

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Factors driving computed tomography utilisation in tertiary hospitals: A decomposition analysis using linked administrative data in Western Australia

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052954
Article Type:	Original research
Date Submitted by the Author:	03-May-2021
Complete List of Authors:	Ha, Ninh; Curtin University Bentley Campus, Health Economics & Data Analytics, Curtin School of Population Health; Institute of Public Health Vietnam, Department of Community Health Maxwell, Susannah; Curtin University - Perth Bentley Campus, Health Economics & Data Analytics, Curtin School of Population Health, Faculty of Health Sciences Bulsara, Max; The University of Notre Dame Australia, Institute for Health and Rehabilitation Research; The University of Western Australia, Centre for Health Services Research, School of Population and Global Health Doust, Jenny; The University of Queensland Faculty of Medicine and Biomedical Sciences Mcrobbie, Donald; The University of Adelaide, School of Physical Sciences O'Leary, Peter; Curtin University Faculty of Health Sciences; The University of Western Australia Faculty of Health and Medical Sciences, Obstetrics and Gynaecology Medical School Slavotinek, John; Flinders Medical Centre, South Australia Medical Imaging; Flinders University - Perth Bentley Campus, Health Moorin, Rachael; Curtin University - Perth Bentley Campus, Health Economics & Data Analytics, Curtin School of Population Health, Faculty of Health Sciences; The University of Western Australia Centre for Health Sciences; The University of Western Australia, Centre for Health Sciences; The University of School of Population Health, Faculty of Health Sciences; The University of Western Australia, Centre for Health Sciences; The University of Western Australia, Centre for
Keywords:	HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Diagnostic radiology < RADIOLOGY & IMAGING, Computed tomography < RADIOLOGY & IMAGING, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	1	Factors driving computed tomography utilisation in tertiary hospitals: A decomposition
5 6 7	2	analysis using linked administrative data in Western Australia
8	3	Authors
9	4	Ninh Thi Ha ^{1,10} , PhD, Thi.ha@curtin.edu.au
10	5	Suzy Maxwell ¹ , PhD, Susannah.maxwell@curtin.edu.au
12	6	Max Bulsara ^{2,3} , max.bulsara@nd.edu.au
13	7	Jenny Doust ⁴ , j.doust@ug.edu.au
14	8	Donald McRobbie ⁵ , donald.mcrobbie@adelaide.edu.au
15	9	Peter O'Leary ^{1,6,7,} , PhD, peter.oleary@health.wa.gov.au
16 17	10	John Slavotinek ^{8,9} , John Slavotinek@sa.gov.au
17	11	Rachael Moorin ^{1,3,} PhD, R.Moorin@curtin.edu.au
19	12	Affiliations
20	13	1. Health Economics & Data Analytics, Curtin School of Population Health, Faculty of Health
21	14	Sciences, Curtin University, Western Australia
22	15	2. Institute for Health and Rehabilitation Research, University of Notre Dame, Western Australia
23	16	3. Centre for Health Services Research, School of Population and Global Health, The University of
25	17	Western Australia
26	18	4. Centre for Longitudinal and Life Course Research, Faculty of Medicine, University of Queensland
27	19	5. School of Physical Sciences, University of Adelaide, Adelaide, South Australia
28 29	20	6. Obstetrics and Gynaecology Medical School, Faculty of Health and Medical Sciences, The
30	21	University of Western Australia
31	22	7. PathWest Laboratory Medicine Western Australia, QE2 Medical Centre, Nedlands, Western
32	23	Australia
33 24	24	8. South Australia Medical Imaging, Flinders Medical Centre, South Australia Health
35	25	9. College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
36	26	10. Department of Community Health, Institute of Public Health, Ho Chi Minh City, Vietnam
37	27	*Corresponding author:
38 39	28	Ninh Thi Ha, thi.ha@curtin.edu.au, ninh.ha05@gmail.com
40 41	29	Health Economics & Data Analytics, Curtin School of Population Health, Faculty of Health
42	30	Sciences, Curtin University, Western Australia
43 44	31	GPO Box U1987. Perth. Western Australia. 6845
45		
46	32	
47 40	33	
40 49		
50		
51		
52		
53		
55		
56		
57		
58		
59 60		

BMJ Open

2		
3	34	Abstract
4		
5 6 7	35	Objectives: This study aimed to examine the contribution of demographic and clinical
8 9	36	characteristics to the changing use of CT among people admitted to tertiary hospitals in Western
10 11 12	37	Australia (WA).
13 14 15	38	Design: An observational cross-sectional study from 2003 to 2015
16 17 18	39	Setting: Linked administrative health service data at individual level from WA
19 20	40	Participants: A total of 2,375,787 tertiary hospital admissions of people aged 18 years or older
22 23	41	Main outcome measure: Number of CT's performed during tertiary hospital admission.
24 25 26	42	Methods: A multivariable decomposition for nonlinear response model was used to decompose the
27 28	43	increasing use of CT into variation of (i) the distribution and (ii) the effect of the observed
29 30 31	44	characteristics.
32 33	45	Results: The rate of CT scanning increased by 112 CT scans per 1000 tertiary admissions between the
34 35 36	46	two periods. The variation in distribution of the observed demographic and clinical factors explained
37 38	47	nearly two thirds (62.7%) of the growth of CT use in which unplanned admissions accounted for the
39 40	48	largest proportion (50%). However, when the analysis is restricted to unplanned admissions, the
41 42 43	49	variation in distribution of the observed factors only explained 17% of the growth of CT use and the
44 45	50	rest was explained by change in the likelihood of having CT scan. Interestingly, compared with the
46 47	51	past period, the likelihood of having CT scan in population such as young adults (-2.8%), people living
48 49	52	in the rural/remote areas (-0.8%) and people transferred from secondary hospitals (-0.8%) were
50 51 52	53	significant lower in the recent period.
53 54	54	Conclusions: Our study highlights a potential improvement in practice towards reducing medical
55 56 57	55	radiation exposure in certain high risk population. Given change in the likelihood of having CT scan
58	56	explained for a major component of the growth in CT use, this warrants more in-depth investigations

3 4	57	in clinical practices to better inform health policies promoting appropriate use of diagnostic imaging
5 6 7	58	tests.
8 9	59	Strengths and limitations of this study
10 11 12	60	> This study utilised a large linked administrative data over the period of 13 years that allowed
12 13 14	61	to measure the contribution of changes in demographic and clinical characteristics to the
15 16	62	changing use of CT.
17 18	63	> With a rich source of individual level data, this study identified a wide range of demographic
19 20 21	64	and clinical factors driving the use of CT scan in tertiary hospitals.
22 22 23	65	Since the decomposition analysis methods only quantified the contribution of observed
24 25	66	factors, contribution of any unobserved factors to the change of CT use was summed in the
26 27 28	67	constant coefficient.
28 29 30	68	Our data did not fully capture the use of CT in all secondary hospitals, hence, this study was
31 32	69	limited to assess the factors driving the use of CT scan in tertiary hospitals.
34 35 36 37 38 39 40 41 42 43 44 50 51 52 53 54 55 55 55 56 57 58 59 60	70	

60

BMJ Open

2 3 4	71	Introduction
5 6 7	72	Computed tomography (CT) is one of the most important technical developments in medicine and is
8 9	73	now an essential part of clinical practice (1, 2). In Australia, CT accounted for 13% of diagnostic
10 11	74	imaging tests with an average of 134 scans per 1000 people in 2017/18 (3, 4). It is estimated that
12 13 14	75	diagnostic imaging tests increased the annual effective ionising radiation dose on the Australian
15 16	76	population by 50% (5). In acknowledgement of the relatively high radiation burden of diagnostic
17 18	77	imaging, Australia introduced Diagnostic reference levels (DRL) in 2011 providing a benchmark to
19 20 21	78	facilitate monitoring and comparison of radiation dose between facilities (6).
22 23	79	Despite the advanced technology leading to significant contribution in healthcare, its increasing use
24 25	80	has raised a concern about inappropriate use. Approximately one third of diagnostic imaging tests
26 27 28	81	are estimated to be unnecessary or inappropriate, with the potential to do more harm than good
20 29 30	82	and represent a waste of health care resources (7, 8). In the case of CT the potential harm includes
31 32	83	exposure to ionising radiation and the associated risk of cancer to population. A previous study
33 34 35	84	found a high rate of inappropriate CT among older patients and those with multi-morbidity (9).
36 37	85	In response to concerns of inappropriate utilisation of the advanced diagnostic technique, since
38 39 40	86	early 2000, the Royal Australian and New Zealand College of Radiologists (RANZCR) have provided
40 41 42	87	the standards of practice for clinical radiology (10). In Western Australia (WA), Diagnostic Imaging
43 44	88	Pathways has been deployed to promote appropriate use of imaging (11, 12). Most recently, in 2015
45 46	89	NPS MedicineWise launched the Australian "Choosing Wisely" campaigns promoting discussion on
47 48 40	90	reducing low value care (13), changing health care provider behaviour and increasing patient
49 50 51	91	knowledge. The overall intention is to improve patient safety and efficiency in health service
52 53	92	utilisation (13).
54 55 56	93	While substantial effort is under way to promote appropriate use of imaging tests, current data
57 58	94	reporting variation in potentially avoidable diagnostic imaging tests, particularly for CT over the last
59	~-	

95 decade are limited (9, 14, 15). Recent studies mainly focus on examining the prevalence of low value

2
ر ۸
4
5
6
7
8
9
10
11
17
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
20
57
38
39
40
41
42
43
44
45
4J 46
40
4/
48
49
50
51
52
53
54
54
55
56
57
58
59

60

1

96 care (16), the early trend of procedure uptake in hospital settings (17) and selected spinal imaging 97 (18) following Choosing Wisely campaigns. Therefore, better understanding of changes in the use of 98 CT scanning over the past decade and demographic and clinical factors driving the change in the use 99 of CT are necessary to support monitoring the use of CT scanning and to guide future research and 100 public health interventions. The aim of this study is to use decomposition analysis to examine factors 101 driving changes in CT use between two periods of time in tertiary hospitals in WA: recent (2013 to 102 2015) and past (2003 to 2005). 103 Methods 104 We conducted a retrospective observational cohort study of CT use in WA between 2003 and 2015 105 using linked administrative heath data at the individual patient level. Reporting follows the 106 Reporting of studies Conducted using Observational Routinely-collected health Data (RECORD) 107 guidelines (19). 108 **Data sources** 109 The data sources included three datasets: 110 (i) WA Hospital Morbidity Data system (January 2003- May 2016) providing information on 111 diagnosis, date of admission and discharge from all hospitals in WA, and basic socio-112 demographic and clinical characteristics. (ii) WA Emergency Department (ED) presentation data (January 2003- December 2016) providing 113 114 details of presentation time and date, presentation type, triage code, major diagnostic group 115 and basic socio-demographic characteristics. (iii) WA Picture archiving and communication system (PACS) data (January 2003 to May 2016) 116 117 providing documentation on all computed tomography (CT) scans conducted in tertiary including date of the scan, and the CT protocols used. All the datasets were linked using 118 119 probabilistic matching algorithms with a level of data accuracy up to 99.9% (20, 21).

BMJ Open

3 4	120	Details of data linkage process is presented in the website of Western Australia Data Linkage
5 6 7	121	(https://www.datalinkage-wa.org.au/dlb-services/linkage/).
8 9	122	Study population
10 11	123	The study population consisted of all hospital admissions in the three tertiary hospitals in WA
12 13	124	between 2003 and 2015 inclusive, for people aged 18 years and older. The study population was
14 15	125	then constructed into two study periods; past period (2003-2005) and recent period (2013-2015). To
10 17 18	126	avoid over-counting hospital admissions, for example where a patient was transferred between
19 20	127	hospitals, consecutive tertiary hospital admission records for an individual were aggregated into a
21 22	128	single hospital admission where admission or discharge dates were nested or overlapping, or where
23 24 25	129	an admission date was within one day of the discharge date. A tertiary hospital admission was
25 26 27	130	counted from the first date of admission in a tertiary hospital-or where applicable- the date of a
28 29	131	prior associated tertiary ED presentation so long as it resulted in an admission, to the last discharge
30 31 32	132	date in tertiary hospitals.
33 34	133	Outcome measures
35 36	134	The outcome measure of this study was the number of CT scans performed within a tertiary hospital
37 38	135	admission. The number of CT scans was counted from the first day admitted to a tertiary
39 40	136	hospital/presentation to a tertiary ED until the last date of discharge for that admission. To avoid
41 42 43	137	over-counting the use of CT, multiple CT records with the same day and same anatomic areas were
44 45 46	138	collapsed into one CT event (22).
47 48	139	Independent measures
49 50	140	This study measured basic demographic and socioeconomic characteristics including age (18-44, 45-
51 52	141	64, 65-74, and 75+ years), sex, indigenous status, residential remoteness classified according to
53 54	142	Accessibility Remoteness of Australia index (ARIA) (23) (major cities, inner regional areas, outer
55 56	143	regional areas, remote and very remote), and quintiles of the Census-specific Socio-economic
57 58 59	144	Indexes for Areas (SEIFA) index of relative socioeconomic disadvantage (24) (least disadvantage, less
60	145	disadvantage, moderate disadvantage, high disadvantage, and highest disadvantage).

Page 8 of 35

Clinical characteristics included major clinical diagnostic groups and the number of morbidities. Major clinical diagnostic groups included mental and behavioural disorders, circulatory system, digestive system, endocrine, nutritional and metabolic diseases, musculoskeletal system, respiratory system, injuries, and neoplasms. The conditions were identified in the principal diagnostic field of the hospital morbidity data record using ICD-AM-10 (the International Statistical Classification of Diseases and Related Health Problems, 10th Revision, Australian Modification). Multimorbidity was ascertained using the Multipurpose Australian Comorbidity Scoring system (25) using ICD-AM-10 across all diagnostic fields and was classified into 0-1, 2-5 and 6+ comorbidities. In addition, an admission was classified as having had a surgical procedure where the principal procedure field included one of the 20 most common surgical procedure as per ACHI codes (the Australian classification of health intervention) (26). Other independent measures included funding source (public or private), admission type (elective or unplanned admission) and admission with/without a transfer from secondary hospitals.

BMJ Open

159 Statistical analysis

Descriptive analysis was conducted to examine the distribution of socio-demographic and clinical characteristics of the study population over two study periods; past period (2003-2005) and recent period (2013-2015) as well as the whole study population (2003-2015). Multivariable decomposition for nonlinear response models, an extension of Oaxaca-Blinder decomposition analysis (27), was conducted to decompose the differential rate of CT use between the two study periods into subcomponents attributable to observed factors. Using this method, the differences in the number of CT scans per admission between the two study periods were broken down or "decomposed" into two components; endowment and effect:

168 (1) The Endowment component depicts how much of the difference in the rate of CT use
 169 (between the past and recent period) can be attributed to change in the distribution of all
 170 observed factors such as socio-demographic and clinical characteristic in total and at the

1 ว		
2 3 4	171	individual factor level; the coefficient with 95% confidence interval in each factor quantifies the
5 6 7	172	contribution of the specific factor and is expressed in percentage of its contribution.
8 9	173	(2) The Effect component describes how much of the difference in the rate of CT use (between
10 11	174	the past and recent period) can be attributed to a change in the likelihood of having CT in total
12 13 14	175	and for each of the observed characteristics. The coefficient with 95% confidence interval in each
15 16	176	factor indicates the contribution of the specific factor.
17 18 19	177	The advantage of the multivariable decomposition approach is that it can account for variation due
20 21	178	to a change in the order of variables entering the model and provide standard errors to indicate a
22 23	179	significant contribution of the observed characteristics (28). We conducted decomposition analyses
24 25 26	180	for all tertiary admissions and for unplanned tertiary admissions separately using STATA SE 14 (27).
27 28	181	Results
29 30	182	Characteristics of tertiary admissions with CT scan by study periods
31 32 33	183	Of a total of 2,375,787 tertiary hospital admissions over the 12 year period (2003-2015), 303,439
34 35	184	admissions (12.8%) had at least one CT scan. The proportion of admissions incorporating CT
36 37 29	185	increased from 8.9% in the past period (2003-2005) to 16.6% in the recent period (2013-2015) (Table
38 39 40	186	1).Overall, there was a small change in the distribution of both demographic and clinical
41 42	187	characteristics among admissions that included CT between the two study periods. For example, the
43 44	188	proportion of the patients who had a CT scan and were in the older ager group (75+ years) increased
45 46 47	189	from 30.3% to 32.7% and people living in major cities with CT increased from 82.5% to 88.3%
47 48 49	190	between the past and recent period. Similarly within clinical characteristics, multi-morbidity (6+
50 51	191	morbidities) accounted for 27.8% of admissions with CT in the past period compared to 28.8% in the
52 53	192	recent period. Among major diagnostic groups in the past period, injuries, circulatory system, cancer
54 55 56	193	and digestive system accounted for 15.5%, 15.2%, 11.7% and 10.9% of admissions with CT,
57 58 59 60	194	compared to 18.8%, 13.1%, 7.9% and 11.2% in recent period. For other characteristics, admission

with CT in the recent period had a higher proportion of unplanned admission (90.1% vs. 86.8%) and
private funding sources (21.0% vs. 7.7%) compared with the past period.

