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Deep Learning-Based Facial Image Analysis in Medical Research: A 

Systematic Review Protocol

Abstract

Introduction:  Deep learning techniques are gaining momentum in medical research. Evidence 
shows that deep learning has advantages over humans in image identification and classification, 
such as facial image analysis in detecting people’s medical conditions. While positive findings 
are available, little is known about patterns of utility of deep learning-based facial image analysis 
in the medical context. To address this gap, we aim to conduct a systematic review to identify the 
characteristics and effects of deep learning-based facial image analysis in medical research.

Methods and analysis: Databases including PubMed, PsycINFO, CINAHL, IEEEXplore, and 
Scopus will be searched for relevant studies published in English, using a search strategy that 
was developed in consultation with an academic librarian. Titles, abstracts, and full-text articles 
will be screened to identify eligible articles. A manual search of the reference lists of the 
included articles will also be conducted. The Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) framework was adopted to guide the systematic review process.

Conclusions: Insights gained from this systematic review will provide timely understanding of 
the characteristics, challenges, as well as opportunities in deep learning-based facial image 
analysis applied in the contexts of disease detection, diagnosis, and prognosis. In addition to 
gaining a connected and comprehensive understanding of the current application of facial image 
analysis, results of this review study will also be able to shed light on whether, similar to facial 
image analysis conducted in non-medical contexts, systematic bias and accuracy are present in 
medical research as well. Biased and inaccurate image analysis systems will not only exert 
unwarranted, though avoidable, disparities on patients (e.g., gender inequality), it may deprive 
some patients of potential benefits of deep-learning-based interventions for their health and 
wellbeing. Therefore, for the consideration of patients’ welfare and the development of the 
practice, a timely understanding of the challenges and opportunities faced by research on deep-
learning-based facial image analysis is needed. 

Ethics and dissemination: NA

Study Protocol Registration: PROSPERO CRD42020196473

Keywords: facial image analysis; artificial intelligence; deep learning; convolutional neural 
network; abnormal facial expressions; facial analysis
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Strengths and limitations of this study

 Deep learning is a mechanism that allows computers to solve complex problems by 

neural network architecture.

 Deep learning techniques are gaining momentum in medical research. 

 Evidence shows that deep learning has advantages over humans in image identification 

and classification, such as facial image analysis in detecting people’s medical conditions. 

 While positive findings are available, little is known about patterns of utility of deep 

learning-based facial image analysis in the medical context. 

 This study aims to conduct a systematic review to identify the characteristics and effects 

of deep learning-based facial image analysis in medical research.
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A Systematic Review of Deep Learning-Based Facial Image Analysis in Medical Research: 

Insights and Implications  

Introduction 

The application of artificial intelligence (AI) in healthcare is gaining momentum [1-3]. 

AI, especially machine learning and deep learning techniques, is invigorating medical research 

on various fronts, from developing and deploying consumer-facing telemedicine tools, such as 

ePAL, an AI-powered smartphone application for patients to manage cancer-related pain [4], to 

the application of AI techniques in disease diagnosis and prognosis, such as using AI to detect 

and grade cancer in prostate biopsy samples [5]. Machine learning is a subset of AI that could be 

understood as methods that allow computers to learn by mimicking how humans learn (i.e., 

process data and learn from it), without being explicitly programmed [6]. One emerging machine 

learning approach, deep learning, has found to be particularly helpful in addressing medical 

issues, given its accuracy in image identification and classification [3, 7]. Deep learning micks 

the human brain by utilizing artificial neurons and layers (e.g., neural networks) [8]. 

While as presented in Figure 1, deep learning is a machine learning algorithm that allows 

computers to tackle complex problems via capitalizing on neural networks, such as convolutional 

neural networks (CNNs), that are rich in neurons, layers, and interconnectivity [9]. Simply put, 

deep learning is a mechanism that allows computers to solve complex problems by neural 

network architecture. This ability to develop complex network structures gives deep learning a 

distinctive advantage: it can automatically transform raw data input into meaningful features that 

enable pattern identification [3]. Deep learning technique has revolutionary potential in practical 

and research fields [10]. In practice, as deep learning effectively identifies objects, traffic signs, 
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and faces, its adaptations have been widely applied in designing robots and self-driving cars [11-

14]. Deep learning has also been widely adopted in biomedical and clinical research, particularly 

in the field of medical imaging [15-18]. 

