## Science Advances

## Supplementary Materials for

## Morphological consequences of climate change for resident birds in intact Amazonian rainforest

Vitek Jirinec\*, Ryan C. Burner, Bruna R. Amaral, Richard O. Bierregaard Jr., Gilberto Fernández-Arellano, Angélica Hernández-Palma, Erik I. Johnson, Thomas E. Lovejoy, Luke L. Powell, Cameron L. Rutt, Jared D. Wolfe, Philip C Stouffer

\*Corresponding author. Email: vjirin1@lsu.edu

Published 12 November 2021, *Sci. Adv.* 7, eabk1743 (2021) DOI: 10.1126/sciadv.abk1743

## This PDF file includes:

Figs. S1 to S19 Tables S1 to S6



**Fig. S1. Bird morphology time trends by ecological traits.** (**A**) Foraging guilds. (**B**) Vertical forest stratum. In both panels, points show the overall estimate of change through time for a given group of species, from the second level (Gamma parameters) of a hierarchical model of individual species trends. Lines represent 90% and 95% credible intervals. (**A**) shows Gamma parameters for model depicted in Fig. 1D whereas (**B**) shows output from an identical model with stratum (rather than guild) as the species trait. Results correspond to models 1, 7, 13, 4, 10, and 16 (table S4).



**Fig. S2. Trends in morphology vs abundance.** (A) Morphological trends in Fig. 1D were grouped by foraging guild, with species sorted by mass trends within each guild. Vertical guild position follows guild-specific abundance trends (9). (**B**–**D**) Phylogenetic generalized least squares (PGLS) regression between abundance and morphology trends. Results correspond to models 1, 7, 13 (table S4).



**Fig. S3. Morphological responses of bird foraging guild to year and climate.** Points are Gamma parameter estimates from the second level of a hierarchical model of individual species trends, indicating the overall estimated response of a given group of species to each covariate. Lines represent 90% and 95% credible intervals. Plots show Gamma values for models depicted in Fig. 4. Guilds are sorted according to abundance trends (9). Results correspond to models 2, 3, 8, 9, 14, and 15 (table S4).



**Fig. S4. Morphological responses of bird forest stratum to year and climate.** Points are Gamma parameter estimates from the second level of a hierarchical model of individual species trends, indicating the overall estimated response of a given group of species to each covariate. Lines represent 90% and 95% credible intervals. Plots show Gamma values for models identical to Fig. 4, with stratum (rather than guild) as the species trait. Strata are sorted from low to high. Results correspond to models 5, 6, 11, 12, 17, and 18 (table S4).



**Fig. S5. Bird morphology modeled by time trend and climate covariates using linear mixed models.** Models are fit by restricted maximum likelihood to the entire merged dataset and include random effects of species and month. Predictors are scaled to allow comparison across each morphological metric.



Fig. S6. Concept map for the consequences of morphological changes on avian energetics. Out of the scenarios that reduce mass:wing (two, five, nine) from a hypothetical 4-unit energy baseline (scenario one: 2 in mass + 2 in wing), scenario nine is the most economical—scenario two wastes 1 unit, scenario five costs 1 unit, but the net energy requirement for scenario nine is zero. Caloric demand of flight is based on (40).



**Fig. S7. Correlation between mass and wing change.** Regression is based on phylogenetic generalized least squares (PGLS). Results correspond to models 1 and 7 (table S4).

|                            | <b>W</b>                              |         |          |
|----------------------------|---------------------------------------|---------|----------|
| Philydor erythrocercum     |                                       |         |          |
| Rhynchocyclus olivaceus    |                                       |         |          |
| Dendrocincla merula        |                                       |         |          |
| Isleria guttata            |                                       |         |          |
| Frederickena viridis       |                                       |         |          |
| Myrmoderus ferrugineus     |                                       |         |          |
| Synallaxis rutilans        |                                       |         |          |
| Corythopis torquatus       |                                       |         |          |
| Grallaria varia            |                                       |         |          |
| Sclerurus obscurior        |                                       |         |          |
| Lanio fuivus               |                                       |         |          |
| Hyiopnyiax naevius         |                                       |         |          |
| Hylopezus macularius       |                                       |         |          |
| Scierurus rungularis       | -                                     |         |          |
| Percriostola runirons      |                                       |         |          |
| Chuphonunchus chierrus     |                                       |         |          |
| Eormicarius analis         |                                       |         |          |
| Sclerurus caudacutus       |                                       |         |          |
| Clibanornis rubiainosus    |                                       |         |          |
| Galhula alhirostris        |                                       |         |          |
| Xenons minutus             |                                       |         |          |
| Myrmotherula Ionainennis   |                                       |         |          |
| Dendrocolantes certhia     |                                       |         |          |
| Philydor pyrrhodes         |                                       |         |          |
| Hylexetastes perrotii      |                                       |         |          |
| Hypocnemis cantator        | · · · · · · · · · · · · · · · · · · · |         |          |
| Gymnopithys rufiaula       |                                       |         |          |
| Malacoptila fusca          |                                       |         |          |
| Certhiasomus stictolaemus  |                                       |         |          |
| Microbates collaris        |                                       |         |          |
| Pithys albifrons           |                                       |         |          |
| Formicarius colma          |                                       |         |          |
| Dendrocincla fuliginosa    |                                       |         |          |
| Ceratopipra erythrocephala |                                       | <b></b> |          |
| Microcerculus bambla       |                                       |         |          |
| Automolus infuscatus       |                                       |         |          |
| Tachyphonus surinamus      |                                       |         |          |
| Trogon rufus               |                                       |         |          |
| Pseudopipra pipra          |                                       | •       |          |
| Deconychura longicauda     |                                       | <b></b> |          |
| Xiphorhynchus pardalotus   |                                       |         |          |
| Bucco capensis             | ·                                     |         |          |
| Automolus ochrolaemus      |                                       |         |          |
| Thamnophilus murinus       |                                       |         |          |
| Terenotriccus erythrurus   |                                       |         |          |
| Willisornis poecilinotus   |                                       |         |          |
| Myiobius barbatus          |                                       |         |          |
| Attila spadiceus           | ·                                     |         |          |
| Thamnomanes caesius        |                                       |         |          |
| Cyanoloxia rothschildii    |                                       |         |          |
| Onychorhynchus coronatus   |                                       |         |          |
| Mionectes macconnelli      |                                       |         |          |
| Myrmotherula menetriesii   |                                       |         |          |
| Lipuugus vociieraris       |                                       |         |          |
| Nomotus momota             |                                       |         |          |
| Phaethornis superciliosus  |                                       |         |          |
| Platwinchus coronatus      |                                       |         |          |
| Coranino autturalis        |                                       |         |          |
| Thalurania furcata         |                                       |         |          |
| Cynhorhinus arada          |                                       |         |          |
| Platyrinchus saturatus     |                                       |         |          |
| Epinecrophvlla autturalis  |                                       |         |          |
| Myrmotherula axillaris     |                                       |         |          |
| Conopophaga aurita         | -                                     |         |          |
| Myrmornis torquata         |                                       |         |          |
| Rhytipterna simplex        |                                       |         |          |
| Phaethornis bourcieri      | -                                     |         |          |
| Schiffornis olivacea       | -                                     |         |          |
| Campylopterus largipennis  |                                       |         | <u>+</u> |
| Thamnomanes ardesiacus     | - +                                   |         |          |
| Myrmelastes leucostigma    | -                                     |         |          |
| Lepidothrix serena         |                                       |         |          |
| Tunchiornis ochraceiceps   | -                                     |         |          |
| Turdus albicollis          |                                       |         |          |
| Mviothlypis rivularis      |                                       |         |          |
|                            |                                       |         |          |