197 Decomposition results for the use of CT over the two periods

The results of the decomposition analysis of the difference in average number of CT scans between the two periods for all tertiary admissions and unplanned at the aggregated level are presented in Figure 1 (detail in Appendix- Table 1A-B). The difference in number of CT scans between two periods was 112 scans per 1000 admissions for all tertiary admission and 117 scans per 1000 admissions for unplanned tertiary admissions. While the change in the number of CT scans per admission across the two analyses were not substantially different, a marked difference in the results of the decomposition analysis was observed. Figure 1 shows that 62.7% of the difference in CT use for all tertiary admission was explained by variation in the distribution of all observed characteristics of which unplanned admissions were accounting for 50%. The rest of the difference in CT usage was attributable to variation in the likelihood of having CT in each observed characteristics and unobserved factors (constant coefficient). In contrast, when the analysis was restricted to unplanned admissions, the variation in the distribution of the observed characteristics explained only 17% of the difference in CT use between two periods while 82.7% was due to variation in the likelihood of having CT according to observed and unobserved factors included in the model.

45 213 Details of decomposition analysis for all tertiary admissions
 46

Figure 2 presents decomposition analysis in details of all observed demographic and clinical characteristics. Overall, changes in the distribution of the demographic characteristics including sex, indigenous status, age, SEIFA and ARIA explained only -0.8% of the change in CT use. Change in the distribution of the clinical characteristics including major principal diagnoses and groups of morbidities accounted for 12.4% of the change in CT use. Half of this change (6.1%) was attributable to multi-morbidity (6 or more morbidities) and 4.7% was due to injuries.

BMJ Open

3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
24
25
26
27
28
29
30
31
27
JZ 22
22
34
35
36
37
38
39
40
4U 41
41
42
43
44
45
46
47
48
10
47 50
50
51
52
53
54
55
56
50
57
58
59

60

220 The effect components of the observed demographic characteristics summed to 6.8% while the 221 observed clinical characteristics was -2.6%. Interestingly, the negative coefficient in the young age 222 group suggests that in the most recent time period, the likelihood of having a CT scan for those with 223 young age was significantly lower than in the past period contributing -2.8% to the difference in the 224 number of CT scan per admission between the two periods. In addition, the likelihood of having CT 225 was higher for those identified as living in major cities in the recent period compared to the past 226 period, and lower for people from remote/very remote areas in the recent period compared to the 227 past period. The contribution of each component to the difference in the number of CT's per 228 admission between the two periods was 5.5% (p-value=0.02) and -0.8% (p-values<0.001), 229 respectively. 230 For clinical characteristics, the results indicated a lower likelihood of having CT scanning during a 231 tertiary admission in the recent period than in the past period for all the diagnostic groups, with the 232 exception of those admitted for injuries and endocrine disorders. The increase in patients with

233 multi-morbidities (2-5 comorbidities) contributed 3.2% to the difference between the two periods.
 4
 5

For other factors, the likelihood of having a CT scan following transfer from a secondary hospital in
the recent period was significantly lower than in the past period, contributing -0.8% to the
difference between the two periods. A lower likelihood of having a CT scan in the recent period
compared with the past period for unplanned admission contributed -4.9% to the difference in CT
use between the two periods. Unobserved factors captured in the constant coefficient contributed
to 41.8% of the difference in CT usage between the two periods.

D 240 **Details of decomposition analysis for unplanned tertiary admissions**

Figure 3 presents the results of decomposition analysis for unplanned admissions. Similar to the results in all tertiary admissions, the results for unplanned admission indicate that a substantial proportion of variation in CT use between the two study periods (10.0%) was attributable to the observed clinical characteristics including multimorbidity and major diagnostic groups. However,

variation in the distribution of the observed demographic characteristics such as age, sex and accessibility between two periods only explained a total of -0.5% the difference in CT use. For the specific effect component, a similar finding to all tertiary admission was observed in unplanned admissions. Specifically, a negative coefficient was also observed in young age groups (18-44 years) that suggests a lower likelihood of having CT scan in this age group in the recent period compared with the past. Likewise, a lower likelihood of having CT scan in the recent period compared with the past period was observed among admissions with condition such as circulatory, cancer, and respiratory; this accounted for -3.8%, -3.7%, and -2.7% of the difference between CT use. The likelihood of having a CT scan after transfer from a secondary hospital in the recent period was lower than in the past, contributing -7.5% to the difference in the number of CT scans between the two periods. Discussion This is the first study to examine the contribution of demographic and clinical characteristics to changes in the rate of CT scanning in tertiary hospitals using multivariable decomposition analysis of linked health administrative data over an extended period of time. We found that nearly two thirds of the increase in the use of CT was attributable to changes in the distribution of observed characteristics, with changes in proportion of unplanned admissions accounting for the largest component. However when the analysis was restricted to unplanned admissions, changes in distribution of the observed characteristics only explained about a fifth of the difference in CT usage and the rest was explained by the effect component. In both decomposition analyses, clinical characteristics (12.4% in all admissions and 10% in unplanned admissions) including major diagnostic groups and comorbidities rather than demographic characteristics contributed substantially to explain the variation in CT use between the two periods. Interestingly, our study observed a lower likelihood of having a CT scan in the recent period (2013-2015) compared with the past period

269 (2003-2005) in two subgroups: young adults, which may reflect a movement towards minimising

Page 13 of 35

BMJ Open

medical radiation exposure in the high risk population, and admissions transferred from secondary hospitals, reflecting either a reduction in inappropriate repeat imaging tests or greater access to CT in non-tertiary hospitals.

A recent study examined factors driving the increasing use of CT scan in Australia with a focus on the use of CT outside of public hospital settings (29). Although the study also used the decomposition analysis approach, the only endowment component captured in this study was changes in the population age structure; the rest of the difference in CT use was captured in the number of CT scans per capita. The study found that a change in the number of CT scans per capita, interpreted as a "scope shift", rather than changes in the population age structure accounted for a major component in the change of CT use outside hospital settings over the period 1993 to 2013(29). The previous study used changes in age structure as a marker of changes in need (eg an ageing population), which had been postulated as the reason for increasing CT scanning rates. The finding that changes in the age structure was responsible for only a small proportion of the rate of CT use suggested that "scope shift" (i.e. changes in the practice of CT) was driving the rate of use. However, the previous study was unable to determine what form these practice changes took. By using multivariable decomposition analysis, our study provides a more comprehensive picture of the contribution of demographic, clinical and other observed factors driving the change in CT use in the hospital setting. This is because our analysis was able to differentiate the influence of changes in the distribution (endowment component) from changes in the likelihood of CT (effect component) across a large range of observed factors. While the setting was different, in line with the previous study, we found a minimal contribution of changes in demographic characteristics on the variation in the use of CT in tertiary hospitals.

Our study found that while many observed factors drive the increase of CT use, the change in the likelihood of having CT scan in the young age group and in those with admissions transferred from secondary hospitals (once the variation in the distribution of these factors was accounted for)

reduced the use of CT in the recent period compared with the past period. These finding are
encouraging as they confirm a reduction in two groups where there has been concern regarding
inappropriate imaging. The results coincide with the goals of education campaigns to raise provider
awareness of the risk of ionising radiation, especially among children and young adults (30-32). Since
children and young adults are more sensitive and have more years to develop radiation-induced
cancer (30, 31), radiologists have become more cautious and may have taken care to minimise
unnecessary CT scanning.

Despite challenges due to the vast geographical spread of Australia, over the last 15 years diagnostic imaging services have become more accessible to patients in both major cities and rural areas within a timely and a reasonable distance from their home (31). A report in 2012 shows that more than 90% of Australians can get access to a comprehensive diagnostic imaging facility within a distance of 100km from their residential areas (31) and up to 80% of patients have access to a CT machine within 10 km (31). Between 2003 and 2018, Australia increased the rate of CT equipment per head of population from 40.6 to 67 per million (33, 34). The government also provided a diagnostic imaging bulk billing incentive from November 2009 that increased the accessibility to the service through improving patient affordability. In addition, the government endorsed the diagnostic imaging review reform package in 2011 and implemented it between 2011 and 2016, funded through the Medicare Benefits Schedule. One of the package objectives was to ensure accessibility to quality diagnostic imaging services for people in rural and remote areas. In addition, the package also aimed to promote for effective communication between practitioners and imaging service to ensure appropriate imaging (31). The increasing availability and accessibility of diagnostic imaging, in particular to CT scanners, raised concerns of potential overuse of CT scans increasing radiation exposure to patients and contributing additional costs to the health care system (15). However, we found that the likelihood of having CT scan in tertiary hospitals for people living in remote and very remote areas in the recent period was less than in the past period. Although the magnitude of the variation was small, it accounts for significantly lower use of CT scan in tertiary hospitals. Likewise,

BMJ Open

the rate of CT scan among admissions transferred from the secondary hospital in the recent period was also less than in the past period. This would be consistent with government efforts to ensure accessibility of diagnostic imaging service in rural and remote areas as well as improved information transfer between hospitals. Previous studies have highlighted the important role of image sharing technology in improving provider access and avoiding duplication of investigations (35-37). However, a recent study found that repeat CT scanning is relatively common for patients already imaged prior to transfer to a tertiary hospital, although there was a valid clinical reason for repeat scanning in the majority of cases (15). Despite signs of improvement in our study, further detailed exploration is required to establish the proportion of avoidable repeat scans and therefore the potential benefit in terms of reduced radiation exposure and costs.

This study has a number of limitations, largely due to the nature of linked administrative data. This study only decomposed the difference in CT use between the two study periods based on the available observed characteristics available in the administrative data. Thus, the contribution of unobserved factors was not addressed in this study, although they are captured in the constant value. This study only captured the use of CT in tertiary hospitals because we did not have comprehensive data on CT use in non-tertiary settings, limiting our ability to determine whether the lower likelihood of having CT in the recent period in some subgroups was due to changes in practice or increasing accessibility of CT in other health care settings. While the linked administrative data can comprehensively capture use of health services over time without loss to follow up, information about clinical information is limited to relatively high-level diagnostic codes recorded in the HMDS. Therefore, our study cannot provide information about the proportion of scans that were justified. In conclusion, the use of CT in tertiary hospitals increased between the two study periods and this is in keeping with international trends. The majority of the difference was explained by variation in the distribution of the observed characteristics, particularly unplanned admissions and the clinical characteristics of presenting patients. When the data were restricted to unplanned admissions,

changes in the likelihood of scanning were the major drivers of CT use, with the largest component of this relating to unobserved factors. In both results, clinical characteristics appear to be substantial component driving the growth of CT usage in tertiary hospital settings while the role of demographic characteristics was minimal. Our study also highlights a potential improvement in practice towards reducing medial radiation exposure through a decrease CTs in subpopulations such as young adults and in those admitted via transfer admission from other hospitals. While the finding is limited to tertiary settings, the method used in our study can be applied in a broader context to characterise major factors driving the use of CT scanning as well as the use of diagnostic imaging tests. Our study may assist to identify areas worthy of more in-depth investigations to better inform health policy makers and interventions promoting appropriate use of diagnostic imaging tests.

356 Funding

This work was supported by the National Health and Medical Research Council, project grant
APP1144573. The study funders had no role in the study design, conduct, manuscript writing or
decision to submit for publication.

360 Competing interests

361 The authors have no competing interest to declare. The institutions of RM, NH, DY, MB and DM
362 received grant funding from the National Medical Research Council of Australia for investigator363 initiated research. The funding agreement ensured author independence in designing the study,
364 interpreting the data, writing and publishing the report.

365 Authors' contributions

- 2 366 RM, MB, JD, DM, PO, JSI, SM, NTH conceived the idea and study design for the manuscript. NTH, RM,
 - 367 SM conducted data analyses and drafted the manuscript. RM, SM, NTH, MB contributed to
- 368 statistical expertise. RM, MB, JD, DM, PO, JSI, SM, NTH contributed in analysis, interpreting the
- g 369 results, drafting and revising critically for important intellectual content of the manuscript. RM, MB,

3 4	370	JD, DM, PO, JSI secured funding for the study. All authors read and approved the final version of the
5 6 7	371	manuscript for publication. The corresponding author attests that all listed authors meet authorship
7 8 9	372	criteria and that no others meeting the criteria have been omitted.
10 11 12	373	Ethics approval and consent to participate
13 14 15	374	Human research ethics approval was obtained from Curtin University Human Research Ethics
15 16 17	375	Committee (SMEC-80-10) and the WA Department of Health Human Research Ethics Committee
18 19	376	(2011/97) which exempted the study from requiring individual consent.
20 21 22	377	Patient and public involvement
23 24 25	378	A consumer representative was involved in the design of the grant used to fund this research.
26 27 28	379	Patient consent
29 30 31	380	Not applicable
32 33 34	381	Data sharing statement
35 36	382	Data access is limited to only authors who require it for data analysis - the remaining authors do not
37 38 39	383	have access to the data but did have full access to the results of the data analysis. The data that
40 41	384	support the findings of this study are available from the relevant data custodians of the study
42 43	385	datasets. Restrictions by the data custodians mean that the data are not publicly available or able to
44 45 46	386	be provided by the authors. Researchers wishing to access the datasets used in this study should
40 47 48	387	refer to the WA data linkage application process (https://www.datalinkage-wa.org.au/access-and-
49 50	388	application).
51 52 53	389	Acknowledgements
54 55 56	390	We thank the National Health and Medical Research Council, project grant APP1144573 for
57 58	391	supporting this work. We would also like to acknowledge the Western Australian Data Linkage Unit
59 60	392	and data custodians, as well as the individuals whose data enabled this study. We also acknowledge

the contribution of Dr Richard Fox for his work in the conceptualisation and editing of this

manuscript, and Mr John Stubbs for his contribution as a consumer representative. References Korley FK, Pham JC, Kirsch TD. Use of Advanced Radiology During Visits to US Emergency 1. Departments for Injury-Related Conditions, 1998-2007. Jama. 2010;304(13):1465-71. 2. Pelc NJ. Recent and future directions in CT imaging. Ann Biomed Eng. 2014;42(2):260-8. The Royal Australian and New Zealand College of Radiologist. Radiology at a Glance Australia 3. Sydney: The Royal Australian and New Zealand College of Radiologist; 2018 [Available from: https://www.ranzcr.com/college/document-library/radiology-at-a-glance-australia. 4. OECD Data. Computed tomography (CT) exams: OECD Data; 2018 [Available from: https://data.oecd.org/healthcare/computed-tomography-ct-exams.htm. Australian Radiation Protection and Nuclear Safety Agency. Ionising Radiation and Health: 5. Australian Government; 2015 [Available from: https://www.arpansa.gov.au/sites/default/files/legacy/pubs/factsheets/lonisingRadiationandHealth .pdf. 6. Australian Radiation Protection and Nuclear Safety Agency. Current Australian national diagnostic reference levels for multi detector computed tomography: Australian Radiation Protection and Nuclear Safety Agency; 2018 [Available from: https://www.arpansa.gov.au/research-and-expertise/surveys/national-diagnostic-reference-level-service/current-australian-drls-update/mdct. 7. Picano E. Sustainability of medical imaging. BMJ (Clinical research ed). 2004;328(7439):578-80. Martins R, Raimundo P, Alves P, Monteiro R, Silva LD, Gomes A, et al. Appropriateness of 8. Radiology Test Requests by an Emergency Department: A Retrospective Study. Acta medica portuguesa. 2020;33(1):7-14. 9. Tung M, Sharma R, Hinson JS, Nothelle S, Pannikottu J, Segal JB. Factors associated with imaging overuse in the emergency department: A systematic review. The American journal of emergency medicine. 2018;36(2):301-9. The Royal Australian and New Zealand College of Radiologists. Quality and Standards 10. Sydney: The Royal Australian and New Zealand College of Radiologists; 2019 [Available from: https://www.ranzcr.com/our-work/quality-standards. 11. Pathways. DI. Diagnostic Imaging Pathways.: Government of Western Australia; 2020 [12. Bairstow PJ, Mendelson R, Dhillon R, Valton F. Diagnostic imaging pathways: development, dissemination, implementation, and evaluation. International journal for quality in health care : journal of the International Society for Quality in Health Care. 2006;18(1):51-7. Bhatia RS, Levinson W, Shortt S, Pendrith C, Fric-Shamji E, Kallewaard M, et al. Measuring 13. the effect of Choosing Wisely: an integrated framework to assess campaign impact on low-value care. BMJ Quality & amp; amp; Safety. 2015;24(8):523. 14. Ip IK, Mortele KJ, Prevedello LM, Khorasani R. Repeat abdominal imaging examinations in a tertiary care hospital. Am J Med. 2012;125(2):155-61. 15. Blazak P, Hacking C, Presneill J, Reade M. Early repeat computed tomographic imaging in transferred trauma and neurosurgical patients: Incidence, indications and impact. Journal of medical imaging and radiation oncology. 2018. 16. Colla CH, Morden NE, Sequist TD, Schpero WL, Rosenthal MB. Choosing wisely: prevalence and correlates of low-value health care services in the United States. Journal of general internal medicine. 2015;30(2):221-8.

