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Supplementary Figure 1: Observed flows versus predicted flows between MSOAs within regions

of interest of 25km for DG (a), MFG (b), NG (c) and G (d). The color, in a gradient from yellow

to red, indicates the density of points (flows). For each plot, we specify the CPC and the Pearson

correlation between the observed and the predicted flows. MSOAs (Middle Layer Super Output

Areas) are an aggregation of adjacent OAs with similar social characteristics; they generally con-

tain 5,000 to 15,000 residents and 2,000 to 6,000 households. Plots with a higher concentration of

points closer to the main diagonal have a higher correlation and a higher CPC.
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Supplementary Figure 2: Average CPC of DG and L-DG (Leave-One-City-Out DG) on the Core

Cities and London according to the leave-one-city-out validation.
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Supplementary Figure 3: Observed flows versus predicted flows between MSOAs within regions

of interest of 10km for DG (a), MFG (b), NG (c) and G (d). The color, in a gradient from yellow

to red, indicates the density of points (flows). For each plot, we specify the CPC and the Pearson

correlation between the observed and the predicted flows. MSOAs (Middle Layer Super Output

Areas) are an aggregation of adjacent OAs with similar social characteristics; they generally con-

tain 5,000 to 15,000 residents and 2,000 to 6,000 households. Plots with a higher concentration of

points closer to the main diagonal have a higher correlation and a higher CPC.
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Supplementary Figure 4: Performances of DG-Knn. (a,c,e) Comparison of the performance of

DG and DG-Knn (for k = 2, . . . , 9) in terms of Common Part of Commuters (CPC), varying

the decile of the population and for regions of interest sizes of 25km for England (a), Italy (c) and

New York State (e). Markers indicate the average CPC for a decile. Error bars indicate the standard

deviation of CPC of each decile. We do not find any significant improvement in the performance of

the model as k increases, regardless of the decile of the population. (b,d,f) Relative improvement

of DG-Knn (for k = 2, . . . , 9) with respect to G, varying the decile of the population and for region

of interest of sizes 25km for England (b), Italy (d) and New York State (f). We run five independent

experiments in which we train the models on 50% of randomly chosen tiles, stratifying according

to the population in the decile, corresponding to 84,491.63 Output Areas for England, 200,746.15

Census Areas for Italy and 2118.93 Census Tracts for New York State. The remaining 50% of

the tiles are used to evaluate the performance of the models in terms of CPC. The improvement of

DG-Knn with respect to G is negligible and, for high deciles, even negative.
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Supplementary Figure 5: Performances of DG-sum. (a,c,e) Comparison of the performance of

DG and DG-sum in terms of Common Part of Commuters (CPC), varying the decile of the popu-

lation and for regions of interest sizes of 25km for England (a), Italy (c) and New York State (e).

(b,d,f) Relative improvement of DG with respect to DG-sum, varying the decile of the population

and for region of interest of sizes 25km for England (b), Italy (d) and New York State (f). We

run five independent experiments in which we train the models on 50% of randomly chosen tiles,

stratifying according to the population in the decile, corresponding to 84,491.63 Output Areas for

England, 200,746.15 Census Areas for Italy and 2118.93 Census Tracts for New York State. The

remaining 50% of the tiles are used to evaluate the performance of the models in terms of CPC.