---Insert Figure 1 here---

Medical conditions are often diagnosed by means of tests, such as measures like biopsy 

and diagnostic imaging. As diagnostic imaging is noninvasive and can facilitate personalized 

medicine, it is a preferred test option for patients and healthcare practitioners [19, 20]. This, in 

turn, has contributed to the exponential growth of medical imaging data and the increasing need 

for boosting medical image processing power to formulate diagnosis swiftly [20, 21]. Compared 

to traditional computer aided diagnosis for analyzing medical imaging, such as hand-crafted 

radiomics for tumor detection, deep learning methods are superior in their ability to process large 

quantities of medical images accurately and cost-effectively, without exerting a heavy workload 

on radiologists [22-26]. Evidence shows that deep learning-based medical image analysis was 

able to increase accuracy rates in various disease contexts, such as the identification of spinal 

disorder [27] and lung cancer histology [28], classification of skin lesion [29] and chronic 

gastritis [30], and the prediction of tumor-related genes [31] and vascular diseases [32]. 

As disease manifestations often show in various places in the human body, such as Down 

Syndrome can change patients’ facial features, researchers have been investigating whether 

analyzing appearance features can facilitate early disease detection [1, 27, 33-35]. One promising 

field is deep learning-based facial analysis [2, 36, 37]. Applying the deep learning technique to 

perform facial recognition and analysis tasks, researchers found that the technique yielded 
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superior results in identifying and classifying faces of people with cancer from those without [2]. 

Similarly, examining facial phenotypes of people with genetic disorders, findings indicate that 

the technique was effective and was able to yield an optimal 91% top-10 accuracy [38]. 

Evidence further indicates that, for some tasks involving identifying and classifying facial 

images, deep learning techniques have often performed on par or better than human beings [3, 

35, 36, 39-41]. Comparing clinical and deep learning evaluations of microdeletion syndrome 

facial phenotypes, researchers found that deep learning outperformed clinical evaluations in 

terms of sensitivity and specificity by 96% [40]. These findings combined suggest that deep 

learning-based facial analysis technology has great potential to address complex medical 

challenges prevalent in healthcare. However, while useful insights are available, little is known 

about the current development of deep learning-based facial analysis utilized across different 

healthcare sectors. To date, no systematic review has investigated the state-of-the-art application 

of deep learning-based facial analysis in addressing medical issues. Therefore, to bridge this gap, 

we aim to systematically review the literature and present the characteristics and effects of deep 

learning-based facial analysis techniques applied in medical research.

Methods and analysis

This systematic review was registered with the International Prospective Register of 

Systematic Reviews  database or PROSPERO (CRD42020196473) a priori to improve research 

rigor [42, 43]. The Principles of the Preferred Reporting Items for Meta-Analysis protocol 

(PRISMA) was adopted to guide this systematic review [44]. Our search strategy incorporated 

medical subject heading (MeSH) and keyword terms for the concept of deep learning and facial 

analysis. The search strategy was developed in consultation with an academic librarian, and 
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subsequently will be deployed to target databases, including PubMed, PsycINFO, CINAHL, 

IEEEXplore, and Scopus (Table 1). The search will be initiated in September, 2020. Studies will 

be limited to journal articles published in English. We will adopt two additional search 

mechanisms to locate eligible articles: (1) a manual search of the reference list of the included 

articles will be performed, and (2) a reverse search of papers that cited articles included in the 

final review via Google Scholar. An academic librarian will facilitate the search process, helping 

administer the search and download the citation records to Rayyan (http://rayyan.qcri.org).

---Insert Table 1 here---

Inclusion and exclusion criteria

The inclusion criteria were developed a priori and listed in Table 2. Studies will be 

excluded articles if they: (1) did not report findings on human beings (e.g., studies on mice), (2) 

did not focus on full facial features (e.g., research on retina or lip-cleft), (3) did not conduct 

research in a medical context (e.g., in the context of criminology), and (4) did not report 

empirical findings (e.g., editorial or comment papers). 