BMJ Open

2		
3	439	17. Badgery-Parker T. Pearson S-A. Chalmers K. Brett I. Scott IA. Dunn S. et al. Low-value care in
4	440	Australian public hospitals: prevalence and trends over time. BMI Quality & amp: approxime safety.
5	441	2019.28(3):205
6	442	18 Hong AS, Ross-Degnan D, Zhang F, Wharam JE, Small Decline In Low-Value Back Imaging
/	443	Associated With The 'Choosing Wisely' Campaign 2012-14 Health Aff (Millwood) 2017-36(4):671-9
8	773 ЛЛЛ	10 Benchimol El Smeeth L Guttmann A Harron K Moher D Detersen L et al The REporting of
9 10	444	studies Conducted using Observational Poutinely collected health Data (PECOPD) Statement, PLoS
10	445	modicing 2015:12(10):21001895
12	440	ineurcine. 2015;12(10):e1001885.
13	447	20. Holman CD, Bass AJ, Rosman DL, Smith IVIB, Semmens JB, Glasson EJ, et al. A decade of data
14	448	linkage in western Australia: strategic design, applications and benefits of the WA data linkage
15	449	system. Australian health review : a publication of the Australian Hospital Association.
16	450	2008;32(4):766-77.
17	451	21. Holman CD, Bass AJ, Rouse IL, Hobbs MS. Population-based linkage of health records in
18	452	Western Australia: development of a health services research linked database. Australian and New
19	453	Zealand journal of public health. 1999;23(5):453-9.
20	454	22. Smith-Bindman R, Miglioretti DL, Larson EB. Rising use of diagnostic medical imaging in a
21	455	large integrated health system. Health Aff (Millwood). 2008;27(6):1491-502.
22	456	23. AIHW. Rural, regional and remote health: a guide to remoteness classifications: AIHW; 2004
23	457	[Available from: https://www.aihw.gov.au/reports/rural-remote-australians/guide-to-remoteness-
24	458	classifications/formats.
25	459	24. Australian Bureau of Statistics. Census of Population and Housing: Socio-Economic Indexes
20	460	for Areas Canberra: Australian Bureau of Statistics; 2011.
28	461	25. Holman CD. Preen DB. Baynham NJ. Finn JC. Semmens JB. A multipurpose comorbidity
29	462	scoring system performed better than the Charlson index. Journal of clinical epidemiology.
30	463	2005:58(10):1006-14
31	464	26 Australian Institute of Health and Welfare Admitted natient care 2014–15: Australian
32	465	hospital statistics Canberra: AIHW/: 2016 Contract No : Cat. no. HSE 172
33	405	27 Bowers DA Voshicka H. Vun MS. mydemn: Multivariate decomposition for poplinear
34	400	response models. Stata Journal. 2011:11(4):EE6.76
35	407	28 Vun M.S. Decomposing differences in the first moment. Economics Letters. 2004;82(2):275
36	400	28. Full M-5. Decomposing underences in the first moment. Economics Letters. 2004,82(2).275-
37	469	80.
38	470	29. Wright CM, Buisara MK, Norman R, Moorin RE. Increase in computed tomography in
39 40	4/1	Australia driven mainly by practice change: A decomposition analysis. Health Policy.
40 //1	4/2	2017;121(7):823-9.
47	473	30. Mendelson RM, Bairstow PJ. Inappropriate imaging: Why it matters, why it happens, what
43	474	can be done. Journal of medical imaging and radiation oncology. 2010;54(3):173-7.
44	475	31. Medical Benefits Reviews Task Group, Diagnostic Imaging Review Team. Review of funding
45	476	for diagnostic imaging services: final report Department of Health; 2012.
46	477	32. Mendelson R. Diagnostic Imaging Pathways Perth: Health Department of West Australia;
47	478	2010 [Available from: https://www.cancerwa.asn.au/resources/2015-08-19-Richard-Mendelson-
48	479	presentation.pdf.
49	480	33. Commonwealth of Australia. Availability and accessibility of diagnostic imaging equipment
50	481	around Australia. Canberra ACT 2600: Parliament House; 2018. Contract No.: ISBN 978-1-76010-
51	482	715-4.
52	483	34. OECD Data. Computed tomography (CT) scanners: OECD Data; 2018 [Available from:
53	484	https://data.oecd.org/healtheqt/computed-tomography-ct-scanners.htm
54 55	485	35. van de Wetering R. Batenburg R. Versendaal J. Lederman R. Firth L. A balanced evaluation
56	486	perspective: picture archiving and communication system impacts on hospital workflow. I Digit
57	487	Imaging, 2006:19 Suppl 1/Suppl 1):10-7.
58	488	36 Chakera T. Nagree Y. Song S. Jones P. Bridging the communication gan between public and
59	180 180	nrivate radiology services. Medical Journal of Australia, 2000-101/101-558-60
60	-05	private radiology services, metalear sournal of Australia, 2005,131(10),530-00.

1 2		
3 4 5 6	490 491 492	 Vest JR, Jung H-Y, Ostrovsky A, Das LT, McGinty GB. Image Sharing Technologies and Reduction of Imaging Utilization: A Systematic Review and Meta-analysis. J Am Coll Radiol. 2015;12(12 Pt B):1371-9.e3.
7 8	493	
9 10	494	List of tables
10	495	Table 1. Characteristics of the study population by study period and CT scan status
12	496	Figures
14 15 16 17	497 498	Figure 1. Decomposition analysis of the difference in average number of CT scans between the two periods
17 18 19 20	499 500	A. All tertiary admissionsB. Unplanned tertiary admissions
21 22 23	501 502	Figure 2. Details of decomposition analysis of the difference in average number of CT scans between the two periods for all tertiary admissions
24 25 26	503 504	Figure 3. Details of decomposition analysis of the difference in average number of CT scans between the two periods for unplanned tertiary admissions
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 45 56 57 58 90	505	Appendix. Results of decomposition analysis for all tertiary admissions and unplanned tertiary admissions

				Study	period				_	All ye	ears	
	The p	ast perioo (N=519	d (2003-20),286)	05)	The re	cent perio (N=572	d (2013-20: ,642)	15)	2003-2015 (2,375,787)			
	Without C	T scan	With C	CT scan	Without C	T scan	With C	T scan	Without CT scan		With CT	scan
	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
N	473,120	91.1	46,166	8.9	477,462	83.4	95,180	16.6	2,072,348	87.2	303,439	12
Female	237,021	50.1	21,232	46.0	248,412	52.0	43,865	46.1	1,057,280	51.0	137,988	45.
Age groups												
18-44years	134,467	28.4	10,954	23.7	145,181	30.4	20,075	21.1	621,452	30.0	67,456	22.
45-64 years	144,820	30.6	12,797	27.7	150,139	31.4	27,225	28.6	651,941	31.5	87,319	28.
65-74 years	91,075	19.2	8,447	18.3	83,797	17.6	16,798	17.6	368,070	17.8	53,332	17.
75+ years	102,758	21.7	13,968	30.3	98,345	20.6	31,082	32.7	430,885	20.8	95,332	31.
Indigenous status	31,708	6.7	2,111	4.6	32,061	6.7	4,540	4.8	137,806	6.6	14,156	4.
SEIFA												
Least disadvantage	129,988	27.5	12,522	27.1	130,427	27.3	27,885	29.3	595,921	28.8	90,660	29.
Less disadvantage	89,310	18.9	8,495	18.4	87,703	18.4	17,850	18.8	364,787	17.6	53,241	17.
Moderate disadvantage	91,594	19.4	9,112	19.7	99,533	20.8	19,549	20.5	449,532	21.7	65,203	21.
High disadvantage	89,421	18.9	8,923	19.3	95,607	20.0	18,104	19.0	388,311	18.7	57,090	18.
Highest disadvantage	70,595	14.9	6,900	14.9	61,291	12.8	11,344	11.9	262,172	12.7	35,691	11.
unknown	2,212	0.5	214	0.5	2,901	0.6	448	0.5	11,625	0.6	1,554	0.
ARIA												
Major cities	411,062	86.9	38,086	82.5	416,708	87.3	84,046 =	88.3	1,807,380	87.2	261,292	86.
Inner regional areas	29,622	6.3	3,663	7.9	19,675	4.1	3,508	3.7	108,562	5.2	15,908	5.
Outer regional areas	16,251	3.4	2,155	4.7	19,417	4.1	3,814	4.0	75,935	3.7	13,210	4.
Remote	8,968	1.9	1,283	2.8	10,654	2.2	1,901	2.0	44,727	2.2	7,336	2.
Very Remote	6,205	1.3	894	1.9	8,167	1.7	1,458	1.5	28,389	1.4	4,731	1.
Unknown	1,012	0.2	85	0.2	2,841	0.6	453	0.5	7,355	0.4	962	0.
Number of morbidity (MACSS) (Median – IQR)	2	2-3	4	2-6	2	2-3	4	2-6	2	2-3	3	2
Major clinical conditions												

Table 2 Ch staristics of the study ulation by study pariod and CT ctat

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

				Study	period					All ve	ears	
	The p	oast period (N=519	d (2003-200 ,286)	05)	The re	ecent perio (N=572	d (2013-20 ,642)	15)		2003- (2,375	2015 ,787)	
	Without	CT scan	With C	T scan	Without (CT scan	With 0	CT scan	Without C	T scan	With C	scan
	Ν	%	N	%	Ν	%	Ν	%	Ν	%	Ν	%
Mental and behaviour disorders	11,065	2.3	2,015	4.4	15,514	3.2	3,296	3.5	61,756	3.0	11,109	3.7
Circulatory system	35,636	7.5	7,038	15.2	38,534	8.1	12,434	13.1	162,138	7.8	41,737	13.8
Digestive system	31,437	6.6	5,026	10.9	38,055	8.0	10,678	11.2	150,492	7.3	32,897	10.8
Endocrine	9,160	1.9	823	1.8	11,074	2.3	1,381	1.5	46,268	2.2	5,165	1.7
Musculoskeletal system	21,153	4.5	1,532	3.3	21,477	4.5	2,819	3.0	93,520	4.5	9,231	3.0
Respiratory system	15,013	3.2	2,918	6.3	17,001	3.6	5,241	5.5	68,859	3.3	17,149	5.7
Injury	23,483	5.0	7,165	15.5	31,608	6.6	17,913	18.8	126,703	6.1	53,420	17.6
Cancer	21,608	4.6	5,389	11.7	22,465	4.7	7,520	7.9	96,232	4.6	28,783	9.5
Funding sources												
Public	447,927	94.7	42,612	92.3	416,248	87.2	75,202	79.0	1,894,581	91.4	258,126	85.1
Private	25,193	5.3	3,554	7.7	61,214	12.8	19,978	21.0	177,767	8.6	45,313	14.9
Unplanned admissions												
No	316,762	67.0	6,089	13.2	259,764	54.4	9,387	9.9	1,245,273	60.1	34,058	11.2
Yes	156,358	33.0	40,077	86.8	217,698	45.6	85,793	90.1	827,075	39.9	269,381	88.8
Transferred from secondary hospitals												
No	459,539	97.1	41,742	90.4	455,496	95.4	88,480	93.0	1,990,570	96.1	277,994	91.6
Yes	13,581	2.9	4,424	9.6	21,966	4.6	6,700	7.0	81,778	3.9	25,445	8.4
Surgical procedure												
No	457,900	96.8	42,803	92.7	449,708	94.2	87,721	92.2	1,975,259	95.3	280,008	92.3
Yes	15,220	3.2	3,363	7.3	27,754	5.8	7,459	7.8	97,089	4.7	23,431	7.7
Morbidity group												
0-1	103,369	21.85	6,165	13.35	116,826	24.47	13,361	14.04	514,216	24.81	46,686	15.4
2-5	349,557	73.88	27,175	58.86	329,844	69.08	54,377	57.13	1,452,109	70.07	175,377	57.8
6+	20,194	4.27	12,826	27.78	30,792	6.45	27,442	28.83	106,023	5.12	81,376	26.82

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Number of CT per 95% CI admission The use of CT 0.131 0.129; 0.132 The past period The recent period 0.243 0.241; 0.245 Difference 0.112 0.110; 0.114 **Decomposition output** Coefficient 95% CI Percentage 0.068; 0.070 0.069*** Endowment component 62.7 0.043*** 0.041; 0.045 37.3 Effect component 1. Specific endowment component -0.00039*** Sex -0.00043; -0.00036 -0.4 Indigenous 0.000074*** 0.000066; 0.000081 0.1 Age groups -0.00025*** -0.00027; -0.00023 18-44 years -0.2 45-64 years 0.00010*** 0.000089; 0.00011 0.1 65-74 years -0.00025*** -0.00029; -0.00021 -0.2 -0.0000039** -0.0000066; -0.0000012 -0.004 75 + years SEIFA 0.0000081 Least disadvantage -0.0000085; 0.000025 0.01 Less disadvantage -0.000020 -0.000053; 0.000013 -0.02 Moderate disadvantage 0.000056 -0.000060; 0.00017 0.1 High disadvantage 0.000061 -0.000015; 0.00014 0.1 Highest disadvantage -0.00010 -0.00029; 0.000086 -0.1 Unknown -0.000028 -0.000075; 0.000018 -0.2 ARIA Major cities -0.00012** -0.00020; -0.000034 -0.1 -0.00029* -0.00052; -0.000055 -0.3 Inner regional areas Outer regional areas 0.000076** 0.000027; 0.00013 0.1 Remote 0.000014 -0.0000095; 0.000037 0.01 0.000065** Very Remote 0.000028; 0.00010 0.1 Unknown -0.00015* -0.00030; -0.0000086 -0.1 Major principal diagnoses -0.00022*** -0.00028; -0.00017 -0.2 Mental conditions Circulatory conditions 0.00051*** 0.00048; 0.00054 0.5 **Digestive conditions** 0.0010*** 0.00096; 0.0011 0.9 -0.00013*** **Endocrine conditions** -0.00016; -0.00011 -0.1 Musculoskeletal 0.0000029 -0.0000064; 0.000012 0.003 -0.000054*** -0.000080; -0.000028 -0.05 Respiratory 0.0052*** Injuries 0.0051; 0.0053 4.7 Cancer 0.000084*** 0.000082; 0.000086 0.1 Number of morbidities -0.0021*** 0-1 -0.0022; -0.0021 -1.9 2-5 0.0025*** 0.0024; 0.0026 2.3 0.0067*** 6 or more 0.0065; 0.0068 6.1 0.0032*** Private funding 0.0029; 0.0035 2.9

Table 1A. Decomposition of the difference in the use of CT of all tertiary admissions between two periods