1 2 3 4 5 6

30 other features

0.478 = D: Commercial Landuse

0 = D: Natural Landuse

1 = D: Other Roads

1.564 = D: Food POIs

10.938 = O: Food POIs

0.119 = D: Industrial Landuse

9.881 = O: Natural Landuse

2.706 = Distance

13.816 = O: Population

30 other features

D: Commercial Landuse

D: Natural Landuse

D: Other Roads

D: Food POIs

O: Food POIs

D: Industrial Landuse

O: Natural Landuse

Distance

O: Population +3.33

+2.24

+0.6

+0.18

+0.17

+0.07

+0.06

1.21

0.35

0.01

E[f(X)] = 0.992

f(x) = 6.089
b) Flow from 260380000012 to 260530000015

1.5 1.0 0.5 0.0 0.5 1.0 1.5

30 other features

0 = D: Other Roads

0.119 = O: Industrial Landuse

9.881 = D: Natural Landuse

1.564 = O: Food POIs

0.814 = D: Commercial Landuse

10.938 = D: Food POIs

1.386 = O: Population

13.816 = D:Population

2.706 = Distance

30 other features

D: Other Roads

O: Industrial Landuse

D: Natural Landuse

O: Food POIs

D: Commercial Landuse

D: Food POIs

O: Population

D:Population

Distance +2.02

+0.17

+0.13

+0.05

1.25

1

0.35

0.11

0.04

0.09

E[f(X)] = 0.992

f(x) = 0.516
a) Flow from 260530000015 to 260380000012

Supplementary Figure 6: Explaining generated flows in Italy. (a, b) Shapely values for the two

flows between census area 260380000012 (population of about 501 individuals) and census area

260530000015 (population of about 131 individuals).
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Supplementary Figure 7: Explaining generated flows in New York. (a, b) Shapely values for the

two flows between census tract 36103147803 (population of about 6487 individuals) and census

tract 36103145701 (population of about 11,757 individuals).
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Country/State Aggregation Unit Number of Tiles Number of Units Avg Units per Tile Avg Units Area (km2)

England Output Areas (OAs) 885 (25 km), 3669 (10 km) 173,320 195.84 (25 km), 46.88 (10 km) 1.069

Italy Census Areas (CAs) 1551 (25 km), 6154 (10 km) 402,678 259.62 (25 km), 65.43 (10 km) 0.751

New York Census Tracts (CTs) 475 (25 km), 1082 (10 km) 5367 11.29 (25 km), 4.96 (10 km) 45.057

Table 1: Statistics about the datasets. The spatial unit adopted is the smallest available (i.e., the

most fine-grained). In England, we use the Output Areas (OAs) provided by the UK census 2011.

We create a tessellation of England into 885 squares of 25× 25 km2 (with 195.84 OAs per tile on

average) and into 3669 squares of 10 × 10 km2 (with 46.88 OAs per tile on average). Similarly,

in Italy, we use the Census Areas (CAs) provided by the Italian national census bureau (ISTAT)

and map them with 1551 squared tiles of 25× 25 km2 (259.62 CAs per tile on average) and 6154

tiles of 10 × 10 km2 (65.43 CAs per tile on average). In US, we use Census Tracts (CTs), which

are bigger that those of Italy and England. For this reason, we have fewer areas (5367 CTs in New

York State) and on average 11.29 CTs per tile (25× 25 km2) and 4.96 CTs per tile (10× 10 km2).
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Decile of Population Global Metrics
1 2 3 4 5 6 7 8 9 10 CPC NRMSE Corr. JSD

England (25 Km)
G Mean CPC 0.66 0.51 0.40 0.34 0.28 0.25 0.20 0.16 0.12 0.08

std CPC 0.18 0.09 0.07 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.11 0.51 0.35 0.73

Mean CPC 0.64 0.50 0.41 0.36 0.31 0.27 0.21 0.16 0.13 0.08
std CPC 0.18 0.07 0.06 0.07 0.06 0.04 0.03 0.02 0.02 0.02NG
Rel. Imp. -1.52 -1.88 0.35 5.79 6.41 4.41 3.82 4.46 3.99 4.53

0.12 0.45 0.56 0.72

Mean CPC 0.66 0.52 0.45 0.41 0.36 0.36 0.32 0.30 0.26 0.19
std CPC 0.17 0.09 0.07 0.05 0.04 0.04 0.06 0.05 0.04 0.04MFG
Rel. Imp. 1.29 1.55 13.46 20.11 26.89 43.01 61.43 87.83 105.64 139.46