**Fig. S8. HMSC models of morphological trends with a random effect of year.** Model structures are identical to Fig. 1D, but a random effect of categorical year is also included here.



Fig. S9. Morphology by species modeled by time trend and climate covariates with a random effect of year. Model structures are identical to Fig. 4, but a random effect of categorical year is also included here.



**Fig. S10. Raw morphology and lag 2 climate scatterplots.** Black lines and ribbons represent best-fit linear regressions and 95% CIs for their predictions. The most severe season (28.4 °C, 507 mm) corresponds to the widespread drought in 2016 (*84*).



Fig. S11. Variance partitioning for mass models. Vertical bars show the proportion of variance explained by each covariate, corrected for each species'  $R^2$  value for a given model. Legends show mean proportion for each covariate. For more details, see models 1–6 in Table S4. Species are ordered on the x-axis following declining mass in Fig. 1D.



Fig. S12. Variance partitioning for wing models. Vertical bars show the proportion of variance explained by each covariate, corrected for each species'  $R^2$  value for a given model. Legends show mean proportion for each covariate. For more details, see models 7–12 in Table S4. Species are ordered on the x-axis following declining mass in Fig. 1D.



**Fig. S13. Variance partitioning for mass:wing models.** Vertical bars show the proportion of variance explained by each covariate, corrected for each species' R<sup>2</sup> value for a given model. Legends show mean proportion for each covariate. For more details, see models 13–18 in Table S4. Species are ordered on the x-axis following declining mass in Fig. 1D.



**Fig. S14. Phylogenetic correlation in morphological changes through time.** The bold black line represents Moran's I, an index of autocorrelation, compared to the null hypothesis (solid horizontal line). Dashed lines represent 95% confidence intervals, based on nonparametric bootstrap resampling. Colored x-axis bars show regions of significant positive (red) and negative (blue) autocorrelation. Plots were created using the *phylosignal* R package (77). Morphological change estimates are from models 1, 7, and 13 (table S4).



Fig. S15. Phylogenetic correlation in species-specific morphological change over time. Bars show median rate of change per decade, as a percentage of model-estimated median 1980 mass, wing length, or mass:wing ratio. Red bars indicate species with values more similar to their neighbors than expected by chance, meaning that the local indicator of phylogenetic association (LIPA; local Moran's I) is significantly positive (p < 0.05) based on permutation tests. Phylogenetic tree is from birdtree.org (74). Plots were created using the *phylosignal* R package (77). Morphological change estimates are from models 1, 7, and 13 (table S4).



Fig. S16. Phylogenetic correlation in species-specific morphological change over time: Moran's I. Bars show the local indicator of phylogenetic association (LIPA; local Moran's I) for each species. Red bars indicate species with values more similar to their neighbors than expected by chance, meaning that the local Moran's I for that species is significantly positive (p < 0.05) based on permutation tests. Phylogenetic tree is from <u>birdtree.org</u> (74). Plots were created using the *phylosignal* R package (77). Morphological change estimates are from models 1, 7, and 13 (table S4).



**Fig. S17. Time trends in mass by species.** Points show raw data values. Solid black line represents the median estimate of mass trend with 95% credible interval ribbon from an HMSC model including phylogeny and foraging guild (model 1 in Table S4). Dashed red line is a simple linear model for that species. Gray horizontal line is the overall mean value for that species.

WING



**Fig. S18. Time trends in wing length by species.** Points show raw data values. Solid black line represents the median estimate of wing trends with 95% credible interval ribbon from an HMSC model including phylogeny and foraging guild (model 7 in Table S4). Dashed red line is a simple linear model for that species. Gray horizontal line is the overall mean value for that species.





**Fig. S19. Time trends in mass:wing by species.** Points show raw data values. Solid black line represents the median estimate with 95% credible interval ribbon from an HMSC model including phylogeny and foraging guild (model 13 in Table S4). Dashed red line is a simple linear model for that species. Gray horizontal line is the overall mean value for that species.

**Table S1. Time trend of bird morphology examined using linear mixed models.** Models are fit with maximum likelihood to the entire dataset and include species and month as random effects. Significance of the time-trend parameter (year) is assessed using the Satterthwaite's method.