59

Unplanned admission	0.055***	0.055; 0.056	50.
Transferred from secondary hospitals	-0.00073***	-0.00081; -0.00065	-0.
Had surgical procedures in hospital	-0.0010***	-0.0012; -0.00092	-0.
2. Specific effect component			
Sex	-0.00043	-0.0015; 0.00059	-0.
Indigenous	0.00059***	0.00026; 0.00091	0.
Age groups			
18-44 years	-0.0031***	-0.0037; -0.0025	-2.
45-64 years	-0.00023	-0.00075; 0.00029	-0.
65-74 years	0.00050*	0.00011; 0.00089	0
75 + years	0.0021***	0.0017; 0.0025	1
SEIFA			
Least disadvantage	0.00080	-0.00050; 0.0021	0.
Less disadvantage	0.00054	-0.00037; 0.0014	0.
Moderate disadvantage	0.00060	-0.00033; 0.0015	0
High disadvantage	0.00044	-0.00046; 0.0013	0
Highest disadvantage	0.00055	-0.00018; 0.0013	0
Unknown	-0.000070	-0.00017; 0.000031	-0
ARIA			
Major cities	0.0060*	0.00086; 0.011	5
Inner regional areas	0.00014	-0.00029; 0.00056	0
Outer regional areas	-0.00013	-0.00038; 0.00011	-0
Remote	-0.00050***	-0.00065; -0.00035	-C
Very Remote	-0.00032***	-0.00044; -0.00021	-C
Unknown	0.000092**	0.000037; 0.00015	C
Major principal diagnoses			
Mental conditions	-0.00062***	-0.00077; -0.00048	-0
Circulatory conditions	-0.0011***	-0.0014; -0.00087	-1
Digestive conditions	-0.0011***	-0.0014; -0.00087	-1
Endocrine conditions	0.000037	-0.00012; 0.00019	-C
Musculoskeletal	-0.0015***	-0.0018; -0.0012	-1
Respiratory	-0.00093***	-0.0011; -0.00076	-0
Injuries	0.00015	-0.000048; 0.00034	0
Cancer	-0.0022***	-0.0024; -0.0020	-2
Number of morbidities			
0-1	0.0019***	0.0015; 0.0024	1
2-5	0.0035***	0.0024; 0.0045	Э
6 or more	-0.00089***	-0.0010; -0.00078	-0
Private funding	-0.00037***	-0.00057; -0.00017	-C
Unplanned admission	-0.0054***	-0.0064; -0.0044	-4
Transferred from secondary hospitals	-0.00089***	-0.0010; -0.00075	-0
Had surgical procedures in hospital	-0.00021**	-0.00035; -0.000062	-C
Constant	0.046***	0.041: 0.051	41

Table 1B. Decomposition of the difference in the use of CT for unplanned admissions between two periods

	Number of CT per	95% Cl	
The use of CT	aumission		
The past period	0 301	0 298 0 304	
The recent period	0.301	0.414.0.420	
Difference	0.117	0.112:0.120	
Decomposition of the difference	Coefficient	95% CI	Percentage
Endowment component	0 020***	0.019.0.021	17 1
Effect component	0.020	0.019, 0.021	87.1
Specific endowment	0.050	0.052, 0.10	
Sex	0.00096***	(0.00087.0.0011)	0.8
	-0.0024***	(-0.0026: -0.0021)	-2.0
Age groups	0.0021	(0.0020) 0.0021)	2.0
18-44 years	0.0017***	(0.0016: 0.0019)	1.4
45-64 years	0.0011***	(0.00099: 0.0012)	0.9
65-74 years	-0.00011***	(-0.00012: -0.000092)	-0.1
75 + vears	0.000087***	(0.0000039: 0.000013)	0.01
SEIFA		(0.000000) 0.000010)	0.01
Least disadvantage	0.00023	(-0.000026: 0.00048)	0.2
Less disadvantage	0.000092	(-0.0000057; 0.00019)	0.1
Moderate disadvantage	0.00018	(-0.00021; 0.00057)	0.2
High disadvantage	-0.000023	(-0.000097; 0.000050)	-0.02
Highest disadvantage	-0.00036	(-0.0011; 0.00040)	-0.3
Unknown	-0.00021	(-0.00053; 0.00011)	-0.2
ARIA			
Major cities	-0.00043	(-0.0012; 0.00037)	-0.4
Inner regional areas	-0.00073	(-0.0019; 0.00040)	-0.6
Outer regional areas	-0.000031**	(-0.000053; -0.0000085)	-0.03
Remote	0.0000088	(-0.0000017; 0.0000035)	0.001
Very Remote	0.00014***	(0.000071; 0.00021)	0.1
Unknown	-0.00068	(-0.0013; -0.000048)	-0.6
Major principal diagnoses			
Mental conditions	0.00076***	(0.00065; 0.00087)	0.6
Circulatory conditions	-0.0039***	(-0.0043; -0.0036)	-3.3
Digestive conditions	0.00063***	(0.00058; 0.00069)	0.5
Endocrine conditions	0.00088***	(0.00073; 0.0010)	0.7
Musculoskeletal	-0.00062***	(-0.00077; -0.00047)	-0.5
Respiratory	0.0014***	(0.0011; 0.0016)	1.2
Injuries	0.0034***	(0.0032; 0.0035)	2.8
Cancer	-0.0042***	(-0.0044; -0.0040)	-3.5
Number of morbidities			
0-1	0.0020***	(0.0019; 0.0021)	1.7
2-5	0.0018***	(0.0017; 0.0019)	1.5

6 or more	0 010***	(0,010,0,011)	
Private funding	0.0094***	(0.0084: 0.010)	
Transferred from secondary hospitals	0.00049***	(0.00044: 0.00054)	
Admission with surgical procedures	-0.0019***	(-0.0022: -0.0017)	
Specific effect component		()	
Sex	0.0035	(-0.00021; 0.0072)	
Indigenous	0.00050	(-0.00051; 0.0015)	
Age groups			
18-44 years	-0.013***	(-0.015; -0.010)	-
45-64 years	-0.0011	(-0.0027; 0.00042)	
65-74 years	0.0015**	(0.00046; 0.0026)	
75 + years	0.0083***	(0.0066; 0.0100)	
SEIFA			
Least disadvantage	0.0024	(-0.0023; 0.0071)	
Less disadvantage	0.0023	(-0.00092; 0.0055)	
Moderate disadvantage	0.0018	(-0.0015; 0.0051)	
High disadvantage	0.0015	(-0.0017; 0.0047)	
Highest disadvantage	0.0020	(-0.00063; 0.0046)	
Unknown	-0.00034	(-0.00086; 0.00017)	
ARIA			
Major cities	0.0024	(-0.016; 0.020)	
Inner regional areas	0.00030	(-0.0013; 0.0019)	
Outer regional areas	0.000092	(-0.00081; 0.00100)	
Remote	-0.0016***	(-0.0021; -0.0010)	
Very Remote	-0.00099***	(-0.0014; -0.00056)	
Unknown	0.00058**	(0.00019; 0.00097)	
Major principal diagnoses			
Mental conditions	-0.0031***	(-0.0043; -0.0019)	
Circulatory conditions	-0.0045***	(-0.0061; -0.0029)	
Digestive conditions	-0.0034***	(-0.0047; -0.0022)	
Endocrine conditions	0.0010***	(0.00033; 0.0017)	
Musculoskeletal	-0.0019***	(-0.0026; -0.0012)	
Respiratory	-0.0032***	(-0.0045; -0.0020)	
Injuries	0.0037***	(0.0021; 0.0053)	
Cancer	-0.0044***	(-0.0050; -0.0038)	
Number of morbidities			
0-1	0.0079***	(0.0064; 0.0093)	
2-5	0.0024	(-0.00097; 0.0057)	
6 or more	-0.0060***	(-0.0068; -0.0052)	
Private funding sources	-0.00020	(-0.00099; 0.00058)	
Transferred from secondary hospitals	-0.0090	(-0.010; -0.0078)	
Admission with surgical procedures	-0.0015**	(-0.0024; -0.00050)	
Constant	0.11***	(0.091; 0.12)	

The RECORD statement – checklist of items, extended from the STROBE statement, that should be reported in observational studies usin	g
outinely collected health data.	

	Item No.	STROBE items	Location in manuscript where	RECORD items	Location in manuscript where items are reported
Title and abstract	t.	<u> </u>	items are reported		items are reported
	1	(a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of what was done and		RECORD 1.1: The type of data used should be specified in the title or abstract. When possible, the name of the databases used should be included.	1.1 Abstract, data sources.
		what was found		RECORD 1.2: If applicable, the geographic region and timeframe within which the study took place should be reported in the title or abstract.	1.2 Abstract, data sources
			· 6/;e	RECORD 1.3: If linkage between databases was conducted for the study, this should be clearly stated in the title or abstract.	1.3 Abstract, data sources.
Introduction	T	I	I		
Background rationale	2	Explain the scientific background and rationale for the investigation being reported		5/1	Introduction, lines 30-65
Objectives	3	State specific objectives, including any prespecified hypotheses			Introduction, lines 68-70
Methods	1		I		
Study Design	4	Present key elements of study design early in the paper			Methods- line 72-73 and Study population (line 85-93)
Setting	5	Describe the setting, locations, and relevant dates, including			Methods, data sources and study population
	<u>I</u>	For peer review only - htt	ı tp://bmjopen.bmj.com/site	/about/guidelines.xhtml	F - P

			periods of recruitment, exposure,			
1			follow-up, and data collection			
2	Participants	6	(a) Cohort study - Give the		RECORD 6.1: The methods of study	6.1 Methods study
с Д			eligibility criteria and the		population selection (such as codes	population and
- 5			sources and methods of selection		or algorithms used to identify	design
6			of participants Describe		subjects) should be listed in detail. If	design.
7			methods of follow up		this is not possible, on explanation	6.2 Mathada data
8			Constant of the Circle the		this is not possible, an explanation	0.2 Methods, data
9			Case-control study - Give the		snould be provided.	sources.
10			eligibility criteria, and the			
11			sources and methods of case		RECORD 6.2: Any validation	6.3 Methods, data
12			ascertainment and control		studies of the codes or algorithms	source, reference 28
13			selection. Give the rationale for		used to select the population should	and 29
14			the choice of cases and controls		be referenced. If validation was	
15			Cross-sectional study - Give the		conducted for this study and not	
10 17			eligibility criteria, and the		published elsewhere, detailed	
17			sources and methods of selection		methods and results should be	
10			of participants		provided.	
20					1	
21			(b) Cohort study - For matched		RECORD 6 3. If the study involved	
22			studies give matching criteria		linkage of databases consider use of	
23			and number of exposed and		a flow diagram or other graphical	
24			unexposed		display to demonstrate the data	
25			Case control study For		linkaga process including the	
26			Case-control study - For		number of individuals with linked	
27			matched studies, give matching			
28			criteria and the number of		data at each stage.	
29			controls per case			
31	Variables	7	Clearly define all outcomes,		RECORD 7.1: A complete list of	Methods, outcome
32			exposures, predictors, potential		codes and algorithms used to classify	measures,
33			confounders, and effect		exposures, outcomes, confounders,	independent
34			modifiers. Give diagnostic		and effect modifiers should be	measures
35			criteria, if applicable.		provided. If these cannot be reported,	
36					an explanation should be provided.	
37	Data sources/	8	For each variable of interest,			Methods, data
38	measurement		give sources of data and details			sources, outcome
39 40			of methods of assessment			measures, and
40 41			(measurement)			independent
41 42			(measures
-⊤∠ 43		1	1	1	I	11104154165
44						
45			For peer review only - htt	p://bmjopen.bmj.com/site/	/about/guidelines.xhtml	
46						
47						

		Describe comparability of			
		assessment methods if there is			
		more than one group			
Bias	9	Describe any efforts to address potential sources of bias			Methods, statistical methods line 128- 146
Study size	10	Explain how the study size was arrived at			Methods and Results (149-152)
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why			Methods, outcome measure, and independent measures
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) <i>Cohort study</i> - If applicable, explain how loss to follow-up was addressed <i>Case-control study</i> - If applicable, explain how matching of cases and controls was addressed <i>Cross-sectional study</i> - If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses 	64.0	n on second	Methods, statistical methods
Data access and cleaning methods				RECORD 12.1: Authors should describe the extent to which the investigators had access to the	12.1 Methods 12.2 Methods, data sources

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	33	of 35	
. age	00	0.00	

 BMJ Open

			database population used to create the study population.	
			RECORD 12.2: Authors should provide information on the data cleaning methods used in the study.	
Linkage			RECORD 12.3: State whether the study included person-level, institutional-level, or other data linkage across two or more databases. The methods of linkage and methods of linkage quality evaluation should be provided	12.3 Methods, da sources (76-87)
Results	1		Cratamon Should be provided.	
Participants	13	 (a) Report the numbers of individuals at each stage of the study (<i>e.g.</i>, numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed) (b) Give reasons for non- participation at each stage. (c) Consider use of a flow diagram 	RECORD 13.1: Describe in detail the selection of the persons included in the study (<i>i.e.</i> , study population selection) including filtering based on data quality, data availability and linkage. The selection of included persons can be described in the text and/or by means of the study flow diagram.	13.1 Method, stud population and Results (lines 14 152)
Descriptive data	14	 (a) Give characteristics of study participants (<i>e.g.</i>, demographic, clinical, social) and information on exposures and potential confounders (b) Indicate the number of participants with missing data for each variable of interest (c) <i>Cohort study</i> - summarise follow-up time (<i>e.g.</i>, average and total amount) 		Results, lines 153 163 and Table 1

Outcome data	15	Cohort study - Report numbers of outcome events or summary measures over time Case-control study - Report numbers in each exposure category, or summary measures of exposure Cross-sectional study - Report numbers of outcome events or summary measures			Results, Table 1
Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 	or revie		Results, (a) Figure 1, 2, and 3 and Appendix, lines 165-234 b) Categorisation provide in the methods (line 105- 124) c) NA
Other analyses	17	Report other analyses done— e.g., analyses of subgroups and interactions, and sensitivity analyses		07/	Methods lines 128- 146
Discussion					
Key results	18	Summarise key results with reference to study objectives			Discussion, lines 236-251
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias		RECORD 19.1: Discuss the implications of using data that were not created or collected to answer the specific research question(s). Include discussion of misclassification bias, unmeasured confounding, missing data, and changing eligibility over	Discussion, lines 310-320

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant			Discussion and Conclusion section (lines 310-334)
	evidence			(inics 510 554).
21	Discuss the generalisability (external validity) of the study results			Australian context clear in manuscript with discussion of relevant literature
1				
22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based			Role of the funding source, lines 341- 344
			RECORD 22.1: Authors should provide information on how to access any supplemental information such as the study protocol, raw data, or programming code.	22.1 Supplementary data provided to justify results and interpretation. Line 345-350: The data that support the findings of this study are available from the relevant data custodians of the study datasets. Restrictions by the data custodians mean that the data are not publicly available or able to be provided by the
2	.1	studies, and other relevant evidence 1 Discuss the generalisability (external validity) of the study results 2 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based 	studies, and other relevant evidence 1 Discuss the generalisability (external validity) of the study results 2 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	studies, and other relevant evidence

		wishing to access
		the datasets used in
		this study should
		refer to the WA data
		linkage application
		process
		(https://www.datalin
		kage-
		wa.org.au/access-
		and-application).

*Reference: Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, Sørensen HT, von Elm E, Langan SM, the RECORD Working Committee. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement. *PLoS Medicine* 2015; in press.

*Checklist is protected under Creative Commons Attribution (CC BY) license.

