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Increased Alpha-Band Connectivity During Tic Suppression in Children With 
Tourette Syndrome Revealed by Source Electroencephalography Analyses 

Supplement 

 

Supplementary methods 

Participants 

Criteria for inclusion were (i) having motor and/or phonic tics on a regular basis for at least one year and 

(ii) ages between 8 and 16 years old. Criteria for exclusion were a history of (i) neurological illness, seizures, 

or head trauma with loss of consciousness, (ii) intellectual disability, (iii) autism spectrum disorder, and (iv) 

severe major depressive disorder, as assessed by the semi-structured interview. 

All 72 participants had motor tics at the time of testing. Their YGTSS motor tics subscale score ranged from 

7 to 21. Fourteen of the 72 participants had no phonic tic at the time of testing (YGTSS phonic tics subscale 

score of 0). The YGTSS phonic tic subscale score of the 58 participants with phonic tics ranged from 3 to 

19. 

While some children reported past or current psychotherapy or counseling, none had previously received 

habit reversal training (HRT) or Comprehensive Behavioral Intervention for Tics (CBIT).  

Clinical assessment 

Tic severity was assessed with the Yale Global Tic Severity Scale (YGTSS; 1), which was administered by 

licensed clinicians with expertise in TS. The YGTSS assesses motor and phonic tics on a 6-point scale (0-

5) according to 5 dimensions of tics: number, frequency, intensity, complexity, and interference. Therefore, 

the YGTSS yields a score for motor and for phonic tic severity, which ranges from 0 to 25. These two scores 

are added up to form the total tic score, which ranges from 0 to 50. The latter score was used at the primary 

measure of tic severity in the current study. 

ADHD symptoms were assessed with the 18-item version of Swanson, Nolan and Pelham Questionnaire 

(SNAP-IV; 2). Each item was scored by one of the child’s parent, on a 4-point Likert scale (0-3). Therefore, 
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SNAP-IV scores range from 0 (no ADHD symptom at all) to 54 (most severe). Anxiety symptoms were 

assessed with the Screen for Child Anxiety Related Disorders (SCARED; 3), which is a 41-item parent-

rated questionnaire. The SCARED is rated on a 3-point Likert scale and yields a score ranging from 0 to 

82. Severity of disruptive behaviors was assessed with the Disruptive Behavior Rating Scale (DBRS; 4), 

which is an 8-item inventory corresponding to the DSM-IV-TR (5) criteria for oppositional defiant disorder 

(ODD). The DBRS is rated by parents on a 4-point Likert scale, where they indicate how frequently their 

child engaged in each type of behavior in the past 6 months. Severity of depression symptoms was 

assessed with the Anxious/Depressed and the Withdrawn/Depressed Scales of the Child Behavior 

Checklist (6). CBCL is one of the best-researched and most widely-used parent ratings of child 

psychopathology, has two factor-analytically derived scales of depressive symptoms inquiring about sad 

mood, feelings of worthless, lack of energy and anhedonia. Items are rated on a 3-point Likert scale and 

raw scores are converted to T-scores that are based on large standardization sample with a mean of 50, 

and standard deviation 10. Higher scores indicate greater severity.    

Children’s IQ was estimated using the Weschler Abbreviated Scale of Intelligence (WASI; 7). Handedness 

was assessed with the Edinburgh Handedness Inventory (8). 

Experimental procedures 

Children with TS were required to suppress their tics during three 2-minute sessions while keeping their 

eyes open. They were allow to take a short break between each session. Immediately following these tic 

suppression sessions, EEG was recorded during a 7-minute resting session when children were allowed 

to tic freely, also while keeping their eyes open. 

In 10 children who performed  an early version of this task, only 2 tic suppressions sessions were performed. 

One child performed a single 2-minute session of tic suppresion. Also, in 7 children, it was only possible to 

record 2 minutes of resting EEG. To ascertain that our results are not attributable to these slight variations 

in task duration, supplementary analyses were performed on children with three 2-minute tic suppression 

sessions and 7 minutes of rest (n = 50; see Supplementary Results). 
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EEG preprocessing 

The first step of the Maryland Analysis of Developmental EEG (MADE) pipeline consists in offline filtering 

of the data using EEGLAB’s firfilt plugin. Continuous data were filtered with a Hamming window finite 

impulse response (FIR) filter, with a 1 Hz high-pass filter (0.3 Hz transition width) and a 50 Hz low-pass 

filter (10 Hz transition width). The stopband attenuation was 53 dB. Movements during EEG recordings, 

especially in pediatric populations with movement disorders, can lead some electrodes to be flat or noisy. 