|                                                         |                | Mass                                                                                                                                        |           |        |                | Wing          |           |        |               | Mass:wi     | ng        |        |  |  |  |  |
|---------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|----------------|---------------|-----------|--------|---------------|-------------|-----------|--------|--|--|--|--|
| Predictors                                              | Estimates      | CI                                                                                                                                          | Statistic | р      | Estimates      | CI            | Statistic | р      | Estimates     | CI          | Statistic | р      |  |  |  |  |
| (Intercept)                                             | 69.28          | 61.52 - 77.03                                                                                                                               | 17.50     | <0.001 | 39.17          | 30.18 - 48.15 | 8.55      | <0.001 | 1.30          | 1.21 - 1.38 | 29.83     | <0.001 |  |  |  |  |
| Year                                                    | -0.02          | tailes       CI       Statistic         28 $61.52 - 77.03$ $17.50$ $< 0$ $02$ $-0.020.02$ $-14.79$ $< 0$ 75 species       month $< 0$ $< 0$ |           | <0.001 | 0.02           | 0.01 - 0.02   | 9.23      | <0.001 | -0.00         | -0.000.00   | -25.57    | <0.001 |  |  |  |  |
| Random Effects                                          | 5.29           |                                                                                                                                             |           |        |                |               |           |        |               |             |           |        |  |  |  |  |
| $\sigma^2$                                              | 5.29           |                                                                                                                                             |           |        | 7.61           |               |           |        | 0.00          |             |           |        |  |  |  |  |
| $	au_{00}$                                              | 611.75 spe     | cies                                                                                                                                        |           |        | 424.61 spe     | cies          |           |        | 0.04 species  |             |           |        |  |  |  |  |
|                                                         | $0.00_{month}$ |                                                                                                                                             |           |        | $0.00_{month}$ |               |           |        | 0.00 month    |             |           |        |  |  |  |  |
| ICC                                                     | 0.99           |                                                                                                                                             |           |        | 0.98           |               |           |        | 0.98          |             |           |        |  |  |  |  |
| п                                                       | 77 species     |                                                                                                                                             |           |        | 77 species     |               |           |        | 77 species    |             |           |        |  |  |  |  |
|                                                         | 6 month        |                                                                                                                                             |           |        | $6_{month}$    |               |           |        | 6 month       |             |           |        |  |  |  |  |
| Observations                                            | 14842          |                                                                                                                                             |           |        | 11582          |               |           |        | 11009         |             |           |        |  |  |  |  |
| Marginal R <sup>2</sup> /<br>Conditional R <sup>2</sup> | 0.000 / 0.     | 991                                                                                                                                         |           |        | 0.000 / 0.     | 982           |           |        | 0.001 / 0.982 |             |           |        |  |  |  |  |
| AIC                                                     | 67578.12       | 1                                                                                                                                           |           |        | 57036.77       | 0             |           |        | -48878.082    |             |           |        |  |  |  |  |

**Table S2. Bird morphology modeled by time trend and lagged seasonal temperature using linear mixed models.** Models are fit with maximum likelihood to the entire dataset and include species and month as random effects. Significance of parameters is assessed using the Satterthwaite's method.

|                                                         |                | Mass                         |           |        |                | Wing          |           |        | Mass:wing                                      |              |           |        |  |  |  |  |
|---------------------------------------------------------|----------------|------------------------------|-----------|--------|----------------|---------------|-----------|--------|------------------------------------------------|--------------|-----------|--------|--|--|--|--|
| Predictors                                              | Estimates      | CI                           | Statistic | р      | Estimates      | CI            | Statistic | р      | Estimates                                      | CI           | Statistic | р      |  |  |  |  |
| (Intercept)                                             | 42.87          | 31.89 - 53.85                | 7.65      | <0.001 | 14.81          | -0.22 - 29.84 | 1.93      | 0.053  | 1.21                                           | 1.06 - 1.35  | 16.41     | <0.001 |  |  |  |  |
| Year                                                    | -0.00          | -0.01 - 0.00                 | -1.62     | 0.106  | 0.03           | 0.02 - 0.04   | 7.78      | <0.001 | -0.00                                          | -0.000.00    | -10.79    | <0.001 |  |  |  |  |
| Temp lag 0 (dry)                                        | -0.19          | -0.270.11                    | -4.83     | <0.001 | 0.10           | -0.01 - 0.22  | 1.74      | 0.081  | 0.00                                           | -0.00 - 0.00 | 0.30      | 0.766  |  |  |  |  |
| Temp lag 1 (wet)                                        | 0.35           | 0.23 - 0.47                  | 5.73      | <0.001 | 0.27           | 0.12 - 0.43   | 3.51      | <0.001 | 0.00                                           | -0.00 - 0.00 | 1.56      | 0.118  |  |  |  |  |
| Temp lag 2 (dry)                                        | -0.37          | -0.500.24                    | -5.44     | <0.001 | -0.53          | -0.700.37     | -6.33     | <0.001 | <b>01</b> -0.00 -0.00 -0.00 -2.04 <b>0.041</b> |              |           |        |  |  |  |  |
| Random effects                                          |                | -0.500.24 -5.44 < <b>0.0</b> |           |        |                |               |           |        |                                                |              |           |        |  |  |  |  |
| $\sigma^2$                                              | 5.27           |                              |           |        | 7.57           |               |           |        | 0.00                                           |              |           |        |  |  |  |  |
| $	au_{00}$                                              | 611.70 spe     | cies                         |           |        | 424.31 spe     | cies          |           |        | 0.04 species                                   |              |           |        |  |  |  |  |
|                                                         | $0.00_{month}$ |                              |           |        | $0.00_{month}$ |               |           |        | $0.00_{month}$                                 |              |           |        |  |  |  |  |
| ICC                                                     | 0.99           |                              |           |        | 0.98           |               |           |        | 0.98                                           |              |           |        |  |  |  |  |
| n                                                       | 77 species     |                              |           |        | 77 species     |               |           |        | 77 <sub>species</sub>                          |              |           |        |  |  |  |  |
|                                                         | 6 month        |                              |           |        | $6_{month}$    |               |           |        | $6_{month}$                                    |              |           |        |  |  |  |  |
| Observations                                            | 14842          |                              |           |        | 11582          |               |           |        | 11009                                          |              |           |        |  |  |  |  |
| Marginal R <sup>2</sup> /<br>Conditional R <sup>2</sup> | 0.000 / 0.     | 991                          |           |        | 0.000 / 0.     | 982           |           |        | 0.001 / 0.982                                  |              |           |        |  |  |  |  |
| AIC                                                     | 67533.93       | 6                            |           |        | 56993.76       | 7             |           |        | -48876.64                                      | 14           |           |        |  |  |  |  |

**Table S3. Bird morphology modeled by time trend and lagged seasonal precipitation using linear mixed models.** Models are fit with maximum likelihood to the entire dataset and include species and month as random effects. Significance of parameters is assessed using the Satterthwaite's method.

