S818:11,12 TPOX: 11,11
			D16S539:11,12 D7S820:7,8 vWA:17,18
Karyotype	G-banding analysis detecting	Normal karyotype, 46 XX or 46 XY	Normal karyotype, 46 XY at passage 3+5
	structural abnormality of size	19/20 cells normal ²	
	>3-10Mb	and the second s	and the second sec
Post-Thaw Viability	Cell count and viability using	Viable cell count and viability within 7	Viable cell count 2.89E+05
	Nucleocounter	days post thaw	Viability 83.50%
Residual Sendai	RT-PCR against Sendai viral elements	None detected in PCR amplification	None detected

CF01b

Test Description	Method	Expected Result	Result
Expression of	Flow cytometry	≥ 80% of population is positive for	Antigen % Expressing-cells
pluripotency-		expression of surface markers (SSEA4,	SSEA4 98.8%
associated proteins		Tra-1-60), and intracellular marker	Tra-1-60 99.2%
		(OCT4).	OCT4 98.8%
			SOX2 99.3%
			(Histograms shown in Figure 1)
Gene expression of	qRT-PCR	≥ 80% expression measured in hESC	Gene Relative Expression
pluripotency		reference standard (HES2 hESCs on	OCT4 146%
markers		Matrigel).	NANOG 96%
			DNMT3B 114%
Germ layer	Directed Differentiation	Increased expression of germ lineage-	Germ Layer Gene Fold Induction
differentiation	Followed by qPCR	specific marker relative to starting	Endoderm SOX17 3,300
		pluripotent cell population	Mesoderm HAND1 16,400
			Ectoderm SOX1 181
Definitive	Directed Differentiation	Increased expression of additional	Gene Fold Induction
endoderm	Followed by qPCR	endoderm lineage-specific marker	GATA 6 4,500
differentiation -		relative to starting pluripotent cell	GATA 4 870
gene expression		population	FOXA2 310
Definitive	Directed Differentiation	≥ 80% of population is double positive	% Expressing-cells
endoderm	Followed by Flow cytometry	for expression of DE markers (cKIT and	95.7%
differentiation -		CXCR4)	(Histogram shown in Figure 1)
protein expression			
Mycoplasma	Lonza MycoAlert Plus kit	None detected	None detected
Identity	STR: PCR profiling of 9 STR	Consistent with expected ¹	Consistent with parental - Amel: XY
	regions plus Amelogenin for		CSF1PO:12,12 D21S11:29,29 THOI:9.3,9.3
	gender determination.		D13S317:11,12 D5S818:11,12 TPOX: 11,11
			D16S539:11,12 D7S820:7,8 vWA:17,18
Karyotype	G-banding analysis detecting	Normal karyotype, 46 XX or 46 XY	Normal karyotype, 46 XY at passage 3+5
	structural abnormality of size	19/20 cells normal ²	
	>3-10Mb		
Post-Thaw Viability	Cell count and viability using	Viable cell count and viability within 7	Viable cell count 2.45E+06
	Nucleocounter	days post thaw	Viability 93%
Residual Sendai	RT-PCR against Sendai viral	None detected in PCR amplification	None detected
	elements		

CF01MC

Test Description	Method	Expected Result		Result
Expression of	Flow cytometry	≥ 80% of population is positive for	Antigen	% Expressing-cells
pluripotency-		expression of surface markers (SSEA4,	SSEA4	99.5%
associated proteins		Tra-1-60), and intracellular marker	Tra-1-60	96.3%
		(OCT4).	OCT4	99.9%
			SOX2	99.8%
			(Histograms show	vn in Figure 1)
Gene expression of	qRT-PCR	≥ 80% expression measured in hESC	Gene	Relative Expression
pluripotency		reference standard (HES2 hESCs on	OCT4	100%
markers		Matrigel).	NANOG	125%
			DNMT3B	228%
Mycoplasma	Lonza MycoAlert Plus kit	None detected	None detected	
Identity	STR: PCR profiling of 9 STR	Consistent with expected ¹	Consistent with p	oarental - Amel: XY
	regions plus Amelogenin for		CSF1PO: 12,12	D21S11:29,29 THOI:9.3,9.3
	gender determination.		D13S317:11,12	D5S818:11,12 TPOX: 11,11
			D16S539:11,12	D7S820:7,8 vWA:17,18
Karyotype	G-banding analysis detecting	Normal karyotype, 46 XX or 46 XY	Normal karyotyp	e, 46 XY at passage P3+23
	structural abnormality of size	19/20 cells normal ²		
	>3-10Mb			
Post-Thaw Viability	Cell count and viability using	Viable cell count and viability within 7	Viable cell cour	it 5.20E6
	Nucleocounter	days post thaw	Viability	80.1%
Sequence	PCR and Sanger sequencing	Desired mutation	Full sequence of	wild-type and targeted allele show no
confirmation	of targeted locus		aberrant mutatio	ns (Figure 2)
Off-target analysis	PCR and Sanger sequencing	No mutations in putative off-target cut	Sequenced 5 gen	omic sites most likely to be
	of genomic sites likely to be	sites	inappropriately o	ut by designed gRNA and found no
	subject to off-target cleavage		aberrant mutatio	ns (Table 1)
Clonal Population	TOPO cloning of PCR from	Homozygous– 100% of individual TOPO	12 TOPO clones s	equenced – all corrected
	genomic DNA and sequencing	reactions represent each allele		