0.23 0.47 0.48 0.65

Mean CPC 0.67 0.57 0.50 0.48 0.44 0.45 41 0.39 0.35 0.28
std CPC 0.17 0.07 0.06 0.06 0.04 0.05 0.05 0.05 0.04 0.05DG
Rel. Imp. 3.20 11.72 24.91 41.47 54.35 75.76 108.47 143.54 174.97 246.88

0.32 0.41 0.61 0.60

England (10 Km)
G Mean CPC 0.80 0.72 0.64 0.55 0.48 0.41 0.34 0.27 0.20 0.12

std CPC 0.30 0.11 0.09 0.09 0.07 0.07 0.06 0.05 0.05 0.04 0.15 0.66 0.44 0.70

Mean CPC 0.81 0.73 0.65 0.56 0.50 0.42 0.36 0.29 0.21 0.13
std CPC 0.31 0.12 0.11 0.09 0.09 0.07 0.07 0.06 0.05 0.04NG
Rel. Imp. 0.73 1.20 1.11 2.07 3.86 3.54 5.85 7.61 6.89 9.82

0.17 0.69 0.61 0.69

Mean CPC 0.81 0.72 0.65 0.57 0.52 0.46 0.42 0.38 0.32 0.26
std CPC 0.30 0.11 0.08 0.08 0.07 0.07 0.08 0.07 0.08 0.07MFG
Rel. Imp. 0.11 0.28 1.69 3.87 6.96 12.45 22.66 38.39 62.12 114.03

0.28 0.84 0.41 0.62

Mean CPC 0.81 0.74 0.67 0.60 0.57 0.52 0.50 0.46 0.41 0.34
std CPC 0.29 0.11 0.09 0.09 0.08 0.07 0.08 0.07 0.07 0.08DG
Rel. Imp. 0.59 2.25 3.96 9.08 16.74 26.97 43.31 67.01 103.41 177.82

0.36 0.66 0.65 0.57

Italy (25 Km)
G Mean CPC 0.26 0.38 0.41 0.37 0.31 0.29 0.27 0.24 0.21 0.13

std CPC 0.27 0.14 0.09 0.09 0.08 0.07 0.06 0.06 0.05 0.05 0.18 0.48 0.49 0.69

Mean CPC 0.31 0.44 0.48 0.43 0.38 0.35 0.34 0.30 0.25 0.15
std CPC 0.31 0.14 0.10 0.10 0.08 0.07 0.06 0.07 0.06 0.06NG
Rel. Imp. 19.30 14.63 16.41 16.82 19.76 22.26 23.67 22.93 19.93 19.45

0.21 0.45 0.57 0.67

Mean CPC 0.29 0.41 0.45 0.41 0.37 0.33 0.31 0.28 0.23 0.14
std CPC 0.30 0.16 0.09 0.09 0.09 0.07 0.06 0.07 0.06 0.06MFG
Rel. Imp. 10.96 5.95 10.68 10.88 15.62 14.76 14.69 15.70 13.99 14.20

0.20 0.50 0.44 0.67

Mean CPC 0.34 51 0.55 0.49 0.46 0.43 0.41 0.37 0.31 0.21
std CPC 0.34 0.16 0.09 0.10 0.07 0.08 0.07 0.08 0.07 0.08DG
Rel. Imp. 30.02 31.62 32.98 33.26 43.97 48.46 49.18 52.35 51.46 66.02

0.27 0.43 0.62 0.63

Italy (10 Km)
G Mean CPC 0.25 0.35 0.39 0.37 0.34 0.29 0.28 0.25 0.20 0.12

std CPC 0.27 0.14 0.11 0.09 0.08 0.07 0.05 0.06 0.06 0.05 0.18 0.49 49 0.69

Mean CPC 0.28 0.41 0.47 0.44 0.41 0.36 0.36 0.32 0.25 0.16
std CPC 0.32 0.15 0.12 0.10 0.08 0.09 0.05 0.07 0.08 0.07NG
Rel. Imp. 14.98 17.23 19.99 18.01 20.70 25.31 29.46 25.80 25.95 29.56