|                                                      |                | Mass                                 |           |        |                | Wing          |           |        |                                                | Mass:wi      | ng        |        |  |  |  |  |
|------------------------------------------------------|----------------|--------------------------------------|-----------|--------|----------------|---------------|-----------|--------|------------------------------------------------|--------------|-----------|--------|--|--|--|--|
| Predictors                                           | Estimates      | CI                                   | Statistic | р      | Estimates      | CI            | Statistic | р      | Estimates                                      | CI           | Statistic | р      |  |  |  |  |
| (Intercept)                                          | 52.18          | 42.93 - 61.44                        | 11.06     | <0.001 | 6.45           | -6.80 - 19.70 | 0.95      | 0.340  | 1.19                                           | 1.07 - 1.32  | 18.43     | <0.001 |  |  |  |  |
| Year                                                 | -0.01          | -0.020.01                            | -6.58     | <0.001 | 0.03           | 0.03 - 0.04   | 10.92     | <0.001 | -0.00                                          | -0.000.00    | -14.29    | <0.001 |  |  |  |  |
| Precip lag 0 (dry)                                   | 0.00           | 0.00 - 0.00                          | 5.90      | <0.001 | 0.00           | -0.00 - 0.00  | 1.38      | 0.168  | 0.00                                           | -0.00 - 0.00 | 1.91      | 0.057  |  |  |  |  |
| Precip lag 1 (wet)                                   | -0.00          | -0.000.00                            | -3.40     | 0.001  | -0.00          | -0.000.00     | -5.38     | <0.001 | -0.00                                          | -0.00 - 0.00 | -0.50     | 0.619  |  |  |  |  |
| Precip lag 2 (dry)                                   | 0.00           | 0.00 0.00 - 0.00 5.44 <b>&lt;0.0</b> |           |        | 0.00           | 0.00 - 0.00   | 7.40      | <0.001 | <b>01</b> 0.00 $0.00 - 0.00$ 2.47 <b>0.013</b> |              |           |        |  |  |  |  |
| Random effects                                       |                | 0.00 0.00 0.00                       |           |        |                |               |           |        |                                                |              |           |        |  |  |  |  |
| $\sigma^2$                                           | 5.26           |                                      |           |        | 7.56           |               |           |        | 0.00                                           |              |           |        |  |  |  |  |
| $	au_{00}$                                           | 611.75 spe     | cies                                 |           |        | 424.44 spe     | cies          |           |        | 0.04 species                                   |              |           |        |  |  |  |  |
|                                                      | $0.00_{month}$ |                                      |           |        | $0.00_{month}$ |               |           |        | $0.00_{month}$                                 |              |           |        |  |  |  |  |
| ICC                                                  | 0.99           |                                      |           |        | 0.98           |               |           |        | 0.98                                           |              |           |        |  |  |  |  |
| п                                                    | 77 species     |                                      |           |        | 77 species     |               |           |        | 77 species                                     |              |           |        |  |  |  |  |
|                                                      | $6_{month}$    |                                      |           |        | $6_{month}$    |               |           |        | 6 month                                        |              |           |        |  |  |  |  |
| Observations                                         | 14842          |                                      |           |        | 11582          |               |           |        | 11009                                          |              |           |        |  |  |  |  |
| Marginal R <sup>2</sup> / Conditional R <sup>2</sup> | 0.000 / 0.     | 991                                  |           |        | 0.000 / 0.     | 983           |           |        | 0.001 / 0.982                                  |              |           |        |  |  |  |  |
| AIC                                                  | 67506.38       | 3                                    |           |        | 56974.80       | 2             |           |        | -48882.735                                     |              |           |        |  |  |  |  |

| Index | Model         | Response variable | Predictor covariates                                                  | Trait   | Mean R <sup>2</sup> |
|-------|---------------|-------------------|-----------------------------------------------------------------------|---------|---------------------|
| 1     | Time          | Mass              | Year                                                                  | Guild   | 0.054               |
| 2     | Temperature   | "                 | $Year + Temp\_Lag0_{dry} + Temp\_Lag1_{wet} + Temp\_Lag2_{dry}$       | "       | 0.087               |
| 3     | Precipitation | "                 | $Year + Precip\_Lag0_{dry} + Precip\_Lag1_{wet} + Precip\_Lag2_{dry}$ | "       | 0.105               |
| 4     | Time          | "                 | Year                                                                  | Stratum | 0.055               |
| 5     | Temperature   | "                 | $Year + Temp\_Lag0_{dry} + Temp\_Lag1_{wet} + Temp\_Lag2_{dry}$       | "       | 0.086               |
| 6     | Precipitation | "                 | $Year + Precip\_Lag0_{dry} + Precip\_Lag1_{wet} + Precip\_Lag2_{dry}$ | "       | 0.105               |
| 7     | Time          | Wing              | Year                                                                  | Guild   | 0.063               |
| 8     | Temperature   | "                 | $Year + Temp\_Lag0_{dry} + Temp\_Lag1_{wet} + Temp\_Lag2_{dry}$       | "       | 0.114               |
| 9     | Precipitation | "                 | $Year + Precip\_Lag0_{dry} + Precip\_Lag1_{wet} + Precip\_Lag2_{dry}$ | "       | 0.122               |
| 10    | Time          | "                 | Year                                                                  | Stratum | 0.066               |
| 11    | Temperature   | "                 | $Year + Temp\_Lag0_{dry} + Temp\_Lag1_{wet} + Temp\_Lag2_{dry}$       | "       | 0.114               |
| 12    | Precipitation | "                 | $Year + Precip\_Lag0_{dry} + Precip\_Lag1_{wet} + Precip\_Lag2_{dry}$ | "       | 0.120               |
| 13    | Time          | Mass:wing         | Year                                                                  | Guild   | 0.099               |
| 14    | Temperature   | "                 | $Year + Temp\_Lag0_{dry} + Temp\_Lag1_{wet} + Temp\_Lag2_{dry}$       | "       | 0.131               |
| 15    | Precipitation | "                 | $Year + Precip\_Lag0_{dry} + Precip\_Lag1_{wet} + Precip\_Lag2_{dry}$ | "       | 0.149               |
| 16    | Time          | "                 | Year                                                                  | Stratum | 0.099               |
| 17    | Temperature   | "                 | $Year + Temp\_Lag0_{dry} + Temp\_Lag1_{wet} + Temp\_Lag2_{dry}$       | "       | 0.129               |
| 18    | Precipitation | "                 | $Year + Precip\_Lag0_{dry} + Precip\_Lag1_{wet} + Precip\_Lag2_{dry}$ | "       | 0.150               |
| 19    | Time          | Mass              | Year                                                                  | NA      | 0.026               |
| 20    | Temperature   | "                 | $Year + Temp\_Lag0_{dry} + Temp\_Lag1_{wet} + Temp\_Lag2_{dry}$       | NA      | 0.035               |
| 21    | Precipitation | "                 | $Year + Precip\_Lag0_{dry} + Precip\_Lag1_{wet} + Precip\_Lag2_{dry}$ | NA      | 0.041               |
| 22    | Time          | Wing              | Year                                                                  | NA      | 0.009               |
| 23    | Temperature   | "                 | $Year + Temp\_Lag0_{dry} + Temp\_Lag1_{wet} + Temp\_Lag2_{dry}$       | NA      | 0.014               |
| 24    | Precipitation | "                 | $Year + Precip\_Lag0_{dry} + Precip\_Lag1_{wet} + Precip\_Lag2_{dry}$ | NA      | 0.016               |
| 25    | Time          | Mass:wing         | Year                                                                  | NA      | 0.071               |
| 26    | Temperature   | "                 | $Year + Temp\_Lag0_{dry} + Temp\_Lag1_{wet} + Temp\_Lag2_{dry}$       | NA      | 0.072               |
| 27    | Precipitation | "                 | $Year + Precip\_Lag0_{dry} + Precip\_Lag1_{wet} + Precip\_Lag2_{dry}$ | NA      | 0.074               |