BMJ Open

Factors driving computed tomography utilisation in tertiary hospitals: a decomposition analysis using linked administrative data in Western Australia

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052954.R1
Article Type:	Original research
Date Submitted by the Author:	14-Oct-2021
Complete List of Authors:	Ha, Ninh; Curtin University Bentley Campus, Health Economics & Data Analytics, Curtin School of Population Health; Institute of Public Health Vietnam, Department of Community Health Maxwell, Susannah; Curtin University - Perth Bentley Campus, Health Economics & Data Analytics, Curtin School of Population Health, Faculty of Health Sciences Bulsara, Max; The University of Notre Dame Australia, Institute for Health and Rehabilitation Research; The University of Western Australia, Centre for Health Services Research, School of Population and Global Health Doust, Jenny; The University of Queensland Faculty of Medicine and Biomedical Sciences Mcrobbie, Donald; The University of Adelaide, School of Physical Sciences O'Leary, Peter; Curtin University Faculty of Health Sciences; The University of Western Australia Faculty of Health and Medical Sciences, Obstetrics and Gynaecology Medical School Slavotinek, John; Flinders Medical Centre, South Australia Medical Imaging; Flinders University - Perth Bentley Campus, Health Moorin, Rachael; Curtin University - Perth Bentley Campus, Health Economics & Data Analytics, Curtin School of Population Health, Faculty of Health Sciences; The University of Western Australia, Medical Imaging; Flinders University of Western Australia, Centre for Health Sciences; The University of Western Australia, Centre for Health Sciences; Research, School of Population and Global Health
Primary Subject Heading :	Health services research
Secondary Subject Heading:	Health policy, Public health
Keywords:	HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Diagnostic radiology < RADIOLOGY & IMAGING, Computed tomography < RADIOLOGY & IMAGING, PUBLIC HEALTH
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
5 4	1	Factors driving computed tomography utilisation in tertiary hospitals: a decomposition
5		
6	2	analysis using linked administrative data in Western Australia
7	-	
0 9	3	Authors
10	4	Ninh Thi Ha ^{1,10} , PhD, <u>Thi ha@curtin.edu.au</u>
11	5	Suzy Maxwell ² , PhD, <u>Susannah.maxwell@curtin.edu.au</u>
12	6	Max Bulsara ^{2,3} , <u>max.bulsara@nd.edu.au</u>
13	7	Jenny Doust ⁴ , j.doust@uq.edu.au
14	8	Donald McRobbie ⁵ , <u>donald.mcrobbie@adelaide.edu.au</u>
16	9	Peter O'Leary ^{1,6,7,} , PhD, <u>peter.oleary@health.wa.gov.au</u>
17	10	John Slavotinek ^{8,9} , <u>John Slavotinek@sa.gov.au</u>
18	11	Rachael Moorin ^{1,3,} PhD, <u>R.Moorin@curtin.edu.au</u>
19	12	Affiliations
20 21	13	1. Health Economics & Data Analytics, Curtin School of Population Health, Faculty of Health
22	14	Sciences, Curtin University, Western Australia
23	15	2. Institute for Health and Rehabilitation Research, University of Notre Dame, Western Australia
24	16	3. Centre for Health Services Research, School of Population and Global Health, The University of
25	17	Western Australia
26 27	18	4. Centre for Longitudinal and Life Course Research, Faculty of Medicine, University of Queensland
27	19	5. School of Physical Sciences, University of Adelaide, Adelaide, South Australia
29	20	6. Obstetrics and Gynaecology Medical School, Faculty of Health and Medical Sciences, The
30	21	University of Western Australia
31	22	7. PathWest Laboratory Medicine Western Australia, QE2 Medical Centre, Nedlands, Western
32	23	Australia
33 34	24	8. South Australia Medical Imaging, Flinders Medical Centre, South Australia Health
35	25	9. College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
36	26	10. Department of Community Health, Institute of Public Health, Ho Chi Minh City, Vietnam
37	27	*Corresponding author:
38	20	Ninh Thi Up, thi ha Quertin adu au ninh ha05 Qamail aom
39 40	28	Ninn Thi Ha, thi.na@curtin.edu.au, hinn.na05@gman.com
41 42	29	Health Economics & Data Analytics, Curtin School of Population Health, Faculty of Health
43	30	Sciences, Curtin University, Western Australia
44	31	GPO Box U1987, Perth, Western Australia, 6845
45		
46	32	
47 78	33	
49		
50		
51		
52		
53 54		
55		
56		
57		
58		
59		
00		

3	
4	
5	
6	
7	
8	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
15	
75 76	
40	
4/	
48	
49	
50	
51	
52	
53	
51	
54	
22	
56	
57	
58	
59	
60	

34	Abstract
35	Objectives: While computed tomography (CT) scanning plays a significant role in health care, its
36	increasing use has raised concerns about inappropriate use. This study investigated factors driving
37	the changing use of CT among people admitted to tertiary hospitals in Western Australia (WA).
38	Design and setting: A repeated cross-sectional study of CT use in WA in 2003-2005 and 2013-2015
39	using linked administrative heath data at the individual patient level.
40	Participants: A total of 2,375,787 tertiary hospital admissions of people aged 18 years or older.
41	Main outcome measure: Rate of CT scanning per 1000 hospital admissions.
42	Methods: A multivariable decomposition model was used to quantify the contribution of changes in
43	patient characteristics and changes in the probability of having a CT over the study period.
44	Results: The rate of CT scanning increased by 112 CT scans per 1000 admissions over the study
45	period. Changes in the distribution of the observed patient characteristics were accounted for 62.7%
46	of the growth in CT use. However, among unplanned admissions, changes in the distribution of
47	patient characteristics only explained 17% of the growth in CT use, the remainder being explained by
48	changes in the probability of having a CT scan. Whilst the relative probability of having a CT scan
49	generally increased over time across most observed characteristics, it reduced in young adults (-
50 51	2.8%), people living in the rural/remote areas (-0.8%) and people transferred from secondary hospitals (-0.8%).
52	Conclusions: Our study highlights potential improvements in practice towards reducing medical
53	radiation exposure in certain high risk population. Since changes in the relative probability of having
54	a CT scan (representing changes in scope) rather than changes in the distribution of the patient
55	characteristics (representing changes in need) explained a major proportion of the growth in CT use,

- 56 this warrants more in-depth investigations in clinical practices to better inform health policies
- ⁹ 57 promoting appropriate use of diagnostic imaging tests.

1 2		
2 3 4	58	Strengths and limitations of this study
5 6	59	This study utilised a large linked administrative dataset over a period of 13 years, allowing
7 8	60	the measurement of the contributions of changes in demographic and clinical characteristics
9 10 11	61	to the changing use of CT.
12 13	62	With a rich source of individual level data, this study identified a wide range of demographic
14 15	63	and clinical factors driving the use of CT in tertiary hospitals.
16 17	64	Since the decomposition analysis methods only quantified the contribution of observed
18 19 20	65	factors, contribution of any unobserved factors to the change of CT use was summed in the
20 21 22	66	constant coefficient.
23 24	67	Our study was limited to assessing the factors driving the use of CT scanning in tertiary
25 26	68	(teaching) hospitals, therefore, caution is needed when generalising the results to other
27 28 29	69	settings.
30 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	70	

2
כ ⊿
4 7
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23
24
25
26
2/
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
Δ <u>Λ</u>
44 15
43 16
40
4/
48
49
50
51
52
53
54
55
56
57
58
59

71 Introduction

Computed tomography (CT) is one of the most important technical developments in medicine and is now an essential part of clinical practice (1, 2). In Australia, CT accounted for 13% of diagnostic imaging tests with an average of 134 scans per 1000 people in 2017/18 (3, 4). It is estimated that diagnostic imaging tests increased the annual effective ionising radiation dose on the Australian population by 50% (5). In acknowledgement of the relatively high radiation burden of diagnostic imaging, Australia introduced Diagnostic reference levels (DRL) in 2011 providing a benchmark to facilitate monitoring and comparison of radiation dose between facilities (6).

Despite the advanced technology leading to significant contribution in healthcare, its increasing use has raised a concern about inappropriate use. Approximately one third of diagnostic imaging tests are estimated to be unnecessary or inappropriate, with the potential to do more harm than good and represent a waste of health care resources (7, 8). In the case of CT the potential harm includes exposure to ionising radiation and the associated risk of cancer to population. A previous study found a high rate of inappropriate CT among older patients and those with multi-morbidity (9).

85 In response to concerns of inappropriate utilisation of the advanced diagnostic technique, since 86 early 2000, the Royal Australian and New Zealand College of Radiologists (RANZCR) have provided 87 the standards of practice for clinical radiology (10). In Western Australia (WA), Diagnostic Imaging 88 Pathways has been deployed to promote appropriate use of imaging (11, 12). Most recently, in 2015 89 NPS MedicineWise launched the Australian "Choosing Wisely" campaigns promoting discussion on 90 reducing low value care (13), changing health care provider behaviour and increasing patient 91 knowledge. The overall intention is to improve patient safety and efficiency in health service 92 utilisation (13).

While substantial effort is under way to promote appropriate use of imaging tests, current data
 While substantial effort is under way to promote appropriate use of imaging tests, current data
 reporting variation in potentially avoidable diagnostic imaging tests, particularly for CT over the last
 decade are limited (9, 14, 15). Recent studies mainly focus on examining the prevalence of low value

BMJ Open

4
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
21
27
2∠ 22
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
<u>10</u>
77 50
50
51
52
53
54
55
56
57
58
59

care (16), the early trend of procedure uptake in hospital settings (17) and selected spinal imaging 96 97 (18) following Choosing Wisely campaigns. Therefore, better understanding of changes in the use of 98 CT scanning over the past decade and demographic and clinical factors driving the change in the use 99 of CT are necessary to support monitoring the use of CT scanning and to guide future research and 100 public health interventions. The aim of this study is to use decomposition analysis to examine factors 101 driving changes in CT use between two periods of time in tertiary hospitals in WA: recent (2013 to 102 2015) and past (2003 to 2005).

103 Methods

104 We conducted an observational repeated cross-sectional study of CT use in WA in 2003-2005 and 2013-2015 using linked administrative heath data at the individual patient level. Reporting follows 105 106 the Reporting of studies Conducted using Observational Routinely-collected health Data (RECORD) 107 guidelines (19).

108 **Data sources**

109 The data sources included three datasets:

- 110 (i) WA Hospital Morbidity Data system (January 2003- May 2016) providing information on
- 111 diagnosis, date of admission and discharge from all hospitals in WA, and basic socio-
- demographic and clinical characteristics. 112
- (ii) WA Emergency Department (ED) presentation data (January 2003- December 2016) providing 113 114 details of presentation time and date, presentation type, triage code, major diagnostic group 115 and basic socio-demographic characteristics.
 - (iii) WA Picture archiving and communication system (PACS) data (January 2003 to May 2016) 116
 - 117 providing documentation on all computed tomography (CT) scans conducted in tertiary
- including date of the scan, and the CT protocols used. All the datasets were linked using 118
- 119 probabilistic matching algorithms with a level of data accuracy up to 99.9% (20, 21).
- 60

3 4	120	Details of data linkage process is presented in the website of Western Australia Data Linkage				
5 6 7	121	(https://www.datalinkage-wa.org.au/dlb-services/linkage/).				
8 9	122	Study population				
10 11	123	The study population consisted of all hospital admissions in all four tertiary (teaching) hospitals				
12 13	124	located centrally in Perth, which accounted for nearly 50% of admissions in public hospitals, in WA				
14 15	125	between 2003 and 2015 inclusive, for people aged 18 years and older. Non-tertiary admissions (i.e.				
16 17 18	126	admission from secondary (district general) hospitals) were excluded as CT scans performed in the				
19 20	127	hospitals are not consistently included in the PACS dataset. The study population was then				
21 22	128	constructed into two study periods; past period (2003-2005) and recent period (2013-2015). To				
23 24	129	avoid over-counting hospital admissions, for example where a patient was transferred between				
25 26 27	130	hospitals, consecutive tertiary hospital admission records for an individual were aggregated into a				
28 29	131	single hospital admission where admission or discharge dates were nested or overlapping, or where				
30 31	132	an admission date was within one day of the discharge date. A tertiary hospital admission was				
32 33	133	counted from the first date of admission in a tertiary hospital–or where applicable– the date of a				
34 35 26	134	prior associated tertiary ED presentation so long as it resulted in an admission, to the last discharge				
37 38	135	date in tertiary hospitals.				
39 40 41	136	Patient and Public Involvement				
42 43	137	This study used linked administrative health data of all tertiary hospital admissions of people aged				
45 46	138	18 years or older. The patients were not directly involved in the design or conduct of this study. Our				
47 48	139	consumer representative (Mr John Stubbs) was involved in the design of the grant application used				
49 50	140	to fund this research and is a member of the research team providing ongoing input to analysis of				
51 52 53	141	the data, interpretation of the results and development of publications. The Western Australian Data				
54 55	142	Linkage Branch and the data custodians of the WA Emergency Department Data Collection and the				
56 57	143	Picture Archiving Communications System data provided data for this project.				
58 59 60	144					

BMJ Open

2		
3 4	145	Outcome measures
5 6	146	The outcome measure of this study was the number of CT scans performed within a tertiary hospital
7 8	147	admission. The number of CT scans was counted from the first day admitted to a tertiary
9 10	148	hospital/presentation to a tertiary ED until the last date of discharge for that admission. To avoid
11 12 12	149	over-counting the use of CT, multiple CT records with the same day and same anatomic areas were
13 14 15	150	collapsed into one CT event (22).
16 17	151	Independent measures
18 19 20	152	This study measured basic demographic and socioeconomic characteristics including age (18-44, 45-
21 22	153	64, 65-74, and 75+ years), sex, indigenous status, residential remoteness classified according to
23 24	154	Accessibility Remoteness of Australia index (ARIA) (23) (major cities, inner regional areas, outer
25 26	155	regional areas, remote and very remote), and quintiles of the Census-specific Socio-economic
27 28 29	156	Indexes for Areas (SEIFA) index of relative socioeconomic disadvantage (24) (least disadvantage, less
30 31	157	disadvantage, moderate disadvantage, high disadvantage, and highest disadvantage).
32 33 34	158	Clinical characteristics included major clinical diagnostic groups and the number of morbidities.
35 36	159	Major clinical diagnostic groups included mental and behavioural disorders, circulatory system,
37 38	160	digestive system, endocrine, nutritional and metabolic diseases, musculoskeletal system, respiratory
39 40	161	system, injuries, and neoplasms. The conditions were identified in the principal diagnostic field of
41 42 43	162	the hospital morbidity data record using ICD-AM-10 (the International Statistical Classification of
44 45	163	Diseases and Related Health Problems, 10 th Revision, Australian Modification). Multimorbidity was
46 47	164	ascertained using the Multipurpose Australian Comorbidity Scoring system (25) using ICD-AM-10
48 49 50	165	across all diagnostic fields and was classified into 0-1, 2-5 and 6+ comorbidities. In addition, an
50 51 52	166	admission was classified as having had a surgical procedure where the principal procedure field
53 54	167	included one of the 20 most common surgical procedure as per ACHI codes (the Australian
55 56	168	classification of health intervention) (26). Other independent measures included funding source
57 58 50	169	(public or private), admission type (elective or unplanned admission) and admission with/without a
60	170	transfer from secondary hospitals.