It is therefore important to identify and remove bad channels. To this end, we used the channel_properties 

function from EEGLAB’s FASTER plugin (9), which identifies bad channels according to three-values: Hurst 

exponent, correlation with other channels, and channel variance. After removal of bad channels, we used 

an independent component analysis (ICA) method to remove non-neural artifacts such as blinks, saccades, 

and muscle artifacts, which can be especially prevalent in children with TS. Since ICA performs better on 

data filtered with higher high-pass filter, the ICA was performed on a copy of the recordings, which is high-

pass filtered at 1 Hz and epoched into 1-second segments. At this stage, epochs with very low/high 

amplitude epochs (± 1000 μV) and excessive EMG activity (exceeding -30 and 100 dB between 20-40 Hz) 

were identified. Channels containing more than 20% of these epochs, suggesting bad channels missed by 

FASTER, were removed from the copied and the original datasets. These bad epochs were then removed 

from the copied dataset. Then, the ICA was performed on the copied dataset using EEGLAB’s runica 

function and ICA weights were transferred to the original dataset. 

To automatically identify artifacted ICA components, the MADE pipeline uses a modified version of 

EEGLAB’s ADJUST plugin (10), which is adapted for pediatric recordings (11). These ICA components that 

were identified as artifacts were subtracted from the original dataset and the EEG signal was thus corrected 

without losing data segments. Continuous data from both the tic suppression and rest sessions were then 

epoched into 2-seconds segments, which were used for cortical connectivity analyses. To remove any 

residual artifact following ICA cleaning, a threshold rejection method was applied. For frontal electrodes 

near the eyes (1, 8, 14, 21, 25, 32), any epoch with voltage exceeding ±100 μV was removed. For other 

electrodes, epochs with more than 10% of electrodes exceeding that threshold were removed. For 

remaining epochs, individual channels were interpolated with a spherical spline procedure at the epoch 
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level if they exceeded that threshold. Channels that were removed using the FASTER plugin were then 

interpolated, also with a spherical spline procedure. Finally, electrodes were re-referenced to the average 

reference. 

Source-based connectivity pipeline 

Brain sources were reconstructed with the Brainstorm toolbox (12). Electrode positions were co-registered 

to the MNI-ICBM152 template using three reference points (nasion, left, and right preauricular points). Using 

OpenMEEG (13), we computed a head model with the symmetric boundary element method (BEM). The 

BEM generates a three-layered head model (scalp, outer skull, and inner skull). The diagonal of the noise 

covariance matrix, which was computed for both conditions for each participant, was used for source 

reconstruction. 

Graph theory analyses 

We used a combination of methods to compute graph theory metrics relating to tic suppression. In the first 

step, the resulting weighted connectivity matrices were thresholded. Given the arbitrary nature of choosing 

a threshold and following the methods used by prior studies (14, 15), a wide range of thresholds were used 

to extract graph theory metrics. Proportional thresholds were used to keep the same number of edges in 

both conditions. Based on the work from Xu et al. (15), we computed graph theory metrics over 41 intervals, 

thus keeping between 10% and 50% (1% increments) of the highest PLV values. Our choice of eight graph 

theory metrics related to global network topology (strength (Sp), clustering coefficient (Cp) characteristic 

path length (Lp), global efficiency (Eglob), local efficiency (Eloc), normalized clustering coefficient (γ), 

normalized characteristic path length (λ), and small-worldness (σ)) was based on previous work (16, 17). 

Strength is defined as the sum of each node’s connection weight. The strength of a network is the average 

strength of all nodes in that network. The clustering coefficient measures how a node tends to cluster with 

adjacent nodes to form triplets of nodes. Therefore, the mean clustering coefficient of a network reflects 

how individual nodes are clustered. The characteristic path length represents the average shortest path 

between two nodes and is a measure of network integration. Another measure of integration if the global 

efficiency, which can be thought as the inverse of the characteristic path length. Global efficiency is more 
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influenced by short paths between nodes, while the characteristic path length is more influenced by long 

paths. The local efficiency of a node quantifies the communication between its adjacent nodes when that 

node is removed from the network (18, 19). 

A small-world network is a network where adjacent nodes tend to cluster together, while at the same time 

having short path length, i.e. requiring few edges to connect two nodes (20-22). To calculate small-

worldness, 100 random networks were derived from the original connectivity matrix for each participant and 

each condition. Normalized clustering coefficient (γ) is computed as γ = Cp / Cprand and normalized 

characteristic path length (λ) is computed as λ = Lp / Lprand, where Cprand and Lprand are the mean clustering 

coefficient and the mean characteristic path length computed from 100 random networks, respectively. 