**Table S4. Structure and fit of Bayesian joint species models used in this study.** Models 1–18 included the effect of phylogeny and trait. Models 19–27 merge species, which are then treated as a random effect, and do not include phylogeny or trait.

|                                                         |            | Mass          |           |        |            | Wing          |           |        | Mass:wing                                    |             |           |        |  |  |  |
|---------------------------------------------------------|------------|---------------|-----------|--------|------------|---------------|-----------|--------|----------------------------------------------|-------------|-----------|--------|--|--|--|
| Predictors                                              | Estimates  | CI            | Statistic | р      | Estimates  | CI            | Statistic | р      | Estimates                                    | CI          | Statistic | р      |  |  |  |
| (Intercept)                                             | 28.16      | 22.47 - 33.86 | 9.70      | <0.001 | 75.77      | 71.16 - 80.39 | 32.18     | <0.001 | 0.33                                         | 0.29 - 0.37 | 14.85     | <0.001 |  |  |  |
| Juvenile                                                | -0.45      | -0.580.33     | -7.06     | <0.001 | -0.59      | -0.760.43     | -7.08     | <0.001 | <b>1</b> -0.00 -0.010.00 -5.33 < <b>0.00</b> |             |           |        |  |  |  |
| Random effects                                          |            |               |           |        |            |               |           |        |                                              |             |           |        |  |  |  |
| $\sigma^2$                                              | 4.36       |               |           |        | 6.50       |               |           |        | 0.00                                         |             |           |        |  |  |  |
| $	au_{00}$                                              | 649.02 spe | ecies         |           |        | 426.56 spe | cies          |           |        | 0.04 species                                 |             |           |        |  |  |  |
| ICC                                                     | 0.99       |               |           |        | 0.98       |               |           |        | 0.99                                         |             |           |        |  |  |  |
| n                                                       | 77 species |               |           |        | 77 species |               |           |        | 77 species                                   |             |           |        |  |  |  |
| Observations                                            | 7362       |               |           |        | 6192       |               |           |        | 5927                                         |             |           |        |  |  |  |
| Marginal R <sup>2</sup> /<br>Conditional R <sup>2</sup> | 0.000 / 0. | 993           |           |        | 0.000 / 0. | 985           |           |        | 0.000 / 0.985                                |             |           |        |  |  |  |

**Table S5. Bird morphology by age.** Models are linear mixed models with species as a random effect fit with restricted maximum likelihood. Significance of age group effect (juvenile) is assessed using the Satterthwaite's method.

**Table S6. Bird species considered in analysis, their trait assignments, and model-estimated body mass, wing length, and mass:wing ratio.** Taxonomy follows South American Checklist Committee ver. 9 Feb 21. Morphological change estimates are from models 1, 7, and 13 (table S4).

| Species                   | Guild | Stratum  |     | Ν      | lass (g) |              |   |     | Wing   | length (n | nm)          |   |     | Mas  | s:wing 1 | ratio        |   |
|---------------------------|-------|----------|-----|--------|----------|--------------|---|-----|--------|-----------|--------------|---|-----|------|----------|--------------|---|
|                           | 0 unu | 20100000 | n   | 1980   | 2019     | $\Delta$ (%) |   | n   | 1980   | 2019      | $\Delta$ (%) |   | n   | 1980 | 2019     | $\Delta$ (%) |   |
| TROCHILIDAE               |       |          |     |        |          |              |   |     |        |           |              |   |     |      |          |              |   |
| Phaethornis bourcieri     | HU    | U        | 115 | 4.16   | 3.90     | -6.20        | ▼ | 95  | 55.85  | 55.05     | -1.43        |   | 74  | 0.07 | 0.07     | -5.41        |   |
| Phaethornis superciliosus | HU    | U        | 149 | 5.57   | 5.28     | -5.20        |   | 131 | 57.76  | 55.99     | -3.07        | ▼ | 113 | 0.10 | 0.10     | -4.04        |   |
| Campylopterus largipennis | HU    | М        | 45  | 8.85   | 8.30     | -6.30        |   | 36  | 71.89  | 72.37     | 0.66         |   | 34  | 0.12 | 0.12     | -6.45        |   |
| Thalurania furcata        | HU    | М        | 116 | 4.14   | 3.93     | -5.24        |   | 87  | 50.40  | 50.52     | 0.24         |   | 69  | 0.08 | 0.08     | -4.94        |   |
| TROGONIDAE                |       |          |     |        |          |              |   |     |        |           |              |   |     |      |          |              |   |
| Trogon rufus              | MF    | М        | 24  | 51.63  | 49.53    | -4.07        |   | 24  | 109.48 | 109.80    | 0.29         |   | 20  | 0.47 | 0.45     | -3.85        |   |
| MOMOTIDAE                 |       |          |     |        |          |              |   |     |        |           |              |   |     |      |          |              |   |
| Momotus momota            | MF    | М        | 80  | 133.00 | 127.26   | -4.31        |   | 68  | 142.42 | 140.17    | -1.58        |   | 60  | 0.93 | 0.91     | -2.05        |   |
| GALBULIDAE                |       |          |     |        |          |              |   |     |        |           |              |   |     |      |          |              |   |
| Galbula albirostris       | MI    | М        | 167 | 18.03  | 17.54    | -2.70        |   | 140 | 69.06  | 70.31     | 1.81         |   | 134 | 0.26 | 0.25     | -3.86        | ▼ |
| BUCCONIDAE                |       |          |     |        |          |              |   |     |        |           |              |   |     |      |          |              |   |
| Bucco capensis            | MI    | М        | 22  | 51.81  | 49.92    | -3.66        |   | 22  | 81.06  | 82.91     | 2.28         |   | 22  | 0.64 | 0.60     | -5.94        | ▼ |
| Malacoptila fusca         | UI    | U        | 115 | 44.15  | 42.98    | -2.64        |   | 95  | 87.36  | 88.59     | 1.40         |   | 91  | 0.51 | 0.49     | -4.70        | ▼ |
| THAMNOPHILIDAE            |       |          |     |        |          |              |   |     |        |           |              |   |     |      |          |              |   |
| Frederickena viridis      | NGI   | NG       | 59  | 67.35  | 66.77    | -0.86        |   | 56  | 91.97  | 92.99     | 1.11         |   | 51  | 0.73 | 0.72     | -2.18        |   |
| Thamnophilus murinus      | MI    | М        | 100 | 17.98  | 17.22    | -4.19        | ▼ | 72  | 59.85  | 60.82     | 1.62         |   | 70  | 0.30 | 0.28     | -7.28        | ▼ |
| Thamnomanes ardesiacus    | UI    | U        | 508 | 18.42  | 17.25    | -6.36        | ▼ | 395 | 71.78  | 72.95     | 1.62         |   | 382 | 0.26 | 0.23     | -10.34       | ▼ |
| Thamnomanes caesius       | MI    | М        | 504 | 17.71  | 16.90    | -4.61        | ▼ | 373 | 71.01  | 71.53     | 0.73         |   | 356 | 0.26 | 0.23     | -8.24        | ▼ |
| Isleria guttata           | NGI   | NG       | 105 | 10.27  | 10.19    | -0.75        |   | 71  | 49.70  | 51.08     | 2.77         |   | 64  | 0.20 | 0.20     | -2.46        |   |
| Epinecrophylla gutturalis | UI    | U        | 292 | 8.89   | 8.36     | -5.91        | ▼ | 205 | 49.47  | 50.56     | 2.20         |   | 194 | 0.18 | 0.17     | -9.84        | ▼ |
| Myrmotherula axillaris    | UI    | U        | 165 | 7.81   | 7.35     | -5.82        | ▼ | 120 | 50.50  | 50.95     | 0.88         |   | 114 | 0.16 | 0.14     | -9.49        | ▼ |
| Myrmotherula longipennis  | UI    | U        | 370 | 8.51   | 8.27     | -2.86        | ▼ | 317 | 56.82  | 57.61     | 1.39         |   | 299 | 0.15 | 0.14     | -5.96        | ▼ |
| Myrmotherula menetriesii  | MI    | М        | 212 | 8.31   | 7.93     | -4.53        | ▼ | 182 | 51.27  | 52.32     | 2.04         |   | 171 | 0.16 | 0.15     | -7.93        | ▼ |