---Insert Table 2 here---

Risk of bias assessment

To ensure quality of included studies, a risk of bias assessment will be conducted 

independently by two reviewers, using the Cochrane Collaboration evaluation framework [45]. 

The framework has seven domains: (1) random sequence generation, (2) allocation concealment, 
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(3) blinding of participants and personnel, (4) blinding of outcome assessment, (5) incomplete 

outcome data, (6) selective reporting, and (7) any other source of bias. The risk of bias will be 

evaluated independently by two reviewers. Potential discrepancies regarding the risk of bias will 

be resolved via group discussions till a consensus is reached. 

Data Extraction

Two reviewers will independently examine the citations and select studies for inclusion. 

Discrepancies will be resolved by group discussions till a consensus is reached. Data will be 

extracted based on research purpose and selection criteria adopted in this study. For articles that 

meet the inclusion criteria, the reviewers will extract the following information from the included 

papers: research purpose/questions, disease context, sample characteristics (e.g., characteristics 

of facial records), AI characteristics (e.g., algorithm adopted), and empirical findings. 

Data synthesis and analysis 

If eligible studies share enough similarities to be pooled, a meta-analysis will be 

conducted to gain further insights of the data. Main clinical, methodological, as well as statistical 

variances will be carefully considered to determine heterogeneity of the eligible studies. If 

eligible studies are found heterogeneous, a narrative synthesis will be conducted to summarize 

the data. A summary of the data extracted will be organized to synthesize key results. Both tables 

and graphs will be used to represent key characteristics of eligible articles. Descriptive analysis 

will be performed on categorical variables.   
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Discussion

Though a growing body of research has applied deep learning-based facial image analysis 

in the medical context for disease detection, diagnosis, and prognosis, to date, no systematic 

review has investigated the state-of-the-art application of deep learning-based facial image 

analysis recognition in addressing medical diagnoses and clinical states. Therefore, to bridge this 

gap, we aim to systematically review the literature and present the characteristics, challenges, as 

well as opportunities in deep learning-based facial analysis techniques applied in medical 

research. To better organize the research findings, we developed a framework that illustrates the 

main causes for abnormal facial expressions in patients. It is important to note that we are 

identifying medical states and conditions and not individuals. 

After reviewing the literature [46-61], we identified the following four preliminary 

categories of causes for short-term or long-term abnormal facial expressions in people: (1) gene-

related factors, (2) neurological factors, (3) psychiatric conditions, and (4) medication-induced 

triggers. Genetic-related factors, such as the presence or mutation of a certain gene, are the most 

studied cause for abnormal facial changes in individuals [35, 36, 40]. Down syndrome, which is 

affected by the presence of a third copy of chromosome 21, is an example of genetic-related 

factors that can cause individuals’ abnormal facial changes [35]. Neurological factors can also 

cause individuals’ facial phenotypes. Stroke or transient ischemic attack is an example of 

neurological factors, which can occur either prior to or after the onset of the disease [62, 63]. The 

third cause for abnormal facial changes centers on individuals’ psychiatric conditions or mental 

illnesses, especially psychotic disorders such as the Tourette syndrome (facial tics). Last but not 

the least, medication-induced triggers, such as the Neuroleptic malignant syndrome (caused by 

antipsychotic medications), can also cause abnormal facial changes in people. Details of this 
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framework can be found in Table 3. This framework will be used in the planned systematic 

review study to guide data extract process. 

---Insert Table 3 here---

Overall, insights gained from this study will be able to provide much-needed timely 

understanding of the characteristics, challenges, as well as opportunities in the context of deep 

learning-based facial image analysis technologies applied in disease detection, diagnosis, and 

prognosis. In addition to gaining a connected and comprehensive understanding of current 

application of facial image analysis, results of the current study will also be able to shed light on 

whether, similar to facial recognition used in non-medical [64, 65] and medical contexts [66, 67], 

whether or to what degree is systematic bias is present in the application of deep learning 

technologies for facial image analysis. A biased and inaccurate facial image analysis system will 

not only exert unwarranted, though avoidable, disparities on patients (e.g., gender inequality) 

[66], it will also alienate the patients from the much-needed deep-learning-assisted medical 

opportunities their health and wellbeing can benefit from [68]. Therefore, for the consideration 

of patients’ welfare and the development of the clinical practice, a timely understanding of the 

scope of the research literature as well as the challenges and opportunities faced by research on 

deep-learning-based facial image analysis is much needed.