Small-worldness is computed as σ = γ / λ. Small-world networks are defined as being more clustered than 

random networks (γ > 1), while having similar characteristic path length (λ ≈ 1), therefore showing high 

segregation and integration (19). 

Since graph theory metrics were computed over 41 thresholds, each metric can be plotted as a function of 

graph density (i.e. the percentage of connections remaining in the graph). To limit the number of 

comparisons that could arise from using 41 thresholds, we computed the area under the curve (AUCs) for 

each metric. These AUCs were used as dependent variables in analyses pertaining to global network 

topology and nodal properties. 

In the second step, graph theory metrics were computed on the network identified by NBS. NBS yields a 

binary matrix where the edges involved in the network are scored as 1, while the other edges are scored 

as 0. We first computed the degree of that matrix, which was used to define the sizes of the nodes on 

Figures depicting the networks identified by NBS. Then, the binary matrix was applied as a mask on each 

of the individual matrices of children with TS. More specifically, each individual connectivity matrix was 

multiplied by the binary matrix (consisting of 0’s and 1’s). This procedure allowed to keep the weights of 

edges that were part of the network identified by NBS, while setting all other edges to 0. Graph theory 

metrics were then calculated on these weighted matrices. We used the same metrics as those computed 

on thresholded matrices described above. 
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Network-based statistics 

First, NBS involves mass univariate testing of each connection (using the general linear model; GLM). 

Then, connections exceeding a given threshold (t = 3.44 (corresponding to α = .0005)) are admitted to a 

set of supra-threshold connections. Subsequently, connected graph components are identified among 

these supra-threshold connections. Finally, a p-value corrected for family-wise error rate (FWER) is 

calculated for each connected graph component using permutation testing with 5000 permutations (23, 24). 
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Supplementary results 

 
Table S1: Connections between nodes in the alpha-band 
subnetwork 
Connection t-statistic 