| Hypocnemis cantator       | GI  | U  | 283  | 11.94  | 11.59  | -2.90 | ▼ | 197 | 51.62  | 52.48  | 1.67  | 191 | 0.24 | 0.22 | -7.98 | ▼ |
|---------------------------|-----|----|------|--------|--------|-------|---|-----|--------|--------|-------|-----|------|------|-------|---|
| Percnostola rufifrons     | GI  | NG | 282  | 28.76  | 28.26  | -1.73 |   | 234 | 70.68  | 71.79  | 1.57  | 220 | 0.41 | 0.39 | -4.60 | ▼ |
| Myrmelastes leucostigma   | RI  | NG | 74   | 24.64  | 23.13  | -6.14 | ▼ | 66  | 65.76  | 65.79  | 0.05  | 59  | 0.38 | 0.35 | -7.09 | ▼ |
| Myrmoderus ferrugineus    | TI  | Т  | 147  | 24.34  | 24.21  | -0.52 |   | 107 | 61.95  | 63.85  | 3.08  | 104 | 0.39 | 0.38 | -3.82 | ▼ |
| Myrmornis torquata        | TI  | Т  | 101  | 44.90  | 42.25  | -5.91 | ▼ | 77  | 91.78  | 92.43  | 0.71  | 76  | 0.49 | 0.46 | -7.14 | ▼ |
| Pithys albifrons          | AF  | NG | 1160 | 20.39  | 19.70  | -3.42 | ▼ | 874 | 69.46  | 70.18  | 1.04  | 831 | 0.30 | 0.28 | -6.38 | ▼ |
| Gymnopithys rufigula      | AF  | NG | 551  | 29.26  | 28.46  | -2.74 | ▼ | 367 | 74.04  | 75.58  | 2.09  | 351 | 0.40 | 0.37 | -7.44 | ▼ |
| Hylophylax naevius        | NGI | NG | 43   | 12.42  | 12.21  | -1.72 |   | 28  | 56.69  | 57.29  | 1.07  | 26  | 0.22 | 0.21 | -2.75 |   |
| Willisornis poecilinotus  | NGI | NG | 774  | 16.98  | 16.21  | -4.55 | ▼ | 589 | 63.18  | 64.03  | 1.35  | 566 | 0.27 | 0.25 | -7.01 | ▼ |
| CONOPOPHAGIDAE            |     |    |      |        |        |       |   |     |        |        |       |     |      |      |       |   |
| Conopophaga aurita        | NGI | NG | 66   | 23.71  | 22.25  | -6.19 | ▼ | 52  | 64.85  | 66.32  | 2.27  | 49  | 0.37 | 0.34 | -8.89 | ▼ |
| GRALLARIIDAE              |     |    |      |        |        |       |   |     |        |        |       |     |      |      |       |   |
| Grallaria varia           | TI  | Т  | 12   | 124.13 | 122.32 | -1.46 |   | 12  | 113.52 | 113.67 | 0.14  | 11  | 1.09 | 1.07 | -1.65 |   |
| Hylopezus macularius      | TI  | Т  | 30   | 42.39  | 41.65  | -1.74 |   | 24  | 83.07  | 83.48  | 0.50  | 22  | 0.51 | 0.50 | -2.93 |   |
| FORMICARIIDAE             |     |    |      |        |        |       |   |     |        |        |       |     |      |      |       |   |
| Formicarius colma         | TI  | Т  | 248  | 46.52  | 45.05  | -3.16 | ▼ | 219 | 82.16  | 83.44  | 1.55  | 202 | 0.57 | 0.54 | -4.42 | ▼ |
| Formicarius analis        | TI  | Т  | 98   | 62.53  | 61.40  | -1.81 |   | 100 | 89.63  | 90.39  | 0.85  | 97  | 0.70 | 0.68 | -2.59 |   |
| FURNARIIDAE               |     |    |      |        |        |       |   |     |        |        |       |     |      |      |       |   |
| Sclerurus obscurior       | TI  | Т  | 47   | 25.36  | 25.07  | -1.15 |   | 42  | 78.55  | 79.44  | 1.12  | 41  | 0.32 | 0.31 | -3.40 |   |
| Sclerurus rufigularis     | TI  | Т  | 150  | 21.02  | 20.73  | -1.40 |   | 124 | 75.41  | 75.78  | 0.50  | 120 | 0.28 | 0.27 | -3.53 | ▼ |
| Sclerurus caudacutus      | TI  | Т  | 68   | 39.41  | 38.82  | -1.50 |   | 49  | 90.83  | 91.91  | 1.19  | 46  | 0.44 | 0.43 | -3.85 | ▼ |
| Certhiasomus stictolaemus | WO  | U  | 201  | 16.90  | 16.35  | -3.29 |   | 165 | 77.75  | 78.91  | 1.49  | 159 | 0.22 | 0.21 | -6.33 | ▼ |
| Deconychura longicauda    | WO  | М  | 57   | 28.18  | 27.03  | -4.08 |   | 48  | 100.19 | 100.66 | 0.47  | 45  | 0.28 | 0.26 | -6.79 | ▼ |
| Dendrocincla merula       | AF  | NG | 271  | 53.13  | 52.84  | -0.56 |   | 203 | 105.71 | 105.31 | -0.38 | 186 | 0.51 | 0.50 | -2.16 |   |
| Dendrocincla fuliginosa   | AW  | U  | 130  | 40.82  | 39.33  | -3.67 |   | 116 | 106.43 | 105.51 | -0.86 | 109 | 0.39 | 0.37 | -3.88 |   |
| Glyphorynchus spirurus    | WO  | U  | 924  | 13.70  | 13.32  | -2.76 | ▼ | 762 | 67.27  | 68.72  | 2.15  | 732 | 0.21 | 0.19 | -6.28 | ▼ |
| Dendrocolaptes certhia    | AW  | М  | 56   | 67.73  | 65.92  | -2.68 |   | 48  | 125.39 | 124.91 | -0.38 | 47  | 0.55 | 0.53 | -3.29 |   |
| Hylexetastes perrotii     | AW  | М  | 47   | 113.37 | 110.09 | -2.89 |   | 35  | 126.86 | 125.73 | -0.89 | 33  | 0.91 | 0.88 | -3.61 |   |
| Xiphorhynchus pardalotus  | WO  | М  | 355  | 37.83  | 36.38  | -3.84 | ▼ | 265 | 101.23 | 101.22 | -0.01 | 257 | 0.38 | 0.36 | -5.77 | ▼ |