Abbreviations

AI: Artificial intelligence
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Table 1. Example PubMed search strategy

Concept Search string

Deep learning “deep learning”[MeSH] OR “deep learning”[TIAB] OR “artificial 
intelligence” [MeSH] OR “artificial intelligence” [TIAB]  OR 
“machine learning”[MeSH] OR “machine learning”[TIAB] OR 
“convolutional neural network”[MeSH] OR “convolutional neural 
network”[TIAB] OR “convolutional neural networks”[TIAB] 

Facial image analysis “face detect*” OR “facial detect*” OR “face recogn*” OR “facial 
recogn*” OR “face extract*” or “facial extract*” OR “face analys*” 
OR “facial analys*” OR “face dysmorphology” OR “facial 
dysmorphology” OR “face phenotype*” OR “facial phenotype*” 
OR “face feature*” OR “facial feature*” OR “face2gene” OR 
“gestalt theory” OR “face photograph*” OR “facial photograph*” 
OR “facial expression”
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Table 2. Study inclusion criteria 

Data type Inclusion criteria 

Participants Individuals younger or older than 18 years old

Research context Medical research or healthcare

Analytical technique Deep learning algorithms-based facial image analysis

Language English

Study type Quantitative empirical study 

Outcome  Report empirical and original findings on the application of 
deep learning-based facial image analysis in medical context 
(e.g., accuracy of facial image analysis in detecting Down 
syndrome)
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Table 3. Main causes for abnormal facial expressions

Cause Definition and Example

Gene-related 
factors 

Gene-related factors are causes for individuals’ abnormal facial changes 
that root in the presence or mutation of one or a set of genes.

Examples: Down syndrome (genetic root: presence of a third copy of 
chromosome 21) or Cornelia de Lange syndrome (genetic root: NIPBL or 
SMC1A, SMC3, RAD21 or HDAC8, BRD4 and ANKRD11 genes) [46-48, 
61].

Neurological 
factors

Neurological factors are defined as reasons that are associated with 
individuals’ congenital or acquired disorders of nerves and the nervous 
system. Neurological factors can either be related to genetic or non-genetic 
factors, caused by irregularity in nerves associated with the brain or the 
face.

Examples: Neurological factors with genetic causes (e.g., Rett syndrome, 
MECP2 gene; Cervical or Cranial dystonia, GNAL gene) and without (e.g., 
embouchure dystonia, Oromandibular dystonia) [52, 53]; due to nerves 
associated with the brain (e.g., stroke) or the face (Bell’s palsy or facial 
paralysis, Hemifacial Spasm) [49-51]. 

Psychiatric
conditions 

Psychiatric conditions, especially psychotic disorders, have the potential to 
cause abnormal facial expressions among individuals. Psychiatric 
conditions could be broadly defined as mental illnesses, whereas psychotic 
disorder factors are causes to abnormal facial expressions that root in 
individuals’ impaired sense of reality. 

Examples: Non-drug-related Tourette syndrome (facial tics) or Autism 
(facial expression limitation) [54-56].

Medication-
induced triggers

Medication-induced triggers could be understood as causes to individuals’ 
short-term or long-term abnormal facial changes due to their adverse 
reactions to a certain medication of a type of medications.

Examples: Neuroleptic malignant syndrome (antipsychotic drugs), Tardive 
dyskinesia (antipsychotic medications), or drug-related Tourette syndrome 
[57-60].
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Figure 1. Relationship between artificial intelligence, machine learning, deep learning, and 
convolutional neural networks.