0.23 0.46 0.58 0.66

Mean CPC 0.29 0.39 0.43 0.41 0.39 0.33 0.32 0.29 0.22 0.14
std CPC 0.31 0.16 0.12 0.09 0.08 0.09 0.05 0.06 0.07 0.06MFG
Rel. Imp. 16.34 11.88 10.04 9.98 13.05 14.97 15.03 15.26 13.77 15.89

0.21 0.61 0.33 0.67

Mean CPC 0.31 0.48 0.52 0.48 0.47 0.42 0.42 0.38 0.30 0.21
std CPC 0.35 0.18 0.12 0.09 0.08 0.10 0.05 0.07 0.08 0.08DG
Rel. Imp. 25.33 35.77 31.61 29.84 35.43 43.45 49.98 48.32 53.84 68.07

0.28 0.43 0.64 0.63
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Decile of Population Global Metrics
1 2 3 4 5 6 7 8 9 10 CPC NRMSE Corr. JSD

New York State (25 Km)
G Mean CPC 0.29 0.35 0.24 0.25 0.13 0.13 0.16 0.09 0.06 0.04

std CPC 0.31 0.28 0.25 0.26 0.19 0.18 0.19 0.14 0.04 0.02 0.06 0.74 0.03 0.78

Mean CPC 0.29 0.35 0.43 0.46 0.42 0.49 0.45 0.50 0.49 0.47
std CPC 0.31 0.28 0.20 0.22 0.19 0.13 0.16 0.05 0.02 0.03NG
Rel. Imp. 0 0 75.71 81.90 206.35 278.09 180.91 405.66 607.17 1031.14

0.68 0.26 0.93 0.34

Mean CPC 0.29 0.35 0.36 0.37 0.31 0.33 0.28 0.28 0.27 0.18
std CPC 0.31 0.28 0.18 0.19 0.15 0.10 0.13 0.07 0.08 0.03MFG
Rel. Imp. 0 0 49.70 48.08 126.68 157.01 74.47 184.04 297.44 351.59

0.28 0.48 0.35 0.62

Mean CPC 0.29 0.35 0.43 0.46 0.42 0.49 0.45 0.51 0.52 0.49
std CPC 0.31 0.28 0.20 0.22 0.19 0.13 0.16 0.06 0.05 0.03DG
Rel. Imp. 0 0 75.80 82.41 208.03 282.91 184.33 416.43 661.03 1076.93

0.70 0.19 0.93 0.33

New York State (10 Km)
G Mean CPC 0.28 0.35 0.34 0.38 0.37 0.32 0.21 0.20 0.14 0.09

std CPC 0.26 0.26 0.24 0.21 0.23 0.22 0.20 0.19 0.11 0.03 0.22 0.56 0.25 0.68

Mean CPC 0.28 0.35 0.34 0.38 0.37 0.32 0.36 0.40 0.44 0.45
std CPC 0.26 0.26 0.24 0.21 0.23 0.22 0.19 0.17 0.11 0.03NG
Rel. Imp. 0 0 0 0 0 0 69.52 98.56 213.73 359.18

0.78 0.18 0.97 0.27

Mean CPC 0.28 0.35 0.34 0.38 0.37 0.32 0.30 0.29 0.24 17
std CPC 0.26 0.26 0.24 0.21 0.23 0.22 0.17 0.15 0.09 0.05MFG
Rel. Imp. 0 0 0 0 0 0 38.36 44.82 73.95 81.22

0.34 0.39 0.48 0.58

Mean CPC 0.28 0.35 0.34 0.38 0.37 0.32 0.36 0.40 0.45 0.46
std CPC 0.26 0.26 0.24 0.21 0.23 0.22 0.19 0.17 0.12 0.04DG
Rel. Imp. 0 0 0 0 0 0 70.28 100.16 224.65 374.11

0.79 0.17 0.97 0.26

Table 2: Experimental results. Comparison of the performance, in terms of Common Part of

Commuters (CPC), of Gravity (G), Nonlinear Gravity (NG), Multi-Feature Gravity (MFG), and