7

3 4	171
5 6 7	172
, 8 9	173
10 11	174
12 13	175
14 15 16	176
10 17 18	177
19 20 21	178
22 23	179
24 25	180
26 27 28	181
29 30	182
31 32 33	183
34 35 26	184
30 37 38	185
39 40 41	186
41 42 43	187
44 45	188
46 47 48	189
49 50	190
51 52	191
53 54	192
55 56	193
57 58 59	194
60	

Statistical analysis

,	172	Descriptive analysis was conducted to examine the distribution of socio-demographic and clinical
;	173	characteristics of the study population over two study periods; past period (2003-2005) and recent
0 1 2	174	period (2013-2015) as well as the whole study population (2003-2015). Multivariable decomposition
2 3 4	175	for nonlinear response models, an extension of Oaxaca-Blinder decomposition analysis (27), was
5 6	176	conducted to decompose the differential rate of CT use between the two study periods into the
7 8	177	endowment (distribution of observed patient characteristics) and effect (relative probability of
9 20 21	178	having CT scan) components:
2	179	(1) The Endowment component quantifies the amount of the difference in the rate of CT use is
4 25 26	180	explained by the changes in the distribution of observed socio-demographic and clinical
.7 .8	181	characteristics between the two study periods.
9 0 1	182	(2) The Effect component describes how much of the difference in the rate of CT scanning is
2 3 4	183	explained by a change in the relative probability of having CT across observed characteristics.
5	184	We conducted decomposition analyses for all tertiary admissions and for unplanned tertiary
7 8 9	185	admissions separately using STATA SE 14 (27).
0 1	186	Results
2 3	187	Characteristics of tertiary admissions with CT scan by study periods
-5 -6	188	Of a total of 2,375,787 tertiary hospital admissions over the 12 year period (2003-2015), 303,439
7 8	189	admissions (12.8%) had at least one CT scan. The proportion of admissions incorporating CT
9	190	increased from 8.9% in the past period (2003-2005) to 16.6% in the recent period (2013-2015) (Table
2	191	1). Overall, there was a small change in the distribution of both demographic and clinical
4 5	192	characteristics among admissions that included CT between the two study periods. For example, the
6 7	193	proportion of the patients who had a CT scan and were in the older ager group (75+ years) increased
8 9	194	from 30.3% to 32.7% and people living in major cities with CT increased from 82.5% to 88.3%

Page 11 of 35

1 2

BMJ Open

3	
4	
5	
6	
7	
צ	
0	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
∠∠ 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54	
22	
56	
57	
58	
59	

219

60

195 between the past and recent period. Similarly within clinical characteristics, multi-morbidity (6+ 196 morbidities) accounted for 27.8% of admissions with CT in the past period compared to 28.8% in the 197 recent period. Among major diagnostic groups in the past period, injuries, circulatory system, cancer 198 and digestive system accounted for 15.5%, 15.2%, 11.7% and 10.9% of admissions with CT, 199 compared to 18.8%, 13.1%, 7.9% and 11.2% in recent period. For other characteristics, admission 200 with CT in the recent period had a higher proportion of unplanned admission (90.1% vs. 86.8%) and 201 private funding sources (21.0% vs. 7.7%) compared with the past period. 202 Decomposition results for the use of CT over the two periods 203 The results of the decomposition analysis of the difference in average number of CT scans between 204 the two periods for all tertiary admissions and unplanned at the aggregated level are presented in 205 Figure 1 (detail in Appendix- Table 1A-B). The difference in the rate of CT scans between two periods 206 was 112 scans per 1000 admissions (95%Cl, 110; 114 per 1000 admissions, p-value <0.001) for all 207 tertiary admission and 117 scans per 1000 admissions (95%CI, 112; 120 per 1000 admissions, p-value 208 <0.001) for unplanned tertiary admissions. While the change in the number of CT scans per 209 admission across the two analyses were not substantially different, a marked difference in the 210 results of the decomposition analysis was observed. Figure 1 shows that 62.7% of the difference in 211 CT use for all tertiary admission was explained by variation in the distribution of all observed 212 characteristics. The rest of the difference in CT usage was attributable to variation in the relative 213 probability of having CT in observed characteristics and unobserved factors (captured in constant 214 coefficient). 215 In contrast, when the analysis was restricted to unplanned admissions, the variation in the 216 distribution of the observed characteristics explained only 17% of the difference in CT use between 217 two periods while 82.7% was due to variation in the relative probability of having CT across observed 218 and unobserved factors.

Details of decomposition analysis for all tertiary admissions

Page 12 of 35

Figure 2 presents decomposition analysis in details of all observed demographic and clinical characteristics. Overall, changes in the distribution of the demographic characteristics including sex, indigenous status, age, SEIFA and ARIA explained only -0.8% of the change in CT use. Change in the distribution of the clinical characteristics including major principal diagnoses and groups of morbidities accounted for 12.4% of the change in CT use. Half of this change (6.1%) was attributable to multi-morbidity (6 or more morbidities) and 4.7% was due to injuries. Over the study period changes in the relative probability of having a CT scan over the observed patient characteristics resulted in a 6.8% increase in the rate of CT scanning, while changes in the distribution of the characteristics of the observed patient characteristics reduced the rate of CT scanning by 2.6%. Interestingly, the relative probability of having a CT scan for those with young age was significantly lower than in the past period contributing 2.8% reduction in the number of CT scan between the two periods. In addition, the relative probability of having CT was higher for those identified as living in major cities in the recent period compared to the past period, and lower for people from remote/very remote areas in the recent period compared to the past period. The contribution of each component to the difference in the number of CT's per admission between the two periods was 5.5% (p-value=0.02) and -0.8% (p-values<0.001), respectively. For clinical characteristics, the results indicated a lower relative probability of having a scan during a tertiary admission in the recent period compared with the past period for all the diagnostic groups, with the exception of those admitted for injuries and endocrine disorders. The increase in patients with multi-morbidities (2-5 comorbidities) contributed 3.2% to the difference between the two periods. For other factors, the relative probability of having a CT scan following transfer from a secondary hospital in the recent period was significantly lower than in the past period, contributing 0.8% reduction to the rate of CT scan between the two periods. A lower relative probability of having a CT scan in the recent period compared with the past period for unplanned admission contributed -4.9%

BMJ Open

2 3		
у 4 Г	245	to the difference in CT use between the two periods. Unobserved factors captured in the constant
5 6 7	246	coefficient contributed to 41.8% of the variation in CT usage between the two periods.
8 9	247	Details of decomposition analysis for unplanned tertiary admissions
10 11 12	248	Similar to all tertiary admissions, the results for unplanned admission (Figure 3) indicated that a
12 13 14	249	substantial proportion of variation in CT use between the two study periods (10.0%) was attributable
15 16	250	to changes in the distribution of the observed clinical characteristics including multimorbidity and
17 18	251	major diagnostic groups. However, changes in the distribution of the observed demographic
19 20 21	252	characteristics such as age, sex and accessibility between two periods only explained a total of -0.5%
21 22 23	253	the change in CT use.
24 25 26	254	For the specific effect component, a similar finding was also observed in unplanned admissions.
27 28	255	Specifically, a lower relative probability of having a CT scan for those in the youngest age group (18-
29 30	256	44 years) was observed in the recent period compared with the past. Likewise, a lower relative
31 32	257	probability of having CT scan in the recent period versus the past period was observed among those
33 34 35	258	admitted for condition such as circulatory, cancer, and respiratory; this accounted for -3.8%, -3.7%,
36 37	259	and -2.7% of the difference in CT use. The relative probability of having a CT scan after transfer from
38 39	260	a secondary hospital in the recent period was lower than in the past, contributing -7.5% to the
40 41	261	change in the number of CT scans between the two periods.
42 43 44 45	262	Discussion
46 47	263	This is the first study to examine the contribution of demographic and clinical characteristics to
48 49	264	changes in the rate of CT scanning in tertiary hospitals using multivariable decomposition analysis of
50 51	265	linked health administrative data over an extended period of time. We found that nearly two thirds
52 53 54	266	of the increase in the use of CT was attributable to changes in the distribution of observed
55 56	267	characteristics, with changes in proportion of unplanned admissions accounting for the largest
57 58	268	component. However when the analysis was restricted to unplanned admissions, changes in
59 60	269	distribution of the observed characteristics only explained about a fifth of the difference in CT usage

3
4
5
6
7
, 0
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
48
10
49
50
51
52
53
54
55
56
57
58
50
22
00

1 2

> 270 and the rest was explained by the effect component. In both decomposition analyses, clinical 271 characteristics (12.4% in all admissions and 10% in unplanned admissions) including major diagnostic 272 groups and comorbidities rather than demographic characteristics contributed substantially to 273 explain the variation in CT use between the two periods. Interestingly, our study observed a lower 274 relative probability of having a CT scan in the recent period (2013-2015) compared with the past 275 period (2003-2005) in two subgroups: young adults, which may reflect a movement towards 276 minimising medical radiation exposure in the high risk population, and admissions transferred from 277 secondary hospitals, reflecting either a reduction in inappropriate repeat imaging tests or greater 278 access to CT in non-tertiary hospitals.

279 A recent study examined factors driving the increasing use of CT scan in Australia with a focus on the 280 use of CT outside of the public hospital setting (28), which accounted for 73% of adult CT scans (29). 281 Although the study also used the decomposition analysis approach, the only endowment component 282 captured in this study was changes in the population age structure; the rest of the difference in CT 283 use was captured in the number of CT scans per capita. The study found that a change in the number 284 of CT scans per capita, interpreted as a "scope shift", rather than changes in the population age 285 structure accounted for a major component in the change of CT use outside hospital settings over 286 the period 1993 to 2013 (28). The previous study used changes in age structure as a marker of 287 changes in need (e.g. an ageing population), which had been postulated as the reason for increasing 288 CT scanning rates. The finding that changes in the age structure was responsible for only a small 289 proportion of the rate of CT use suggested that "scope shift" (i.e. changes in the practice of CT) was 290 driving the rate of use. Our findings again confirmed that the impact of changing in age structure (i.e. 291 increasing proportion of older people) was not a major driver of the use of CT scanning. In addition, 292 by using multivariable decomposition analysis, our study provides a more comprehensive picture of 293 the contribution of various demographic, clinical and other observed factors driving the change in CT 294 use in the hospital setting. This is because our analysis was able to differentiate the influence of 295 changes in the distribution (endowment component) from changes in the relative probability of

BMJ Open

3	
1	
4	
S	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
20	
21	
22	
23	
21	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
15	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
50	
29	
60	

having CT (effect component) across a large range of observed factors. Our study adds to the
literature by showing that it is the change in distribution of comorbidities and clinical conditions
which are often highly prevalent in the older population rather than the age of the population itself
that contributed the largest component to the growth of CT use. This indicates the need of
strengthen public health interventions to promote healthy ageing to reduce the burden on health
care systems.

302 Our study found that while many observed factors drive the increase of CT use, the change in the 303 relative probability of having CT scan in the young age group and in those with admissions 304 transferred from secondary hospitals (once the variation in the distribution of these factors was 305 accounted for) reduced the use of CT in the recent period compared with the past period. These 306 finding are encouraging as they confirm a reduction in two groups where there has been concern 307 regarding inappropriate imaging. The results coincide with the goals of education campaigns to raise 308 provider awareness of the risk of ionising radiation, especially among children and young adults (30-309 32). Since children and young adults are more sensitive and have more years to develop radiation-310 induced cancer (30, 31), radiologists have become more cautious and may have taken care to

311 minimise unnecessary CT scanning.

312 Despite challenges due to the vast geographical spread of Australia, over the last 15 years diagnostic 313 imaging services have become more accessible to patients in both major cities and rural areas within 314 a timely and a reasonable distance from their home (31). A report in 2012 shows that more than 315 90% of Australians can get access to a comprehensive diagnostic imaging facility within a distance of 316 100km from their residential areas (31) and up to 80% of patients have access to a CT machine 317 within 10 km (31). Between 2003 and 2018, Australia increased the rate of CT equipment per head 318 of population from 40.6 to 67 per million (33, 34). The government also provided a diagnostic 319 imaging bulk billing incentive from November 2009 that increased the accessibility to the service 320 through improving patient affordability. In addition, the government endorsed the diagnostic

imaging review reform package in 2011 and implemented it between 2011 and 2016, funded through the Medicare Benefits Schedule. One of the package objectives was to ensure accessibility to quality diagnostic imaging services for people in rural and remote areas. In addition, the package also aimed to promote for effective communication between practitioners and imaging service to ensure appropriate imaging (31). The increasing availability and accessibility of diagnostic imaging, in particular to CT scanners, raised concerns of potential overuse of CT scans increasing radiation exposure to patients and contributing additional costs to the health care system (15). However, we found that the relative probability of having CT scan in tertiary hospitals for people living in remote and very remote areas in the recent period was less than in the past period. Although the magnitude of the variation was small, it accounts for significantly lower use of CT scan in tertiary hospitals. Likewise, the rate of CT scan among admissions transferred from the secondary hospital in the recent period was also less than in the past period. This would be consistent with government efforts to ensure accessibility of diagnostic imaging service in rural and remote areas as well as improved information transfer between hospitals. Previous studies have highlighted the important role of image sharing technology in improving provider access and avoiding duplication of investigations (35-37). However, a recent study found that repeat CT scanning is relatively common for patients already imaged prior to transfer to a tertiary hospital, although there was a valid clinical reason for repeat scanning in the majority of cases (15). Despite signs of improvement in our study, further detailed exploration is required to establish the proportion of avoidable repeat scans and therefore the potential benefit in terms of reduced radiation exposure and costs. This study has a number of limitations, largely due to the nature of linked administrative data. This study only decomposed the difference in CT use between the two study periods based on the available observed characteristics available in the administrative data. Thus, the contribution of unobserved factors was not addressed in this study, although they are captured in the constant value. This study only captured the use of CT in tertiary hospitals because we did not have

comprehensive data on CT use in non-tertiary settings, limiting our ability to determine whether the

justified.

1 2

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
48	
49 50	
50	
51	
J∠ 52	
55	
54 55	
55 56	
57	
52	
50	
72	

347 lower relative probability of having CT in the recent period in some subgroups was due to changes in 348 practice or increasing accessibility of CT in other health care settings. While the linked administrative 349 data can comprehensively capture use of health services over time without loss to follow up, 350 information about clinical information is limited to relatively high-level diagnostic codes recorded in 351 the HMDS. Therefore, our study cannot provide information about the proportion of scans that were

353 In conclusion, the use of CT in tertiary hospitals increased between the two study periods in keeping 354 with international trends. This is primarily due to changes in the distribution of unplanned 355 admissions and the clinical characteristics of presenting patients rather than changing demographic characteristics. Among unplanned admissions only, changes in the relative probability of scanning 356 357 were the major drivers of CT use, with the largest component of this relating to unobserved factors. 358 In both results, clinical characteristics appear to be substantial component driving the growth of CT 359 usage in the tertiary hospital setting while the role of demographic characteristics was minimal. Our 360 study also highlights a potential improvement in practice towards reducing medial radiation 361 exposure through a decrease CTs in subpopulations such as young adults and in those admitted via 362 transfer admission from other hospitals. While the finding is limited to tertiary settings, the method 363 used in our study can be applied in a broader context to characterise major factors driving the use of 364 CT scanning as well as the use of diagnostic imaging tests. Our study may assist to identify areas 365 worthy of more in-depth investigations to better inform health policy makers and interventions 366 promoting appropriate use of diagnostic imaging tests.

367 Funding

368 This work was supported by the National Health and Medical Research Council, project grant 369 APP1144573. The study funders had no role in the study design, conduct, manuscript writing or 370 decision to submit for publication.

371 **Competing interests** 60

372 The authors have no competing interest to declare. The institutions of RM, NH, DY, MB and DM
373 received grant funding from the National Medical Research Council of Australia for investigator374 initiated research. The funding agreement ensured author independence in designing the study,
375 interpreting the data, writing and publishing the report.

376 Authors' contributions

RM, MB, JD, DM, PO, JSI, SM, NTH conceived the idea and study design for the manuscript. NTH, RM,
SM conducted data analyses and drafted the manuscript. RM, SM, NTH, MB contributed to statistical
expertise. RM, MB, JD, DM, PO, JSI, SM, NTH contributed in analysis, interpreting the results, drafting
and revising critically for important intellectual content of the manuscript. RM, MB, JD, DM, PO, JSI
secured funding for the study. All authors read and approved the final version of the manuscript for
publication. The corresponding author attests that all listed authors meet authorship criteria and
that no others meeting the criteria have been omitted.

384 Ethics approval and consent to participate

Human research ethics approval was obtained from Curtin University Human Research Ethics
Committee (SMEC-80-10) and the WA Department of Health Human Research Ethics Committee
(2011/97) which exempted the study from requiring individual consent.