Artificial Intelligence

Machine Learning

Deep Learning

Mechanisms 
that allow 
computers to 
solve complex 
problems with 
complex neural 
networks

Methods that 
allow 
computers to 
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humans learn

Machine 
programs 
able to mimic 
human 
intelligence

Convolutional 
Neural Networks

Networks that filter and 
decompose images into 
feature maps
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Deep Learning-Based Facial Image Analysis in Medical 
Research: A Systematic Review Protocol 

Abstract

Introduction:  Deep learning techniques are gaining momentum in medical research. Evidence 
shows that deep learning has advantages over humans in image identification and classification, 
such as facial image analysis in detecting people’s medical conditions. While positive findings 
are available, little is known about the state-of-the-art of deep learning-based facial image 
analysis in the medical context. For the consideration of patients’ welfare and the development 
of the practice, a timely understanding of the challenges and opportunities faced by research on 
deep-learning-based facial image analysis is needed. To address this gap, we aim to conduct a 
systematic review to identify the characteristics and effects of deep learning-based facial image 
analysis in medical research. Insights gained from this systematic review will provide a much-
needed understanding of the characteristics, challenges, as well as opportunities in deep learning-
based facial image analysis applied in the contexts of disease detection, diagnosis, and prognosis. 

Methods: Databases including PubMed, PsycINFO, CINAHL, IEEEXplore, and Scopus will be 
searched for relevant studies published in English in September, 2021. Titles, abstracts, and full-
text articles will be screened to identify eligible articles. A manual search of the reference lists of 
the included articles will also be conducted. The Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) framework was adopted to guide the systematic review 
process. Two reviewers will independently examine the citations and select studies for inclusion. 
Discrepancies will be resolved by group discussions till a consensus is reached. Data will be 
extracted based on the research objective and selection criteria adopted in this study.

Ethics and dissemination: As the study is a protocol for a systematic review, ethical approval is 
not required. The study findings will be disseminated via peer-reviewed publications and 
conference presentations.

Study Protocol Registration: PROSPERO CRD42020196473

Keywords: facial image analysis; artificial intelligence; deep learning; convolutional neural 
network; abnormal facial expressions; facial analysis
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Strengths and limitations of this study

 This systematic review protocol follows the Preferred Reporting Items for Systematic 
Review and Meta- Analysis Protocols guidelines. 

 By examining the characteristics and effects of deep learning-based facial image analysis 
in medical research, this systematic review bridges the gap in the literature.

 This review is limited to evidence on the use and application of deep learning 
technologies in patients’ facial image identification and classification. 

 Non-English databases will not be searched, which might limit the representativeness of 
the results. 
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Deep Learning-Based Facial Image Analysis in Medical 
Research: A Systematic Review Protocol 

Background

As disease manifestations often show in various places in the human body, such as Down 

Syndromes can change patients’ facial features, researchers have been investigating whether 

analyzing appearance features can facilitate early disease detection and identification [1-5]. One 

promising field is deep learning-based facial analysis [6-8]. Deep learning represents a powerful 

range of artificial intelligence (AI) algorithm that allows computers to tackle complex problems 

via capitalizing on neural networks, such as convolutional neural networks (CNNs), that are rich 

in neurons, layers, and interconnectivity (see Figure 1) [9]. Simply put, deep learning is a 

mechanism that allows computers to solve complex problems by neural network architecture. 

This ability to develop complex network structures gives deep learning a distinctive advantage: it 

can automatically transform raw data input into meaningful features that enable pattern 

identification [10]. Deep learning technique has revolutionary potential in practical and research 

fields [11]. In practice, as deep learning effectively identifies objects, traffic signs, and faces, its 

adaptations have been widely applied in designing robots and self-driving cars [12-15]. Deep 

learning has also been widely adopted in biomedical and clinical research, particularly in the 

field of medical imaging [16-19]. 

---Insert Figure 1 here---

Medical conditions are often diagnosed by means of tests, such as biopsy and diagnostic 

imaging. An example list of diseases that have been analyzed by deep learning technologies 
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could be found in Table 1. As diagnostic imaging is noninvasive and can facilitate personalized 

medicine, it is a preferred test option for patients and healthcare practitioners [20, 21]. This, in 

turn, has contributed to the exponential growth of medical imaging data and the increasing need 

for boosting medical image processing power to formulate diagnosis swiftly [21, 22]. Compared 

to traditional computer aided diagnosis for analyzing medical imaging, such as hand-crafted 

radiomics for tumor detection, deep learning methods are superior in their ability to process large 

quantities of medical images accurately and cost-effectively, without exerting a heavy workload 

on radiologists [23-27]. Evidence shows that deep learning-based medical image analysis was 

able to increase accuracy rates in various disease contexts, such as the identification of spinal 

disorder [1] and lung cancer histology [28], classification of skin lesion [29] and chronic gastritis 

[30], and the prediction of tumor-related genes [31] and vascular diseases [32]. 