Deep Gravity (DG), varying the decile of the population of the regions of interest. For each model,

and for each decile of the distribution of population, we show the average CPC and the standard

deviation of the CPC obtained over five runs of the model. For NG, MFG, and DG we also show

the relative improvement in terms of CPC with respect to model G. We put in bold the values over

the deciles that correspond to the best mean CPC and relative improvement.
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3 Supplementary Notes

Supplementary Note 1: evaluation metrics. The Pearson Correlation coefficient measures the

linear dependence between two variables (sets of flows) and it is defined as:

r =

∑n
t=1(yi − ȳ)(ŷi − ¯̂y)√∑n

i=1(yi − ȳ)2
√∑n

i=1(ŷi − ¯̂y)2
. (1)

where n is the sample size (the number of flows), ŷi indicates the generated flow, yi indicates the

actual flow, and ȳ and ¯̂y indicate the average of the real and generated flows, respectively.

The Normalized Root Mean Squared Error (NRMSE) is defined as follows:

NRMSE =

√
1
n

∑n
i=1(yi − ŷi)2

max(yi, ŷi)−min(yi, ŷi)
(2)

where max yi, ŷi is the maximum flow and min yi, ŷi is the minimum flow. Lower values indicate

better performance.

The Jensen-Shannon (JS) divergence is a measure to assess the similarity between two dis-

tributions. It is based on the Kullback-Leibler divergence (KLD) but it is symmetric (JS(P ||Q) =

JS(Q||P )) and ranges in [0, 1]. Formally, given two probability distributions P and Q, and

M = 1
2
(P ||Q), we define the JS divergence as:

JSD(P ||Q) =
1

2
KLD(P ||M) +

1

2
KLD(Q||M). (3)

KLD measures how different a probability distribution is from a reference probability distribution.

Formally, given two discrete probability distributions P and Q, defined on the same probability

14



space X , the KL divergence from P to Q is defined as:

KLD(P ||Q) =
∑
x∈X

P (x)log

(
P (x)

Q(x)

)
. (4)

Formally, given two probability distributions P and Q, KLD is the expectation of the log-

arithmic difference between the probabilities of P and Q, where the expectation is taken using

the probabilities of P . KLD is always non-negative (KLD(P ||Q) ≥ 0) and not symmetric, i.e.,

KLD(P ||Q) 6= KLD(Q||P ). P and Q are the same distribution if KLD(P ||Q) = 0.

Supplementary Note 2: DG-sum and DG-Knn. Each flow in Deep Gravity is described by 39

features (18 geographic features of the origin and 18 of the destination, distance between origin

and destination, and their population). We also consider a light version of Deep Gravity, namely

DG-sum, in which we just count a location’s total number of POIs without distinguishing among

the categories (5 features per flow), and a more complex version of Deep Gravity, namely DG-Knn,

which includes the geographic features of the k nearest locations to a flow’s origin and destination

(77 features per flow).

DG-sum considers as geographic feature of the origin (destination) just the total number of

POIs regardless of the specific category they belong to. Each flow in DG-sum is hence described

by 5 features only (sum of POIs, distance between origin and destination and their population).

We find that DG-sum has a lower performance than DG, regardless the decile of the population

considered and the dataset (England in Supplementary Figure 5a, Italy in Supplementary Figure

5c, New York State in Supplementary Figure 5 e).
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These results suggest that splitting POIs in categories brings a significant contribution, es-

pecially in England where DG has an improvement of around 141.98% on DG-sum. While this

improvement is less marked in Italy and New York State, we find an improvement of DG over

DG-sum up to 17.90% (Italy) and 6.05% (New York State).

