

Supplementary Fig. 1 TRPC6 may not participate in store-operated Ca²⁺ entry (SOCE) in podocyte.

a Effect of TRPC6 siRNA knockdown on the expression of Orai1 and STIM1 in mouse podocytes. Repeated 3 independent experiments. **b** Representative traces of fura-2 ratio representing the effect of TRPC6 silencing on SOCE in podocytes. **c** Summary of the SOCE in panel (**b**). n = 21 and 15 cells, respectively. **d** Representative fluorescence images (upper panel) and traces of fura-2 ratio (lower panel) in acutely isolated mouse glomeruli from wild type (WT) and *Trpc6^{-/-}* mice. **e** Summary of the SOCE in panel (**d**). n = 24 (WT), and 26 (*Trpc6^{-/-}*) glomeruli. **f** Representative SOCE traces showing the effect of TRPC6 knockdown on insulin-stimulated SOCE in cultured mouse podocytes. **g** Summary of the SOCE in panel (**f**). n = 37, 30, 28, 32 cells per each group. **h** Representative SOCE traces showing insulin (100 nM, 1 h)-activated SOCE in panel (**h**). n = 21, 15, 14, and 24 glomeruli each. Data are expressed as mean ± SEM analyzed with unpaired two-tailed Student's *t*-test to Ctrl Oligo and WT (**c** and **e**) and two-way ANOVA followed by Tukey's multiple comparisons test (**g** and **i**). ****p < 0.0001, ns., not significant.

Supplementary Fig. 2 Insulin stimulation of Orai1 promotes disruption of focal adhesion and cell migration.

a Effect of Orai1 inhibition by siRNA knockdown or its blockers, GSK-7975A (3 μ M) or 2-APB (100 μ M), on insulin-induced redistribution of paxillin in cultured mouse podocytes. **b** Effect of cyclosporine A (CsA; 10 μ M) on insulin-mediated redistribution of paxillin in cultured mouse podocytes. Scale bar = 50 μ m., All images were represented similarly from 3 independent experiments and randomly chosen10~12 cells in each dish (**a** and **b**). **c** Scratch assay showing the effect of siRNA Orai1 (siOrai1) and CsA on insulin-stimulated podocyte motility. **d** Cell motility was evaluated by counting the number of migrated cells into the wound area after 24 h. *n* = 3 independent experiments. Data are expressed as mean ± SEM and analyzed with one-way ANOVA followed by Dunnett's multiple comparisons test (**d**). ******p* < 0.0001.

Supplementary Fig. 3 Construction and macroscopic kidneys of podocyte-specific *Orai1*-deletion mice.

a Schematic representation of the *Nphs2.Cre*+ (upper left) and *Orai1*^{fl/+} (upper right) mice to generate podocyte-specific Orai1 knockout. Exon 2 of the Orai1 gene was targeted⁴⁶ in the *Nphs2.Cre*+;*Orai1*^{fl/fl} mice (lower). **b** Germ-line transmission of Cre and flox alleles was validated by genotyping PCR. The 324-base pair (bp) band is the international positive control and the 100 bp band denotes *Nphs2.Cre*+(left). The 378-base pair (bp) band is derived from the floxed allele while the 222-bp band denotes the wild-type (WT) allele (right). **c** No difference in kidney size was observed between podocyte-specific Orai1 knockout and WT mice at 10 weeks. Scale bar = 1 mm.

Supplementary Fig. 4 TRPC6 may not participate in insulin-stimulated proteinuria.

a-b Quantitative analysis of 24 h urinary albumin/creatinine (Alb/Cr) ratio (left) (**a**) and albumin excretion (right) (**b**) after administration of insulin (*i.p.*; 5 U/kg) in wild type (WT) and *Trpc6^{-/-}* mice (9-11 weeks old, n = 6, 7, 6, 8 mice each). Data are represented as mean ± SEM and were analyzed using analyzed with two-way ANOVA followed by Tukey's multiple comparisons test (**a** and **b**). ****p < 0.0001.