---Insert Table 1 here---

Applying the deep learning technique to perform facial recognition and analysis tasks, 

researchers found that the technique yielded superior results in identifying and classifying faces 

of people with cancer from those without [6]. Similarly, examining facial phenotypes of people 

with genetic disorders, findings indicate that the technique was effective and was able to yield an 

optimal 91% top-10 accuracy [33]. Evidence further indicates that, for some tasks involving 

identifying and classifying facial images, deep learning techniques have often performed on par 

or better than human beings [5, 7, 10, 34-36]. Comparing clinical and deep learning evaluations 

of microdeletion syndrome facial phenotypes, researchers found that deep learning outperformed 

clinical evaluations in terms of sensitivity and specificity by 96% [35]. These findings combined 
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suggest that deep learning-based facial analysis technology has great potential to address 

complex medical challenges prevalent in healthcare. However, there have not been any 

systematic review on the state-of-the-art applications of deep learning-based facial analysis in 

non-invasively evaluating medical conditions. Therefore, to bridge this gap, we aim to 

systematically review the literature and identify the characteristics and effects of deep learning-

based facial analysis techniques applied in medical research.

Methods and analysis

This systematic review was registered with the International Prospective Register of 

Systematic Reviews  database or PROSPERO (CRD42020196473) a priori to improve research 

rigor [37, 38]. The Principles of the Preferred Reporting Items for Meta-Analysis protocol 

(PRISMA) was adopted to guide this systematic review [39]. Our search strategy incorporated 

medical subject heading (MeSH) and keyword terms for the concept of deep learning and facial 

analysis. The search strategy was developed in consultation with an academic librarian, and 

subsequently will be deployed to target databases, including PubMed, PsycINFO, CINAHL, 

IEEEXplore, and Scopus (Table 2). The search will be initiated in September, 2021. Studies will 

be limited to journal articles published in English. We will adopt two additional search 

mechanisms to locate eligible articles: (1) a manual search of the reference list of the included 

articles will be performed, and (2) a reverse search of papers that cited articles included in the 

final review via Google Scholar. An academic librarian will facilitate the search process, helping 

administer the search and download the citation records to Rayyan (http://rayyan.qcri.org).

---Insert Table 2 here---
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Inclusion and exclusion criteria

The inclusion criteria were developed a priori and listed in Table 3. Studies will be 

excluded articles if they 1) did not report findings on human beings (e.g., studies on mice), 2) did 

not focus on full facial features (e.g., research on retina or lip-cleft), 3) did not conduct research 

in a medical context (e.g., in the context of criminology), and 4) did not report empirical findings 

(e.g., editorial or comment papers). 

---Insert Table 3 here---

Risk of bias assessment

To ensure quality of included studies, a risk of bias assessment will be conducted 

independently by two reviewers, using the Cochrane Collaboration evaluation framework [40]. 

The framework has seven domains: (1) random sequence generation, (2) allocation concealment, 

(3) blinding of participants and personnel, (4) blinding of outcome assessment, (5) incomplete 

outcome data, (6) selective reporting, and (7) any other source of bias. The risk of bias will be 

evaluated independently by two reviewers. Potential discrepancies regarding the risk of bias will 

be resolved via group discussions till a consensus is reached. 

Data Extraction

Two reviewers will independently examine the citations and select studies for inclusion. 

Discrepancies will be resolved by group discussions till a consensus is reached. Data will be 

extracted based on the research objective and selection criteria adopted in this study. For articles 
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that meet the inclusion criteria, the reviewers will extract the following information from the 

included papers: research objective /questions, disease context, sample characteristics (e.g., 

characteristics of facial records), AI characteristics (e.g., algorithm adopted), and empirical 

findings. 