DG-Knn considers the geographic features of the k nearest locations (OAs, CAs, or CTs) to

a flow’s origin and destination. The k nearest locations to the origin (destination) are computed

by sorting all locations in decreasing order with respect to the geographic distance to the origin

(destination) and then selecting the top k. We then train a model that exploits the geographic

features of the origin, the geographic features of the destination, and the feature-wise average of the

k nearest locations to the origin and the destination. We perform experiments for k = 2, . . . , 9 and

do not find any significant improvement of DG-Knn’s performance with respect to DG, regardless

of the value of k. In England, we observe an almost constant decrease of the relative improvement

of DG-Knn with respect to DG, again regardless of the value of k (Supplementary Figure 4a, b).

In Italy, we find a slight increase of the performances in the least populated areas and, in general, a

decrease of DG-Knn’s performance up to the 10% with respect to DG (Supplementary Figure 4c,

d). For New York State, DG-Knn slightly improves on DG, but this improvement is in any case

lower than 3% (Supplementary Figure 4e, f).

Supplementary Note 3: predicted versus observed flows. Supplementary Figures 1 and 3 show

the CPC and the Pearson correlation coefficient between the observed flows and the generated flows

for Middle Layer Super Output Areas (MSOAs) in England for regions of interest of 25km and
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10km, respectively. MSOAs are an aggregation of adjacent OAs with similar social characteristics;

they generally contain 5,000 to 15,000 residents and 2,000 to 6,000 households. Plots with a higher

concentration of points closer to the main diagonal have a higher correlation and a higher CPC.

Note that, being MSOAs aggregations of OAs, the overall CPC is higher than that for OAs.

For regions of interest of size 25km, DG (Supplementary Figure 1a) has an improvement

over G of of 0.212 in terms of CPC (+34%) and of 0.183 in terms of Pearson correlation (+25%,

Supplementary Figure 1d). DG has an improvement of 0.207 (CPC) and 0.172 (correlation) over

NG (Supplementary Figure 1c) and of 0.124 (CPC) and 0.08 (correlation) over MFG (Supplemen-

tary Figure 1b).

For regions of interest of 10km, DG (Supplementary Figure 3a) has an improvement over G

(Supplementary Figure 3d) of 0.131 (+19.5%) in terms of CPC and of 0.143 (+18%) in terms of

correlation. DG also present an improvement of 0.125 (CPC) and of 0.128 (correlation) with re-

spect to NG (Supplementary Figure 3c). Also, DG has an improvement over MFG (Supplementary

Figure 3b) of 0.048 in terms of CPC and of 0.047 in terms of correlation. In general, with regions

of interest of size 10km the improvement of DG over the other models is smaller.

Overall, DG achieves a significant improvement in the realism of the generated flows with

respect to both the gravity model and models that do not use non-linearity or geographic informa-

tion.
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Supplementary Note 4: leave-one-city-out. In the leave-one-city-out validation we train in turn

DG on all the regions of interest of eight cities and test it on the remaining one. In other words,

we test the ability of DG of generating flows for a city that it “never seen”, i.e., a city for which no

region of interest is used during the training phase. Supplementary Figure 2 compares the results

of DG with the results of Leave-one-city-out DG (L-DG) for the 9 core cities1 in England (Leeds,

Sheffield, Birmingham, Bristol, Liverpool, Manchester, Newcastle, Nottingham) and London. L-

DG is remarkably close to DG, suggesting that DG is a geographic agnostic model.

Supplementary Note 5: local explanations. In Supplementary Figures 6 and 7, we show local

explanation of flows for Italy and New York State, respectively. Features are reported on the

vertical axis, sorted from the most relevant on top to the least relevant on the bottom. The value of

the feature is indicated in gray on the left of the feature name. The bars denote the contribution of

each feature to the model’s prediction (the number inside or near the bar is the Shapely value). The

sum of the Shapely values of all features is equal to the model’s prediction (f(x) denotes the score):

feature with positive (negative) Shapely values push the flow probability to higher (lower) values

with respect to the model’s average prediction E[f(x)]. As confirmed in the global explanation

discussed in Figure 5 of the main paper, the population and the distance play an important role in

generating the flow while the other factors are barely considered (e.g., lower Shapely values).

1https://www.corecities.com/
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