L postcentral gyrus – L precuneus 4.29 

R cuneus – L postcentral 4.18 

L banks of the superior temporal sulcus – L lingual gyrus 3.97 

L caudal middle frontal gyrus – L precentral gyrus 3.96 

L parahippocampal gyrus – L precentral gyrus 3.94 

L banks of the superior temporal sulcus – L inferior temporal gyrus 3.86 

L caudal middle frontal gyrus – R lateral occipital cortex 3.84 

R caudal anterior cingulate gyrus – L precuneus 3.81 

L inferior parietal cortex – R superior frontal gyrus 3.80 

L isthmus of the cingulate cortex – L posterior cingulate cortex 3.78 

L caudal middle frontal gyrus – R superior parietal cortex 3.78 

L isthmus of the cingulate cortex – R superior frontal gyrus 3.75 

L banks of the superior temporal sulcus – R lingual gyrus 3.70 

R inferior parietal cortex – R superior frontal gyrus 3.70 

L lateral occipital cortex – R superior frontal gyrus 3.70 

L precuneus – R superior frontal gyrus 3.67 

L parahippocampal gyrus – L transverse temporal cortex 3.67 

R caudal anterior cingulate cortex – L superior parietal cortex 3.64 

L caudal anterior cingulate cortex – L superior parietal cortex 3.60 

L pars triangularis – R superior parietal cortex 3.60 

L pericalcarine cortex – R superior frontal gyrus 3.59 

L postcentral gyrus – L superior parietal cortex 3.57 

R caudal middle frontal gyrus – L precuneus 3.56 

R middle temporal gyrus – R superior frontal gyrus 3.54 

R superior frontal gyrus – R superior parietal cortex 3.52 

L precentral gyrus – L precuneus 3.51 

R pericalcarine cortex – R superior frontal gyrus 3.50 

L inferior parietal cortex – L superior frontal gyrus 3.45 

L banks of the superior temporal sulcus – R superior frontal gyrus 3.44 
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Figure S1: Second subnetwork of functional connectivity in the alpha band during tic suppression. 
(A) There was a second and smaller subnetwork that reach the significance threshold in the alpha band (p 
= .037, FWER-corrected). That subnetwork included 4 nodes and 3 edges. In this subnetwork, the left 
fusiform gyrus was connected to three other nodes. (B) graphical representation of the subnetwork. Note: 
“l” & “r” denotes the lateralization of the nodes; EC: entorhinal cortex, FFG: fusiform gyrus, TTC: transverse 
temporal cortex. 
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Figure S2: Subnetwork of functional connectivity in the theta band during tic suppression. (A) 
Compared to the rest condition, 24 nodes in this subnetwork showed increased connectivity during tic 
suppression (p < .001, FWER-corrected). Node size corresponds to connectivity degree (number of 
connections per node). In that subnetwork comprising 28 edges, 5 nodes had a connectivity degree of 4 
and a degree z-score of 1.5: the left banks of the superior temporal sulcus, the right posterior cingulate 
cortex, the right precuneus, and the bilateral superior parietal cortex. (B) Graphical representation of the 
theta subnetwork. Note: “l” & “r” denotes the lateralization of the nodes; BANK: banks of the superior 
temporal sulcus, CauACC: caudal anterior cingulate cortex, CauMFG: caudal middle frontal gyrus, FFG: 
fusiform gyrus, ICC: isthmus of the cingulate cortex, ITG, inferior temporal gyrus, LING: lingual gyrus, MTG: 
middle temporal gyrus, PCC: posterior cingulate cortex, PCUN: precuneus, PHG: parahippocampal gyrus, 
PoCG: postcentral gyrus, PreCG: precentral gyrus, SFG: superior frontal gyrus, SPC: superior parietal 
cortex, TPO: temporal pole. 
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Figure S3: Subnetworks of functional connectivity in the beta band during tic suppression. NBS 
analyses revealed two subnetworks of increased functional connectivity in the beta band during tic 
suppression. Node size corresponds to connectivity degree (number of connections per node). (A) The first 
subnetwork comprised 17 nodes and 18 edges (p < .001, FWER-corrected). Here, the left postcentral gyrus 
(5 connections, degree z-score: 2.3), the left precuneus (4 connections, degree z-score: 1.5), and the left 
superior parietal cortex (4 connections, degree z-score: 1.5) were considered as hubs. (B) Graphical 
representation of the first beta subnetwork. (C) The second subnetwork only included 6 nodes and 5 edges 
(p = .006, FWER-corrected). In that subnetwork, the only hub was the right postcentral gyrus (degree z-
score: 1.6) which was connected to three other nodes. (D) Graphical representation of the second beta 
subnetwork. Note: “l” & “r” denotes the lateralization of the nodes; BANK: bank of the superior temporal 
sulcus, CauACC: caudal anterior cingulate cortex, CUN: cuneus, FFG: fusiform gyrus, ICC: isthmus of the 
cingulate cortex, ITG: inferior temporal gyrus, PCC: posterior cingulate cortex, PCUN: precuneus, PHG: 
parahippocampal gyrus, PoCG: postcentral gyrus, PreCG: precentral gyrus, RosMFG: rostral middle frontal 
gyrus, SFG: superior frontal gyrus, SPC: superior parietal cortex, TTC: transverse temporal cortex. 
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Figure S4: Connectivity strength of the nodes in the NBS subnetwork. Graph theoretical measures 
computed on the NBS subnetwork revealed larger strength for all nodes, at a Bonferroni-corrected threshold 
of α = .05 / 25 = .002. Nodes are ordered from the largest to the smallest strength value in the tic suppression 
condition. 
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Figure S5: Mean connectivity in each condition by YGTSS scores. Within the alpha subnetwork 
identified by NBS, there was no interaction between condition and YGTSS scores. 

 

 

 

Figure S6: Mean connectivity in each condition by SNAP-IV scores. Within the alpha subnetwork 
identified by NBS, there was no interaction between condition and SNAP-IV scores.  
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Number of epochs 

We tested whether there was a between-condition difference in the number of epochs that were included 

in our analyses. The number of valid 2-seconds epochs did not differ between tic suppression (mean = 

127.4) and rest (mean = 124.4) conditions [t(71) = 0.42, p = .68, d = .06]. 

Control of methodological confounds 

To ascertain that our results are not attributable to differences in the number of tic suppression sessions or 

duration of the rest session, we re-ran graph theory analyses pertaining to the NBS subnetwork on children 

with three 2-minute tic suppression sessions and 7 minutes of rest (n = 50). This did not change our results, 

as the within-group differences for strength [t(49) = -.6.25, p < .001, d = .46], characteristic path length [t(49) 

= 5.84, p < .001, d = .50], and global efficiency [t(49) = -5.73, p < .001, d = .47] remained significant. This 

suggests that increased connectivity within the NBS subnetwork during tic suppression is not attributable 

to variations in the number of two-minute tic suppression and the duration of rest sessions. 

We also assessed whether the number of epochs had an impact on our results. We performed a repeated-

measures ANCOVA on mean connectivity in the alpha-subnetwork identified through NBS, with the 

condition (tic suppression/rest) as a within-subjects variable and the number of epochs in the tic 

suppression condition, the number of epochs in the rest condition, as well as their interaction as covariates. 

In that analysis, neither the number of epochs in either condition nor the interaction between both variables 

interacted with the condition effect [all F’s < 1, all p-values > .33]. 
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