Data synthesis and analysis 

If eligible studies share enough similarities to be pooled, a meta-analysis will be 

conducted to gain further insights into the data. Main clinical, methodological, as well as 

statistical differences will be carefully considered to determine the heterogeneity of the eligible 

studies. If eligible studies are found heterogeneous, a narrative synthesis will be conducted to 

summarize the data. A summary of the data extracted will be organized to synthesize key results. 

Both tables and graphs will be used to represent the key characteristics of eligible articles. 

Descriptive analysis will be performed on categorical variables. In this review, we will undertake 

a narrative approach to synthesize data. In other words, in addition to shedding light on key 

information like the sensitivity, specificity, overall accuracy of the deep learning technologies in 

analyzing facial images (as opposed to clinicians’ analyses), we will also provide detailed 

analysis of the disease contexts and the techniques applied to chart the state-of-the-art of deep 

learning technologies in facial image analyses. 

Ethics and dissemination

As the study is a protocol for a systematic review, ethical approval is not required. The 

study findings will be disseminated via peer-reviewed publications and conference presentations.
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Patient and Public Involvement

The nature of the study, which is a review and analysis of previously published data, 

dictates that there is limited to no meaningful need for patient and public involvement in the 

design, delivery, or dissemination of the research findings.

Discussion

Though a growing body of research has applied deep learning-based facial image analysis 

in the medical context for disease detection, diagnosis, and prognosis, to date, no systematic 

review has investigated the state-of-the-art application of deep learning-based facial image 

analysis recognition in addressing medical diagnoses and clinical states. Therefore, to bridge this 

gap, we aim to systematically review the literature and present the characteristics, challenges, as 

well as opportunities in deep learning-based facial analysis techniques applied in medical 

research. To better organize the research findings, we developed a framework that illustrates the 

main causes for abnormal facial expressions in patients. It is important to note that we are 

identifying medical states and conditions and not individuals. 

After reviewing the literature [41-56], we identified the following four preliminary 

categories of causes for short-term or long-term abnormal facial expressions in people: (1) gene-

related factors, (2) neurological factors, (3) psychiatric conditions, and (4) medication-induced 

triggers. Genetic-related factors, such as the presence or mutation of a certain gene, are the most 

studied cause for abnormal facial changes in individuals [5, 7, 35]. Down syndrome, which is 

affected by the presence of a third copy of chromosome 21, is an example of genetic-related 

factors that can cause individuals’ abnormal facial changes [5]. Neurological factors can also 

cause individuals’ facial phenotypes. Stroke or transient ischemic attack is an example of 
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neurological factors, which can occur either prior to or after the onset of the disease [57, 58]. The 

third cause for abnormal facial changes centers on individuals’ psychiatric conditions or mental 

illnesses, especially psychotic disorders such as the Tourette syndrome (facial tics). Last but not 

the least, medication-induced triggers, such as the Neuroleptic malignant syndrome (caused by 

antipsychotic medications), can also cause abnormal facial changes in people. Details of this 

framework can be found in Table 4. This framework will be used in the planned systematic 

review study to guide the data extraction process. 

---Insert Table 4 here---

Overall, insights gained from this study will be able to provide a much-needed 

understanding of the characteristics, challenges, as well as opportunities in the context of deep 

learning-based facial image analysis technologies applied in disease detection, diagnosis, and 

prognosis. In addition to gaining a connected and comprehensive understanding of the current 

application of facial image analysis, results of the study will also be able to shed light on 

whether, similar to facial recognition used in non-medical [59, 60] and medical contexts [61, 62], 

whether or to what degree is systematic bias is present in the application of deep learning 

technologies for facial image analysis. A biased and inaccurate facial image analysis system will 

not only exert unwarranted, though avoidable, disparities on patients (e.g., gender inequality) 

[61], it will also alienate the patients from the much-needed deep-learning-assisted medical 

opportunities their health and wellbeing can benefit from [63]. Therefore, for the consideration 

of patients’ welfare and the development of the clinical practice, a timely understanding of the 
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scope of the research literature as well as the challenges and opportunities faced by research on 

deep-learning-based facial image analysis is much needed.
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Table 1. An example list of diseases that have been analyzed by deep learning techniques  

Disease context Deep Learning Technique 

Acromegaly Convolutional Neural Network (along with Generalized 
Linear Models; K-nearest neighbors; Support Vector 
Machines; forests of randomized trees) [64]