CF02a

Test Description	Method	Expected Result	Result
Expression of	Flow cytometry	≥ 80% of population is positive for	Antigen % Expressing-cells
pluripotency-		expression of surface markers (SSEA4,	SSEA4 98.4%
associated proteins		Tra-1-60), and intracellular marker	Tra-1-60 99.7%
		(OCT4).	OCT4 99.0%
			SOX2 99.6%
			(Histograms shown in Figure 1)
Gene expression of	qRT-PCR	≥ 80% expression measured in hESC	Gene Relative Expression
pluripotency		reference standard (HES2 hESCs on	OCT4 100%
markers		Matrigel).	NANOG 106%
			DNMT3B 85%
Germ layer	Directed Differentiation	Increased expression of germ lineage-	Germ Layer Gene Fold Induction
differentiation	Followed by qPCR	specific marker relative to starting	Endoderm SOX17 6,200
		pluripotent cell population	Mesoderm HAND1 38,700
			Ectoderm SOX1 106
Definitive	Directed Differentiation	Increased expression of additional	Gene Fold Induction
endoderm	Followed by qPCR	endoderm lineage-specific marker	GATA 6 7000
differentiation -		relative to starting pluripotent cell	GATA 4 5,900
gene expression		population	FOXA2 680
Definitive	Directed Differentiation	≥ 80% of population is double positive	% Expressing-cells
endoderm	Followed by Flow cytometry	for expression of DE markers (cKIT and	99.9%
differentiation -		CXCR4)	(Histogram shown in Figure 1)
protein expression			
Mycoplasma	Lonza MycoAlert Plus kit	None detected	None detected
Identity	STR: PCR profiling of 9 STR	Consistent with expected ¹	Consistent with parental - Amel: XX
	regions plus Amelogenin for		CSF1PO:10,12 D21S11:27,30 THOI:6,8
	gender determination.		D13S317:8,14 D5S818:11,13 TPOX: 8,11
			D16S539:8,13 D7S820:11,12 vWA:16,19
Karyotype	G-banding analysis detecting	Normal karyotype, 46 XX or 46 XY	Normal karyotype, 46 XX at passage 3+5
	structural abnormality of size	19/20 cells normal ²	
	>3-10Mb		
Post-Thaw Viability	Cell count and viability using	Viable cell count and viability within 7	Viable cell count 4.05E+06
	Nucleocounter	days post thaw	Viability 90.3%
Residual Sendai	RT-PCR against Sendai viral	None detected in PCR amplification	None detected
	elements		