| Campylorhamphus procurvoides | WO  | М  | 31  | 34.73 | 33.92 | -2.33 |   | 27  | 94.20  | 95.22  | 1.09  | 23  | 0.38 | 0.36 | -5.32  | ▼ |
|------------------------------|-----|----|-----|-------|-------|-------|---|-----|--------|--------|-------|-----|------|------|--------|---|
| Xenops minutus               | MI  | М  | 144 | 12.27 | 11.95 | -2.62 |   | 110 | 64.30  | 64.88  | 0.91  | 103 | 0.19 | 0.18 | -5.15  | ▼ |
| Philydor erythrocercum       | MI  | М  | 85  | 23.70 | 23.60 | -0.43 |   | 67  | 83.26  | 85.47  | 2.66  | 62  | 0.29 | 0.28 | -3.14  |   |
| Philydor pyrrhodes           | UI  | U  | 28  | 29.69 | 28.92 | -2.58 |   | 18  | 82.24  | 83.94  | 2.07  | 16  | 0.36 | 0.35 | -3.33  |   |
| Clibanornis rubiginosus      | NGI | NG | 81  | 36.79 | 35.85 | -2.56 |   | 57  | 80.77  | 80.48  | -0.36 | 56  | 0.46 | 0.45 | -2.41  |   |
| Automolus ochrolaemus        | UI  | U  | 35  | 34.49 | 33.15 | -3.91 | ▼ | 31  | 85.53  | 86.19  | 0.76  | 28  | 0.40 | 0.38 | -6.44  | ▼ |
| Automolus infuscatus         | UI  | U  | 240 | 31.84 | 30.77 | -3.35 | ▼ | 182 | 85.25  | 86.05  | 0.93  | 174 | 0.38 | 0.36 | -5.57  | ▼ |
| Synallaxis rutilans          | NGI | NG | 30  | 16.71 | 16.50 | -1.29 |   | 23  | 55.35  | 56.35  | 1.80  | 22  | 0.30 | 0.30 | -1.97  |   |
| PIPRIDAE                     |     |    |     |       |       |       |   |     |        |        |       |     |      |      |        |   |
| Corapipo gutturalis          | MF  | М  | 188 | 8.20  | 7.68  | -6.34 | ▼ | 177 | 54.33  | 54.62  | 0.54  | 170 | 0.15 | 0.14 | -9.09  | ▼ |
| Lepidothrix serena           | UF  | U  | 258 | 10.80 | 10.07 | -6.83 | ▼ | 203 | 53.09  | 54.13  | 1.95  | 201 | 0.21 | 0.19 | -9.71  | ▼ |
| Pseudopipra pipra            | UF  | U  | 969 | 12.01 | 11.48 | -4.35 | ▼ | 797 | 62.12  | 62.62  | 0.80  | 774 | 0.20 | 0.18 | -8.08  | ▼ |
| Ceratopipra erythrocephala   | MF  | М  | 91  | 12.03 | 11.56 | -3.96 | ▼ | 76  | 55.33  | 55.99  | 1.20  | 76  | 0.22 | 0.21 | -5.91  | ▼ |
| COTINGIDAE                   |     |    |     |       |       |       |   |     |        |        |       |     |      |      |        |   |
| Lipaugus vociferans          | MF  | М  | 23  | 71.87 | 67.98 | -5.42 |   | 21  | 118.43 | 118.83 | 0.33  | 20  | 0.62 | 0.57 | -8.19  | ▼ |
| TITYRIDAE                    |     |    |     |       |       |       |   |     |        |        |       |     |      |      |        |   |
| Schiffornis olivacea         | UF  | U  | 241 | 34.56 | 32.47 | -6.03 | ▼ | 173 | 89.66  | 91.00  | 1.49  | 164 | 0.39 | 0.36 | -9.44  | ▼ |
| ONYCHORHYNCHIDAE             |     |    |     |       |       |       |   |     |        |        |       |     |      |      |        |   |
| Onychorhynchus coronatus     | UI  | U  | 47  | 14.69 | 14.02 | -4.58 |   | 33  | 75.92  | 75.51  | -0.55 | 32  | 0.20 | 0.18 | -6.12  |   |
| Terenotriccus erythrurus     | MI  | М  | 64  | 6.83  | 6.55  | -4.16 |   | 49  | 48.20  | 49.97  | 3.66  | 46  | 0.14 | 0.13 | -9.03  | ▼ |
| Myiobius barbatus            | MI  | М  | 293 | 10.60 | 10.13 | -4.43 | ▼ | 217 | 61.24  | 62.84  | 2.62  | 204 | 0.18 | 0.16 | -8.57  | ▼ |
| TYRANNIDAE                   |     |    |     |       |       |       |   |     |        |        |       |     |      |      |        |   |
| Platyrinchus saturatus       | NGI | NG | 155 | 10.58 | 9.95  | -5.92 | ▼ | 120 | 56.90  | 57.16  | 0.44  | 117 | 0.19 | 0.17 | -9.47  | ▼ |
| Platyrinchus coronatus       | UI  | U  | 219 | 8.75  | 8.29  | -5.32 | ▼ | 175 | 53.08  | 53.11  | 0.05  | 165 | 0.17 | 0.15 | -8.33  | ▼ |
| Platyrinchus platyrhynchos   | UI  | U  | 22  | 12.19 | 11.51 | -5.60 | ▼ | 18  | 61.84  | 62.60  | 1.21  | 18  | 0.20 | 0.18 | -10.40 | ▼ |
| Corythopis torquatus         | NGI | NG | 170 | 14.75 | 14.55 | -1.38 |   | 112 | 63.62  | 63.58  | -0.06 | 109 | 0.24 | 0.23 | -4.64  | ▼ |
| Mionectes macconnelli        | MF  | М  | 647 | 12.48 | 11.83 | -5.19 | ▼ | 500 | 62.97  | 63.10  | 0.21  | 483 | 0.20 | 0.19 | -7.92  | ▼ |
| Rhynchocyclus olivaceus      | MI  | М  | 47  | 19.38 | 19.12 | -1.33 |   | 39  | 69.80  | 70.40  | 0.87  | 37  | 0.29 | 0.27 | -6.51  | ▼ |
| Attila spadiceus             | MI  | М  | 26  | 33.27 | 31.75 | -4.58 |   | 27  | 81.48  | 81.36  | -0.15 | 26  | 0.41 | 0.39 | -6.04  | ▼ |