388 Patient consent

389 Not applicable

390 Data sharing statement

51
52
53
54391Data access is limited to only authors who require it for data analysis - the remaining authors do not
have access to the data but did have full access to the results of the data analysis. The data that
support the findings of this study are available from the relevant data custodians of the study
datasets. Restrictions by the data custodians mean that the data are not publicly available or able to
be provided by the authors. Researchers wishing to access the datasets used in this study should

1		
2	200	refer to the M/A data linkage engligation process (https://www.datalinkage.we.arg.cv/access.and
4	396	refer to the WA data linkage application process (https://www.datalinkage-wa.org.au/access-and-
5	397	application)
6 7	557	
7 8		
9	398	Acknowledgements
10		
11	399	We thank the National Health and Medical Research Council, project grant APP1144573 for
12		
14	400	supporting this work. We would also like to acknowledge the Western Australian Data Linkage Unit
15		
16	401	and data custodians, as well as the individuals whose data enabled this study. We also acknowledge
17	400	
18 10	402	the contribution of Dr Richard Fox for his work in the conceptualisation and editing of this
20	402	manuscript, and Mr. John Stubbs for his contribution as a consumer representative
21	405	manuscript, and will joint studies for his contribution as a consumer representative.
22		
23	404	References
24 25	405	1 Korley FK Pham IC Kirsch TD Lise of Advanced Radiology During Visits to LIS Emergency
26	406	Departments for Injury-Related Conditions 1998-2007, Jama 2010:304(13):1465-71
27	407	2. Pelc NJ. Recent and future directions in CT imaging. Ann Biomed Eng. 2014;42(2):260-8.
28	408	3. The Royal Australian and New Zealand College of Radiologist. Radiology at a Glance Australia
29	409	Sydney: The Royal Australian and New Zealand College of Radiologist; 2018 [Available from:
30 21	410	https://www.ranzcr.com/college/document-library/radiology-at-a-glance-australia.
32	411	4. OECD Data. Computed tomography (CT) exams: OECD Data; 2018 [Available from:
33	412	https://data.oecd.org/healthcare/computed-tomography-ct-exams.htm
34	413	5. Australian Radiation Protection and Nuclear Safety Agency. Ionising Radiation and Health:
35	414	Australian Government; 2015 [Available from:
36	415	https://www.arpansa.gov.au/sites/default/files/legacy/pubs/factsheets/lonisingRadiationandHealth
3/ 20	416	<u>.pdf</u> .
30 39	417	6. Australian Radiation Protection and Nuclear Safety Agency. Current Australian national
40	418	diagnostic reference levels for multi detector computed tomography: Australian Radiation
41	419	Protection and Nuclear Safety Agency; 2018 [Available from: https://www.arpansa.gov.au/research-
42	420	and-expertise/surveys/national-diagnostic-reference-level-service/current-australian-drls-
43	421	update/mdct.
44 45	422	7. Picano E. Sustainability of medical imaging. BMJ (Clinical research ed). 2004;328(7439):578-
46	423	8U. Nartins D. Daimunda D. Alvas D. Mantaira D. Silva I.D. Comas A. at al. Annronriataness of
47	424	8. Martins R, Raimundo P, Alves P, Monteiro R, Silva LD, Gomes A, et al. Appropriateness of Radiology Test Requests by an Emergency Department: A Retrospective Study. Acta medica
48	425	northguese 2020-22(1)-7-14
49	420	9 Tung M Sharma R Hinson IS Nothelle S Pannikottu I Segal IB Factors associated with
50	427	imaging overuse in the emergency department. A systematic review. The American journal of
51 52	420	emergency medicine 2018-36(2)-301-9
53	430	10. The Royal Australian and New Zealand College of Radiologists, Quality and Standards
54	431	Sydney: The Royal Australian and New Zealand College of Radiologists: 2019 [Available from:
55	432	https://www.ranzcr.com/our-work/quality-standards.
56	433	11. Pathways. DI. Diagnostic Imaging Pathways.: Government of Western Australia; 2020 [
5/ 50	434	12. Bairstow PJ, Mendelson R, Dhillon R, Valton F. Diagnostic imaging pathways: development,
50 59	435	dissemination, implementation, and evaluation. International journal for quality in health care :
60	436	journal of the International Society for Quality in Health Care. 2006;18(1):51-7.

Bhatia RS, Levinson W, Shortt S, Pendrith C, Fric-Shamji E, Kallewaard M, et al. Measuring 13. the effect of Choosing Wisely: an integrated framework to assess campaign impact on low-value care. BMJ Quality & amp; amp; Safety. 2015;24(8):523. 14. Ip IK, Mortele KJ, Prevedello LM, Khorasani R. Repeat abdominal imaging examinations in a tertiary care hospital. Am J Med. 2012;125(2):155-61. 15. Blazak P, Hacking C, Presneill J, Reade M. Early repeat computed tomographic imaging in transferred trauma and neurosurgical patients: Incidence, indications and impact. Journal of medical imaging and radiation oncology. 2018. 16. Colla CH, Morden NE, Sequist TD, Schpero WL, Rosenthal MB. Choosing wisely: prevalence and correlates of low-value health care services in the United States. Journal of general internal medicine. 2015;30(2):221-8. Badgery-Parker T, Pearson S-A, Chalmers K, Brett J, Scott IA, Dunn S, et al. Low-value care in 17. Australian public hospitals: prevalence and trends over time. BMJ Quality & amp; amp; Safety. 2019;28(3):205. Hong AS, Ross-Degnan D, Zhang F, Wharam JF. Small Decline In Low-Value Back Imaging 18. Associated With The 'Choosing Wisely' Campaign, 2012-14. Health Aff (Millwood). 2017;36(4):671-9. 19. Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, et al. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement. PLoS medicine. 2015;12(10):e1001885. Holman CD, Bass AJ, Rosman DL, Smith MB, Semmens JB, Glasson EJ, et al. A decade of data 20. linkage in Western Australia: strategic design, applications and benefits of the WA data linkage system. Australian health review : a publication of the Australian Hospital Association. 2008;32(4):766-77. 21. Holman CD, Bass AJ, Rouse IL, Hobbs MS. Population-based linkage of health records in Western Australia: development of a health services research linked database. Australian and New Zealand journal of public health. 1999;23(5):453-9. Smith-Bindman R, Miglioretti DL, Larson EB. Rising use of diagnostic medical imaging in a 22. large integrated health system. Health Aff (Millwood). 2008;27(6):1491-502. AIHW. Rural, regional and remote health: a guide to remoteness classifications: AIHW; 2004 23. [Available from: https://www.aihw.gov.au/reports/rural-remote-australians/guide-to-remoteness-classifications/formats. 24. Australian Bureau of Statistics. Census of Population and Housing: Socio-Economic Indexes for Areas Canberra: Australian Bureau of Statistics; 2011. Holman CD, Preen DB, Baynham NJ, Finn JC, Semmens JB. A multipurpose comorbidity 25. scoring system performed better than the Charlson index. Journal of clinical epidemiology. 2005;58(10):1006-14. 26. Australian Institute of Health and Welfare. Admitted patient care 2014–15: Australian hospital statistics. Canberra: AIHW; 2016. Contract No.: Cat. no. HSE 172. 27. Powers DA, Yoshioka H, Yun MS. mvdcmp: Multivariate decomposition for nonlinear response models. Stata Journal. 2011;11(4):556-76. 28. Wright CM, Bulsara MK, Norman R, Moorin RE. Increase in computed tomography in Australia driven mainly by practice change: A decomposition analysis. Health Policy. 2017;121(7):823-9. 29. Gibson DAJ, Moorin RE, Holman CDAJ. Cohort study of Western Australia computed tomography utilisation patterns and their policy implications. BMC health services research. 2014;14:526-. 30. Mendelson RM, Bairstow PJ. Inappropriate imaging: Why it matters, why it happens, what can be done. Journal of medical imaging and radiation oncology. 2010;54(3):173-7. 31. Medical Benefits Reviews Task Group, Diagnostic Imaging Review Team. Review of funding for diagnostic imaging services: final report Department of Health; 2012.

1		
2		
4	487	32. Mendelson R. Diagnostic Imaging Pathways Perth: Health Department of West Australia;
5	488	2010 [Available from: https://www.cancerwa.asn.au/resources/2015-08-19-Richard-Mendelson-
6	489	presentation.pat.
7	490	33. Commonwealth of Australia. Availability and accessibility of diagnostic imaging equipment
8	491	around Australia. Camperra ACT 2000: Parliament House; 2018. Contract No.: ISBN 978-1-70010-715-
9 10	492	4. 24 OECD Data Computed tomography (CT) scappors: OECD Data: 2018 [Augilable from:
10	493	34. DECD Data. Computed tomography (CT) scanners. DECD Data; 2018 [Available from.
12	494 405	<u>Inteps://data.oecu.org/iteatineqt/computed-tomography-ct-scanners.ntm</u> .
13	495	so. Valide Welening R, Balenburg R, Versendaard, Ledennan R, Firth L. A balanced evaluation
14	490	Imaging 2006:10 Suppl 1/Suppl 1):10.7
15	497	Chakera T. Nagree V. Song S. Jones D. Bridging the communication gap between public and
16	490	private radiology services. Medical Journal of Australia, 2009;191(10):558-60
1/	500	27 Vect IR Jung H-V Ostrovsky A Das IT McGinty GB Image Sharing Technologies and
18 10	500	Reduction of Imaging Utilization: A Systematic Review and Meta-analysis I Am Coll Radiol
20	501	2015-12/12 Pt R)-1371-9 a
21	502	2013,12(12+++),1371-3.03.
22	503	
23	504	
24	504	List of tables
25	505	Table 1. Characteristics of the study population by study period and CT scan status
20 27		
27	506	Figures
29	E07	Figure 1. Decomposition analysis of the difference in average number of CT scans between the two
30	507	rigure 1. Decomposition analysis of the difference in average number of CT scans between the two
31	508	periods
32	509	A. All tertiary admissions
33	510	B. Unplanned tertiary admissions
54 35		
36	511	Figure 2. Details of decomposition analysis of the difference in average number of CT scans between
37	512	the two periods for all tertiary admissions
38	F12	Figure 2. Details of decomposition analysis of the difference in average number of CT scene between
39	513	the two periods for we have a devision analysis of the difference in average number of CT scans between
40	514	the two periods for unplanned tertiary admissions
41 42	515	Appendix. Results of decomposition analysis for all tertiary admissions and upplanned tertiary
42 43	516	admissions
44	010	
45		
46		
47		
48		
49		
50 51		
52		
53		
54		
55		
56		
57		
58 50		
60 59		
00		

Table 1. Characteristics of the study population by study period and CT scan status

	Study period								All years				
	The p	ast perio (N=519	d (2003-20 9,286)	005)	The r	The recent period (2013-2015) (N=572.642)				2003-2015 (2,375,787)			
	Without 0 (N= 473)	T scan ,120)	With (N= 4	CT scan 6,166)	Without CT scan With C (N= 477,462) (N= 9!		C T scan 5,180)	Without CT scan (N= 2,072,348)		With CT scar (N= 303,439)			
	N	%	Ν	%	Ν	%	N	%	N	%	N	%	
Female	237,021	50.1	21,232	46.0	248,412	52.0	43,865	46.1	1,057,280	51.0	137,988	45.5	
Age groups													
18-44years	134,467	28.4	10,954	23.7	145,181	30.4	20,075	21.1	621,452	30.0	67,456	22.2	
45-64 years	144,820	30.6	12,797	27.7	150,139	31.4	27,225	28.6	651,941	31.5	87,319	28.8	
65-74 years	91,075	19.2	8,447	18.3	83,797	17.6	16,798	17.6	368,070	17.8	53,332	17.6	
75+ years	102,758	21.7	13,968	30.3	98,345	20.6	31,082	32.7	430,885	20.8	95,332	31.4	
Indigenous status	31,708	6.7	2,111	4.6	32,061	6.7	4,540	4.8	137,806	6.6	14,156	4.7	
SEIFA													
Least disadvantage	129,988	27.5	12,522	27.1	130,427	27.3	27,885	29.3	595,921	28.8	90,660	29.9	
Less disadvantage	89,310	18.9	8,495	18.4	87,703	18.4	17,850	18.8	364,787	17.6	53,241	17.5	
Moderate disadvantage	91,594	19.4	9,112	19.7	99,533	20.8	19,549	20.5	449,532	21.7	65,203	21.5	
High disadvantage	89,421	18.9	8,923	19.3	95,607	20.0	18,104	19.0	388,311	18.7	57,090	18.8	
Highest disadvantage	70,595	14.9	6,900	14.9	61,291	12.8	11,344	11.9	262,172	12.7	35,691	11.8	
unknown	2,212	0.5	214	0.5	2,901	0.6	448	0.5	11,625	0.6	1,554	0.5	
ARIA													
Major cities	411,062	86.9	38,086	82.5	416,708	87.3	84,046	88.3	1,807,380	87.2	261,292	86.1	
Inner regional areas	29,622	6.3	3,663	7.9	19,675	4.1	3,508	3.7	108,562	5.2	15,908	5.2	
Outer regional areas	16,251	3.4	2,155	4.7	19,417	4.1	3,814	4.0	75,935	3.7	13,210	4.4	
Remote	8,968	1.9	1,283	2.8	10,654	2.2	1,901	2.0	44,727	2.2	7,336	2.4	
Very Remote	6,205	1.3	894	1.9	8,167	1.7	1,458	1.5	28,389	1.4	4,731	1.6	
Unknown	1,012	0.2	85	0.2	2,841	0.6	453	0.5	7,355	0.4	962	0.3	
Number of morbidity (MACSS) (Median – IQR)	2	2-3	4	2-6	2	2-3	4	2-6	2	2-3	3	2-6	
Major clinical conditions													

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

				Study	period				All years			
	The p	oast perioo (N=519	d (2003-200 ,286))5)	The recent period (2013-2015) (N=572,642)				2003-2015 (2,375,787)			
	Without ((N= 473	CT scan ,120)	With C (N= 46	T scan 5,166)	Without CT scan With CT s (N= 477,462) (N= 95,1)			T scan ,180)	Without C (N= 2,072	2,348)	With CT (N= 303	
	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	
Mental and behaviour disorders	11,065	2.3	2,015	4.4	15,514	3.2	3,296	3.5	61,756	3.0	11,109	
Circulatory system	35,636	7.5	7,038	15.2	38,534	8.1	12,434	13.1	162,138	7.8	41,737	
Digestive system	31,437	6.6	5,026	10.9	38,055	8.0	10,678	11.2	150,492	7.3	32,897	
Endocrine	9,160	1.9	823	1.8	11,074	2.3	1,381	1.5	46,268	2.2	5,165	
Musculoskeletal system	21,153	4.5	1,532	3.3	21,477	4.5	2,819	3.0	93,520	4.5	9,231	
Respiratory system	15,013	3.2	2,918	6.3	17,001	3.6	5,241	5.5	68,859	3.3	17,149	
Injury	23,483	5.0	7,165	15.5	31,608	6.6	17,913	18.8	126,703	6.1	53,420	
Cancer	21,608	4.6	5,389	11.7	22,465	4.7	7,520	7.9	96,232	4.6	28,783	
Funding sources												
Public	447,927	94.7	42,612	92.3	416,248	87.2	75,202	79.0	1,894,581	91.4	258,126	
Private	25,193	5.3	3,554	7.7	61,214	12.8	19,978	21.0	177,767	8.6	45,313	
Unplanned admissions												
No	316,762	67.0	6,089	13.2	259,764	54.4	9,387	9.9	1,245,273	60.1	34,058	
Yes	156,358	33.0	40,077	86.8	217,698	45.6	85,793	90.1	827,075	39.9	269,381	
Transferred from secondary hospitals												
No	459,539	97.1	41,742	90.4	455,496	95.4	88,480	93.0	1,990,570	96.1	277,994	
Yes	13,581	2.9	4,424	9.6	21,966	4.6	6,700	7.0	81,778	3.9	25,445	
Surgical procedure												
No	457,900	96.8	42,803	92.7	449,708	94.2	87,721	92.2	1,975,259	95.3	280,008	
Yes	15,220	3.2	3,363	7.3	27,754	5.8	7,459	7.8	97,089	4.7	23,431	
Morbidity group												
0-1	103,369	21.85	6,165	13.35	116,826	24.47	13,361	14.04	514,216	24.81	46,686	
2-5	349,557	73.88	27,175	58.86	329,844	69.08	54,377	57.13	1,452,109	70.07	175,377	
6+	20,194	4.27	12,826	27.78	30,792	6.45	27,442	28.83	106,023	5.12	81,376	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Endowment component

A. All tertiary admissions

CT scans per 1000 admissions

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Number of CT per admission	95% CI	
The use of CT			
The past period	0.131	0.129; 0.132	
The recent period	0.243	0.241; 0.245	
Difference	0.112	0.110; 0.114	
Decomposition output	Coefficient	95% CI	Percentag
Endowment component	0.069***	0.068; 0.070	62.
Effect component	0.043***	0.041; 0.045	37.
1. Specific endowment component			
Sex	-0.00039***	-0.00043; -0.00036	-0.
Indigenous	0.000074***	0.000066; 0.000081	0.
Age groups			
18-44 years	-0.00025***	-0.00027; -0.00023	-0.
45-64 years	0.00010***	0.000089; 0.00011	0,
65-74 years	-0.00025***	-0.00029; -0.00021	-0.
75 + years	-0.0000039**	-0.0000066; -0.0000012	-0.00
SEIFA			
Least disadvantage	0.0000081	-0.0000085; 0.000025	0.0
Less disadvantage	-0.000020	-0.000053; 0.000013	-0.0
Moderate disadvantage	0.000056	-0.000060; 0.00017	0
High disadvantage	0.000061	-0.000015; 0.00014	0
Highest disadvantage	-0.00010	-0.00029; 0.000086	-0
Unknown	-0.000028	-0.000075; 0.000018	-0
ARIA			
Major cities	-0.00012**	-0.00020; -0.000034	-0.
Inner regional areas	-0.00029*	-0.00052; -0.000055	-0
Outer regional areas	0.000076**	0.000027; 0.00013	0
Remote	0.000014	-0.0000095; 0.000037	0.0
Very Remote	0.000065**	0.000028; 0.00010	0.
Unknown	-0.00015*	-0.00030; -0.0000086	-0.
Major principal diagnoses			
Mental conditions	-0.00022***	-0.00028; -0.00017	-0
Circulatory conditions	0.00051***	0.00048; 0.00054	0
Digestive conditions	0.0010***	0.00096; 0.0011	0.
Endocrine conditions	-0.00013***	-0.00016; -0.00011	-0
Musculoskeletal	0.0000029	-0.0000064; 0.000012	0.00
Respiratory	-0.000054***	-0.000080; -0.000028	-0.0
Injuries	0.0052***	0.0051; 0.0053	4
Cancer	0.000084***	0.000082; 0.000086	0
Number of morbidities			
0-1	-0.0021***	-0.0022; -0.0021	-1
2-5	0.0025***	0.0024; 0.0026	2
6 or more	0.0067***	0.0065; 0.0068	6
Private funding	0.0032***	0.0029: 0.0035	2.