CF02b

Test Description	Method	Expected Result	Result
Expression of	Flow cytometry	≥ 80% of population is positive for	Antigen % Expressing-cells
pluripotency-		expression of surface markers (SSEA4,	SSEA4 99.6%
associated proteins		Tra-1-60), and intracellular marker	Tra-1-60 99.7%
		(OCT4).	OCT4 99.3%
			SOX2 99.7%
			(Histograms shown in Figure 1)
Gene expression of	qRT-PCR	≥ 80% expression measured in hESC	Gene Relative Expression
pluripotency		reference standard (HES2 hESCs on	OCT4 153%
markers		Matrigel).	NANOG 151%
			DNMT3B 201%
Germ layer	Directed Differentiation	Increased expression of germ lineage-	Germ Layer Gene Fold Induction
differentiation	Followed by qPCR	specific marker relative to starting	Endoderm SOX17 4,000
		pluripotent cell population	Mesoderm HAND1 11,300
			Ectoderm SOX1 200
Definitive	Directed Differentiation	Increased expression of additional	Gene Fold Induction
endoderm	Followed by qPCR	endoderm lineage-specific marker	GATA 6 4,200
differentiation -		relative to starting pluripotent cell	GATA 4 1,000
gene expression		population	FOXA2 160
Definitive	Directed Differentiation	≥ 80% of population is double positive	% Expressing-cells
endoderm	Followed by Flow cytometry	for expression of DE markers (cKIT and	99.7%
differentiation -		CXCR4)	(Histogram shown in Figure 1)
protein expression			
Mycoplasma	Lonza MycoAlert Plus kit	None detected	None detected
Identity	STR: PCR profiling of 9 STR	Consistent with expected ¹	Consistent with parental - Amel: XX
	regions plus Amelogenin for		CSF1PO:10,12 D21S11:27,30 THOI:6,8
	gender determination.		D13S317:8,14 D5S818:11,13 TPOX: 8,11
			D165539:8,13 D75820:11,12 vWA:16,19
Karyotype	G-banding analysis detecting	Normal karyotype, 46 XX or 46 XY	Normal karyotype, 46 XX at passage 3+5
	structural abnormality of size	19/20 cells normal ²	
	>3-10Mb		
Post-Thaw Viability	Cell count and viability using	Viable cell count and viability within 7	Viable cell count 5.02E+05
	Nucleocounter	days post thaw	Viability 88.7%
Residual Sendai	RT-PCR against Sendai viral	None detected in PCR amplification	None detected
	elements		

Test Description	Method	Expected Result	Result
Expression of	Flow cytometry	≥ 80% of population is positive for	Antigen % Expressing-cells
pluripotency-		expression of surface markers (SSEA4,	SSEA4 94.1%
associated proteins		Tra-1-60), and intracellular marker	Tra-1-60 87.4%
		(OCT4).	OCT4 99.9%
			SOX2 99.7%
			(Histograms shown in Figure 1)
Gene expression of	qRT-PCR	≥ 80% expression measured in hESC	Gene Relative Expression
pluripotency		reference standard (HES2 hESCs on	OCT4 134%
markers		Matrigel).	NANOG 177%
			DNMT3B 141%
Mycoplasma	Lonza MycoAlert Plus kit	None detected	None detected
Identity	STR: PCR profiling of 9 STR	Consistent with expected ¹	Consistent with parental - Amel: XX
	regions plus Amelogenin for		CSF1PO:10,12 D21S11:27,30 THOI:6,8
	gender determination.		D13S317:8,14 D5S818:11,13 TPOX: 8,11
			D16S539:8,13 D7S820:11,12 vWA:16,19
Karyotype	G-banding analysis detecting	Normal karyotype, 46 XX or 46 XY	Normal karyotype, 46 XX at passage P3+34
	structural abnormality of size	19/20 cells normal ²	
	>3-10Mb		
Post-Thaw Viability	Cell count and viability using	Viable cell count and viability within 7	Viable cell count 2.94E6
	Nucleocounter	days post thaw	Viability 90.3%
Sequence	PCR and Sanger sequencing	Desired mutation	Full sequence of wild-type and targeted allele show no
confirmation	of targeted locus		aberrant mutations (Figure 2)
Off-target analysis	PCR and Sanger sequencing	No mutations in putative off-target cut	Sequenced 5 genomic sites most likely to be
	of genomic sites likely to be	sites	inappropriately cut by designed gRNA and found no
	subject to off-target cleavage		aberrant mutations (Table 1)
Clonal Population	TIDER analysis of sequencing	>80% HDR efficiency indicates	96.0% HDR efficiency (Figure 2C)
	trace	homozygous, single cell clonality	

iPSC lines	Authentication Date
WT01	2015-09-28
CF01a	2017-03-03
CF01b	2017-03-03
CF01MC	2018-02-14
CF02a	2017-03-03
CF02b	2017-03-03
CF02MC	2019-05-10

Supplementary Figure 12a MC Uncropped western blots

Wt CFTR

Calnexin

Supplementary Figure 12a CF Uncropped western blots

F508del CFTR

Supplementary Figure 12c MC Uncropped western blots

CFTR

Calnexin

Supplementary Figure 12c CF Uncropped western blots

36

Supplementary Figure 12e CF Uncropped western blots

F508del CFTR

Actin

Supplementary Figure 12g MC Uncropped western blots

CFTR

Calnexin

Supplementary Figure 12g CF Uncropped western blots

39