Cancer Convolutional neutral network [65]

Cornelia de Lange syndrome DeepGestalt technology [66]

Coronary artery disease Convolutional neural network [67]

Down syndrome Independent component analysis [68]

Facial dermatological disorders Convolutional neural network [69]

Keratinocytic Skin Cancer Convolutional neutral network [70]

Inherited retinal degenerations Convolutional neural network [71]

Noonan syndrome DeepGestalt technology [33]

Pain intensity Convolutional neutral network [72] 

Neurological disorders Convolutional neutral network [73]
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Table 2. Example PubMed search strategy

Concept Search string

Deep learning “deep learning”[MeSH] OR “deep learning”[TIAB] OR “artificial 
intelligence” [MeSH] OR “artificial intelligence” [TIAB]  OR 
“machine learning”[MeSH] OR “machine learning”[TIAB] OR 
“convolutional neural network”[MeSH] OR “convolutional neural 
network”[TIAB] OR “convolutional neural networks”[TIAB] 

Facial image analysis “face detect*” OR “facial detect*” OR “face recogn*” OR “facial 
recogn*” OR “face extract*” or “facial extract*” OR “face analys*” 
OR “facial analys*” OR “face dysmorphology” OR “facial 
dysmorphology” OR “face phenotype*” OR “facial phenotype*” 
OR “face feature*” OR “facial feature*” OR “face2gene” OR 
“gestalt theory” OR “face photograph*” OR “facial photograph*” 
OR “facial expression”
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Table 3. Study inclusion criteria 

Data type Inclusion criteria 

Participants Individuals younger or older than 18 years old

Research context Medical research or healthcare

Analytical technique Deep learning algorithms-based facial image analysis

Language English

Study type Quantitative empirical study 

Outcome  Report empirical and original findings on the application of 
deep learning-based facial image analysis in medical context 
(e.g., accuracy of facial image analysis in detecting Down 
syndrome)
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Table 4. Main causes for abnormal facial expressions

Cause Definition and Example

Gene-related 
factors 

Gene-related factors are causes for individuals’ abnormal facial changes 
that root in the presence or mutation of one or a set of genes.

Examples: Down syndrome (genetic root: presence of a third copy of 
chromosome 21) or Cornelia de Lange syndrome (genetic root: NIPBL or 
SMC1A, SMC3, RAD21 or HDAC8, BRD4 and ANKRD11 genes) [41-43, 
56].

Neurological 
factors

Neurological factors are defined as reasons that are associated with 
individuals’ congenital or acquired disorders of nerves and the nervous 
system. Neurological factors can either be related to genetic or non-genetic 
factors, caused by irregularity in nerves associated with the brain or the 
face.

Examples: Neurological factors with genetic causes (e.g., Rett syndrome, 
MECP2 gene; Cervical or Cranial dystonia, GNAL gene) and without (e.g., 
embouchure dystonia, Oromandibular dystonia) [47, 48]; due to nerves 
associated with the brain (e.g., stroke) or the face (Bell’s palsy or facial 
paralysis, Hemifacial Spasm) [44-46]. 

Psychiatric
conditions 

Psychiatric conditions, especially psychotic disorders, have the potential to 
cause abnormal facial expressions among individuals. Psychiatric 
conditions could be broadly defined as mental illnesses, whereas psychotic 
disorder factors are causes to abnormal facial expressions that root in 
individuals’ impaired sense of reality. 

Examples: Non-drug-related Tourette syndrome (facial tics) or Autism 
(facial expression limitation) [49-51].

Medication-
induced triggers

Medication-induced triggers could be understood as causes to individuals’ 
short-term or long-term abnormal facial changes due to their adverse 
reactions to a certain medication of a type of medications.

Examples: Neuroleptic malignant syndrome (antipsychotic drugs), Tardive 
dyskinesia (antipsychotic medications), or drug-related Tourette syndrome 
[52-55].
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Figure 1. Relationship between artificial intelligence, machine learning, deep learning, and 
convolutional neural networks.

*Please refer to the supplementary materials section for the figure*
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Figure 1. Relationship between artificial intelligence, machine learning, deep learning, and convolutional 
neural networks. 
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