Table 1A. Decomposition of the difference in the use of CT of all tertiary admissions between two periods

Unplanned admission	0.055***	0.055; 0.056	50.0
Transferred from secondary hospitals	-0.00073***	-0.00081; -0.00065	-0.7
Had surgical procedures in hospital	-0.0010***	-0.0012; -0.00092	-0.9
2. Specific effect component			
Sex	-0.00043	-0.0015; 0.00059	-0.4
Indigenous	0.00059***	0.00026; 0.00091	0.5
Age groups			
18-44 years	-0.0031***	-0.0037; -0.0025	-2.8
45-64 years	-0.00023	-0.00075; 0.00029	-0.2
65-74 years	0.00050*	0.00011; 0.00089	0.5
75 + years	0.0021***	0.0017; 0.0025	1.9
SEIFA			
Least disadvantage	0.00080	-0.00050; 0.0021	0.7
Less disadvantage	0.00054	-0.00037; 0.0014	0.5
Moderate disadvantage	0.00060	-0.00033; 0.0015	0.5
High disadvantage	0.00044	-0.00046; 0.0013	0.4
Highest disadvantage	0.00055	-0.00018; 0.0013	0.5
Unknown	-0.000070	-0.00017; 0.000031	-0.1
ARIA			
Major cities	0.0060*	0.00086; 0.011	5.5
Inner regional areas	0.00014	-0.00029; 0.00056	0.1
Outer regional areas	-0.00013	-0.00038; 0.00011	-0.1
Remote	-0.00050***	-0.00065; -0.00035	-0.5
Very Remote	-0.00032***	-0.00044; -0.00021	-0.3
Unknown	0.000092**	0.000037; 0.00015	0.1
Major principal diagnoses			
Mental conditions	-0.00062***	-0.00077; -0.00048	-0.6
Circulatory conditions	-0.0011***	-0.0014; -0.00087	-1.0
Digestive conditions	-0.0011***	-0.0014; -0.00087	-1.0
Endocrine conditions	0.000037	-0.00012; 0.00019	-0.1
Musculoskeletal	-0.0015***	-0.0018; -0.0012	-1.4
Respiratory	-0.00093***	-0.0011; -0.00076	-0.8
Injuries	0.00015	-0.000048; 0.00034	0.1
Cancer	-0.0022***	-0.0024; -0.0020	-2.0
Number of morbidities			
0-1	0.0019***	0.0015; 0.0024	1.7
2-5	0.0035***	0.0024; 0.0045	3.2
6 or more	-0.00089***	-0.0010; -0.00078	-0.8
Private funding	-0.00037***	-0.00057; -0.00017	-0.3
Unplanned admission	-0.0054***	-0.0064; -0.0044	-4.9
Transferred from secondary hospitals	-0.00089***	-0.0010; -0.00075	-0.8
Had surgical procedures in hospital	-0.00021**	-0.00035; -0.000062	-0.2
Constant	0.046***	0.041.0.051	/11 8

Note: *** if p-value<0.001; ** if p-value<0.01; * if p-value<0.05

	Number of CT per admission	95% CI	
The use of CT			
The past period	0.301	0.298; 0.304	
The recent period	0.418	0.414; 0.420	
Difference	0.117	0.112; 0.120	
Decomposition of the difference	Coefficient	95% CI	Percentage
Endowment component	0.020***	0.019; 0.021	17.1
Effect component	0.096***	0.092; 0.10	82.1
Specific endowment			
Sex	0.00096***	(0.00087; 0.0011)	0.8
Indigenous	-0.0024***	(-0.0026; -0.0021)	-2.0
Age groups			
18-44 years	0.0017***	(0.0016; 0.0019)	1.4
45-64 years	0.0011***	(0.00099; 0.0012)	0.9
65-74 years	-0.00011***	(-0.00012; -0.000092)	-0.1
75 + years	0.000087***	(0.0000039; 0.000013)	0.01
SEIFA			
Least disadvantage	0.00023	(-0.000026; 0.00048)	0.2
Less disadvantage	0.000092	(-0.0000057; 0.00019)	0.1
Moderate disadvantage	0.00018	(-0.00021; 0.00057)	0.2
High disadvantage	-0.000023	• (-0.000097; 0.000050)	-0.02
Highest disadvantage	-0.00036	(-0.0011; 0.00040)	-0.3
Unknown	-0.00021	(-0.00053; 0.00011)	-0.2
ARIA			
Major cities	-0.00043	(-0.0012; 0.00037)	-0.4
Inner regional areas	-0.00073	(-0.0019; 0.00040)	-0.6
Outer regional areas	-0.000031**	(-0.000053; -0.0000085)	-0.03
Remote	0.0000088	(-0.0000017; 0.0000035)	0.001
Very Remote	0.00014***	(0.000071; 0.00021)	0.1
Unknown	-0.00068	(-0.0013; -0.000048)	-0.6
Major principal diagnoses			
Mental conditions	0.00076***	(0.00065; 0.00087)	0.6
Circulatory conditions	-0.0039***	(-0.0043; -0.0036)	-3.3
Digestive conditions	0.00063***	(0.00058; 0.00069)	0.5
Endocrine conditions	0.00088***	(0.00073; 0.0010)	0.7
Musculoskeletal	-0.00062***	(-0.00077; -0.00047)	-0.5
Respiratory	0.0014***	(0.0011; 0.0016)	1.2
Injuries	0.0034***	(0.0032; 0.0035)	2.8
Cancer	-0.0042***	(-0.0044; -0.0040)	-3.5
Number of morbidities			
0-1	0.0020***	(0.0019; 0.0021)	1.7
2-5	0.0018***	(0.0017; 0.0019)	1.5

Table 1B. Decomposition of the difference in the use of CT for unplanned admissions between two periods

6 or more	0.010***	(0.010; 0.011)	
Private funding	0.0094***	(0.0084; 0.010)	
Transferred from secondary hospitals	0.00049***	(0.00044; 0.00054)	
Admission with surgical procedures	-0.0019***	(-0.0022; -0.0017)	
Specific effect component			
Sex	0.0035	(-0.00021; 0.0072)	
Indigenous	0.00050	(-0.00051; 0.0015)	
Age groups			
18-44 years	-0.013***	(-0.015; -0.010)	-
45-64 years	-0.0011	(-0.0027; 0.00042)	
65-74 years	0.0015**	(0.00046; 0.0026)	
75 + years	0.0083***	(0.0066; 0.0100)	
SEIFA			
Least disadvantage	0.0024	(-0.0023; 0.0071)	
Less disadvantage	0.0023	(-0.00092; 0.0055)	
Moderate disadvantage	0.0018	(-0.0015; 0.0051)	
High disadvantage	0.0015	(-0.0017; 0.0047)	
Highest disadvantage	0.0020	(-0.00063; 0.0046)	
Unknown	-0.00034	(-0.00086; 0.00017)	
ARIA			
Major cities	0.0024	(-0.016; 0.020)	
Inner regional areas	0.00030	(-0.0013; 0.0019)	
Outer regional areas	0.000092	(-0.00081; 0.00100)	
Remote	-0.0016***	(-0.0021; -0.0010)	
Very Remote	-0.00099***	(-0.0014; -0.00056)	
Unknown	0.00058**	(0.00019; 0.00097)	
Major principal diagnoses			
Mental conditions	-0.0031***	(-0.0043; -0.0019)	
Circulatory conditions	-0.0045***	(-0.0061; -0.0029)	
Digestive conditions	-0.0034***	(-0.0047; -0.0022)	
Endocrine conditions	0.0010***	(0.00033; 0.0017)	
Musculoskeletal	-0.0019***	(-0.0026; -0.0012)	
Respiratory	-0.0032***	(-0.0045; -0.0020)	
Injuries	0.0037***	(0.0021; 0.0053)	
Cancer	-0.0044***	(-0.0050; -0.0038)	
Number of morbidities			
0-1	0.0079***	(0.0064; 0.0093)	
2-5	0.0024	(-0.00097; 0.0057)	
6 or more	-0.0060***	(-0.0068; -0.0052)	
Private funding sources	-0.00020	(-0.00099; 0.00058)	
Transferred from secondary hospitals	-0.0090	(-0.010; -0.0078)	
Admission with surgical procedures	-0.0015**	(-0.0024; -0.00050)	
Constant	0.11***	(0.091; 0.12)	

* if p-value<0.001; * * if p-value<0.01; * if p-value<0.05 vote:

Page 31 of 35

BMJ Open

	Item No.	STROBE items	Location in manuscript where items are reported	RECORD items	Location in manuscript where items are reported
Title and abstra	nct				
	1	 (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of what was done and 		RECORD 1.1: The type of data used should be specified in the title or abstract. When possible, the name of the databases used should be included.	1.1 Abstract, data sources.
		what was found	Pr to	RECORD 1.2: If applicable, the geographic region and timeframe within which the study took place should be reported in the title or abstract.	1.2 Abstract, data sources
			iev;	RECORD 1.3: If linkage between databases was conducted for the study, this should be clearly stated in the title or abstract.	1.3 Abstract, data sources.
Introduction				-	
Background rationale	2	Explain the scientific background and rationale for the investigation being reported		07/	Introduction, lines 71-91
Objectives	3	State specific objectives, including any prespecified hypotheses			Introduction, lines 92-101
Methods			1		
Study Design	4	Present key elements of study design early in the paper			Methods- line 102- 106 and Study population (line 121-134)
Setting	5	Describe the setting, locations, and relevant dates, including			Methods, data sources and study population

The RECORD statement – checklist of items, extended from the STROBE statement, that should be reported in observational studies using

		periods of recruitment, exposure, follow-up, and data collection	
Participants	6	follow-up, and data collection(a) Cohort study - Give theeligibility criteria, and thesources and methods of selectionof participants. Describemethods of follow-upCase-control study - Give theeligibility criteria, and thesources and methods of caseascertainment and controlselection. Give the rationale forthe choice of cases and controlsCross-sectional study - Give theeligibility criteria, and thesources and methods of selectionof participants(b) Cohort study - For matchedstudies, give matching criteriaand number of exposed andunexposedCase-control study - Formatched studies, give matchingcriteria and the number of	RECORD 6.1: The methods of study population selection (such as codes or algorithms used to identify subjects) should be listed in detail. If
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable.	RECORD 7.1: A complete list of codes and algorithms used to classify exposures, outcomes, confounders, and effect modifiers should be provided. If these cannot be reported, an explanation should be provided.Methods, outcome measures, independent measures
Data sources/ measurement	8	For each variable of interest, give sources of data and details of methods of assessment (measurement).	Methods, data sources, outcome measures, and independent measures

		assessment methods if there is more than one group			
Bias	9	Describe any efforts to address potential sources of bias		Methods, statist methods line 17 184	
Study size	10	Explain how the study size was arrived at		Methods and Results (187-19	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why		Methods, outcomeasure, and independent measures	
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) <i>Cohort study</i> - If applicable, explain how loss to follow-up was addressed <i>Case-control study</i> - If applicable, explain how matching of cases and controls was addressed <i>Cross-sectional study</i> - If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses 	r N	Methods, statist methods	
Data access and cleaning methods			RECORD 12.1: Authors should describe the extent to which the investigators had access to the	12.1 Methods 12.2 Methods, d sources	
Linkage		···		database population used to create the study population. RECORD 12.2: Authors should provide information on the data cleaning methods used in the study. RECORD 12.3: State whether the study included person-level, institutional-level, or other data linkage across two or more databases. The methods of linkage and methods of linkage quality evaluation should be provided	12.3 Methods, data sources
------------------	----	---	----------	--	---
Results	1				
Participants	13	 (a) Report the numbers of individuals at each stage of the study (<i>e.g.</i>, numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed) (b) Give reasons for non- participation at each stage. (c) Consider use of a flow diagram 	or revie	RECORD 13.1: Describe in detail the selection of the persons included in the study (<i>i.e.</i> , study population selection) including filtering based on data quality, data availability and linkage. The selection of included persons can be described in the text and/or by means of the study flow diagram.	13.1 Method, study population and Results (190-200)
Descriptive data	14	 (a) Give characteristics of study participants (<i>e.g.</i>, demographic, clinical, social) and information on exposures and potential confounders (b) Indicate the number of participants with missing data for each variable of interest (c) <i>Cohort study</i> - summarise follow-up time (<i>e.g.</i>, average and total amount) 			Results, lines 190- 200 and Table 1

0	Outcome data	15	Cohort study - Report numbers of outcome events or summary measures over time Case-control study - Report numbers in each exposure category, or summary measures of exposure Cross-sectional study - Report numbers of outcome events or summary measures			Results, Table 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0	Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 	er terie		Results, (a) Figure 1, 2, and 3 and Appendix b) Categorisation provide in the methods c) NA
9 0 1 2	Other analyses	17	Report other analyses done— e.g., analyses of subgroups and interactions, and sensitivity analyses		07/2	Methods lines 183- 184
3	Discussion					
4 5	Key results	18	Summarise key results with reference to study objectives			Discussion, lines 262-277
6 7 8 9 0 1 2 3	Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias		RECORD 19.1: Discuss the implications of using data that were not created or collected to answer the specific research question(s). Include discussion of misclassification bias, unmeasured confounding, missing data, and changing eligibility over	Discussion, lines 340-351

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence		time, as they pertain to the study being reported.	Discussion and Conclusion section (lines 352-365).
Generalisability	21	Discuss the generalisability (external validity) of the study results			Australian context clear in manuscript with discussion of relevant literature
Other Information Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Pr ro		Role of the funding source, lines 367- 369
Accessibility of protocol, raw data, and programming code				RECORD 22.1: Authors should provide information on how to access any supplemental information such as the study protocol, raw data, or programming code.	22.1 Supplementary data provided to justify results and interpretation. Line 389-396: The data that support the findings of this study are available from the relevant data custodians of the study datasets. Restrictions by the data custodians mean that the data are not publicly available or able to be provided by the authors. Researchers

2 3 4 5 6 7	
7 8 9	
10 11	
12 13 14	*]
15 16	in
17 18	*(
19 20 21	
21 22 23	
24 25	
26 27 28	
20 29 30	
31 32	
33 34 25	
36 37	
38 39	
40 41 42	
42 43 44	
45 46	
47	

			wishing to access
			the datasets used in
			this study should
			refer to the WA data
			linkage application
			process
			(https://www.datalin
			kage-
			wa.org.au/access-
	$\mathbf{\wedge}$		and-application).

*Reference: Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, Sørensen HT, von Elm E, Langan SM, the RECORD Working Committee. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement. *PLoS Medicine* 2015; in press.

*Checklist is protected under Creative Commons Attribution (CC BY) license.