| Rhytipterna simplex      | MI  | М  | 24  | 34.44 | 32.29 | -6.22 | ▼ | 25  | 95.33  | 95.39  | 0.07  | 24  | 0.37 | 0.34 | -7.40  | ▼ |
|--------------------------|-----|----|-----|-------|-------|-------|---|-----|--------|--------|-------|-----|------|------|--------|---|
| VIREONIDAE               |     |    |     |       |       |       |   |     |        |        |       |     |      |      |        |   |
| Tunchiornis ochraceiceps | UI  | U  | 225 | 10.32 | 9.63  | -6.67 | ▼ | 172 | 56.52  | 56.17  | -0.62 | 163 | 0.19 | 0.17 | -8.60  | ▼ |
| TROGLODYTIDAE            |     |    |     |       |       |       |   |     |        |        |       |     |      |      |        |   |
| Microcerculus bambla     | NGI | NG | 72  | 16.72 | 16.11 | -3.65 |   | 53  | 54.59  | 55.70  | 2.04  | 48  | 0.31 | 0.29 | -7.07  | ▼ |
| Cyphorhinus arada        | TI  | Т  | 172 | 20.34 | 19.22 | -5.50 | ▼ | 122 | 58.87  | 60.30  | 2.43  | 109 | 0.35 | 0.31 | -10.29 | ▼ |
| POLIOPTILIDAE            |     |    |     |       |       |       |   |     |        |        |       |     |      |      |        |   |
| Microbates collaris      | NGI | NG | 272 | 10.84 | 10.48 | -3.26 | ▼ | 200 | 49.53  | 50.43  | 1.81  | 190 | 0.22 | 0.21 | -7.62  | ▼ |
| TURDIDAE                 |     |    |     |       |       |       |   |     |        |        |       |     |      |      |        |   |
| Turdus albicollis        | UF  | U  | 335 | 50.05 | 46.61 | -6.87 | ▼ | 234 | 102.09 | 102.80 | 0.69  | 226 | 0.50 | 0.45 | -9.68  | ▼ |
| PARULIDAE                |     |    |     |       |       |       |   |     |        |        |       |     |      |      |        |   |
| Myiothlypis rivularis    | RI  | NG | 21  | 13.31 | 12.34 | -7.30 |   | 21  | 61.70  | 60.97  | -1.18 | 18  | 0.22 | 0.20 | -8.68  |   |
| CARDINALIDAE             |     |    |     |       |       |       |   |     |        |        |       |     |      |      |        |   |
| Cyanoloxia rothschildii  | UF  | U  | 61  | 25.75 | 24.58 | -4.55 |   | 49  | 75.49  | 77.96  | 3.27  | 47  | 0.34 | 0.32 | -7.87  | ▼ |
| THRAUPIDAE               |     |    |     |       |       |       |   |     |        |        |       |     |      |      |        |   |
| Tachyphonus surinamus    | MF  | М  | 174 | 20.69 | 19.84 | -4.11 | ▼ | 141 | 79.54  | 78.51  | -1.30 | 139 | 0.27 | 0.25 | -5.26  | ▼ |
| Lanio fulvus             | MI  | М  | 29  | 25.88 | 25.37 | -1.97 |   | 21  | 89.66  | 88.47  | -1.33 | 21  | 0.30 | 0.29 | -5.00  |   |

Guild: AW=ant-woodcreeper, AF=army-ant follower, GI=gap insectivore, HU=hummingbird, MF=midstory frugivore, MI=midstory insectivore, NGI=near-ground insectivore, RI=riparian insectivore, TI=terrestrial insectivore, UF=understory frugivore, UI=understory insectivore, WO=woodcreeper

Stratum: M=midstory, U=understory, NG=near-ground, T=terrestrial

▼=decreasing with 95% credible intervals entirely negative, ▲=increasing with 95% credible intervals entirely positive