Supplementary Fig. 5 Insulin increases cell surface abundance of Orai1 in HEK293FT cells

a Biotinylation assay showing the insulin effect (100 nM, 1 h) on the cell-surface abundance of Orai1 in HEK293FT cells transiently expressing mCherry-Flag-tagged Orai1 and YFP-tagged STIM1. **b** Quantification of surface Orai1 by densitometry in three independent experiments of panel (**a**). *n*=3 independent experiments. Data are represented as mean ± SEM and were analyzed using unpaired two-tailed Student's *t*-test. *****p* < 0.0001. **c** Confocal images showing the effect of insulin treatment on Orai1 localization in HEK293FT cells expressing mCherry-Flag-tagged Orai1. Scale bar = 25 µm.

Supplementary Fig. 6 Insulin increases cell surface abundance of Orai1 by stimulating its exocytosis.

a Representative trace of insulin-stimulated store-operated Ca²⁺ entry (SOCE) in addition to brefeldin A (BFA, 10 μ M, 8 hr) or tetanus toxin (TeNT, 60 nM, 8 hr). **b** Summary of the SOCE in panel (**a**). *n* = 26, 35, 29, 29 cells per each group. **c**-**f** Biotinylation assay showing the effects of BFA (**c**-**d**) and TeNT (**e**-**f**) treatment on cell surface abundance of Orai1 after insulin stimulation. All the experiments were repeated 3 times independently. Data are represented as mean ± SEM and were analyzed using one-way ANOVA followed by Tukey's multiple comparisons test (**b**, **d**, and **f**). **p* < 0.05, *****p* < 0.0001; ns, not significant.

Supplementary Fig. 7 Effect of long-term incubation of insulin on store-operated Ca²⁺ entry (SOCE) and Orai1 protein expression in podocytes.

a Representative SOCE traces showing the effect of long-term insulin treatment (for 24 h) in cultured mouse podocytes. **b** Summary of the SOCE in panel (**a**). n = 53 (Vehicle) and 50 (Insulin) cells. **c** Immunoblotting showing the effect of long-term insulin treatment (for 24 h) on Orai1 expression in podocytes. **d** Summary of the relative (Rel.) Orai1 level in panel (**c**). n = 3 independent experiments. Data are represented as mean ± SEM and were analyzed using unpaired two-tailed Student's *t*-test in (**b** and **d**). *p < 0.01, ****p < 0.0001.

Supplementary Fig. 8 Representative TAM images in CSA, GSK-7975A, and 2-APB *i.p.* injected *db/db* mice

a-b Representative TEM images of kidney tissue in *db/m* and *db/db* mice with administration of CsA (**a**) or GSK or 2-APB (**b**). All images showed similar to the representative images of each group (n = 3 for *db/m*+Vehicle, *db/db*+Vehicle, *db/db*+CsA, *db/db*+GSK, *db/db*+2-APB) and were taken 5 different locations randomly in one mouse. Magnification is 5,000X. Scale bar = 5 μ m.

Gene (Accession no.)	Purpose	Primer sequence (5' to 3')		Size(bp)
Mouse 18s	Quantitative real-	Forward	CGG CGT TAT TCC CAT GAC	108
(NR_003278.1)	time PCR	Reverse	GCC CTT CCG TCA ATT CCT	
Mouse Orai1	Quantitative real-	Forward	ATG GTA GCG ATG GTG GAA GT	100
(NM_175423.3)	time PCR	Reverse	CTG ATC ATG AGG GCA AAC AG	122
Mouse Orai2	Quantitative real-	Forward	CTG CAT GAG ATC CAC CAC AC	97
(NM_178751.3)	time PCR	Reverse	GGG GAC AGG AGT ATG GGA TT	
Mouse Orai3	Quantitative real-	Forward	AAC CTC ACA CCA TCC TCT GC	00
(NM_198424.3)	time PCR	Reverse	GCC TGG TCC ATG AGC ACT AT	90
Nphs2_Cre	Genotype	Forward	GCG GTC TGG CAG TAA AAA CTA TC	100
		Reverse	GTG AAA CAG CAT TGC TGT CAC TT	
Orai1_flox	Genotype	Forward	AGG CGG CCT ATA ATT CCA GCT TCA	WT;222
		Reverse	AGG TGG ATG TTG CTG AGA GAC CAA	<i>Orai1™;</i> 222,378 <i>Orai1™;</i> 378
International	Genotype	Forward	CTA GGC CAC AGA ATT GAA AGA TCT	324
Positive control		Reverse	GTA GGT GGA AAT TCT AGC ATC ATC C	

Supplementary Table 1. List of mouse primer sequences used for PCR.