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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

Summary: 

This paper presents a neural network model for flow prediction. The presented model, Deep 

Gravity, takes rich features (extracted for both source and destination using openstreetMap), and 

train a multi-layer neural network to predict the outward flow distribution for each region. The 

authors have compared several methods, including the classic Gravity model as well as several 

variants of their own model and shown impressive improvements over those methods. 

Strength: 

- S1. The method is well motivated and sensible. Authors have analyzed the classic gravity model 

and shown its limitations by formulating it as a one-layer neural network. The proposed extensions 

of the gravity model, namely using multi-layer nonlinear neural networks and incorporating more 

features, are technically sensible and sound. 

- S2. The empirical improvements over the baselines are quite impressive. With experiments on 

real data sets, the authors have shown their method can improve the baselines by up to more 

than 300% in terms of CPC. Such improvements are quite impressive. 

- S3. The experiment results are detailed and convincing with both quantitative and qualitative 

analysis. In addition to showing overall improvements, the authors have also shown: a) the 

method has better generalization for those never-seen-before cities; 2) in which chases the 

proposed method is more superior to the baselines. 

- S4. The paper is well written, the contents are organized in a logical way and flows smoothly. It 

is very easy to follow the key ideas and necessary details presented in the paper. 

There are several concerns about this paper: 

- D1. The key innovation and uniqueness of the proposed method is unclear. This model lacks 

discussion and comparisons to some related work. Applying deep neural networks for flow 

prediction is not new. Since 2016, multiple papers in the literature have been applying neural 

networks for flow prediction ([1] for example). The authors need to be more clear about their 

difference from those papers and why not compare with those existing methods. 

- D2. Even though this model is an improvement over the classic revenue model. There are still 

several key limitations underlying the model's assumptions. First, the model still predicts for each 

region independently, without modeling the correlations between regions. But the correlations 

between regions are important to flow prediction. Second, the prediction is done in a static way, 

without modeling the dynamic flows among regions over time. 

[1] Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction, AAAI 2017 

Reviewer #2: 

Remarks to the Author: 

The authors introduce a framework based on a deep neural network for modelling mobility network 

flows. The model takes as input a set of areas, the total number of outgoing travellers per area, 

the distances between any two areas, and the number and types of points-of-interest (e.g. 

restaurants/schools/transport facilities... ) per area. As an output, the deep neural network model 

estimates the number of travellers between any two areas. The model presented is inspired by the 

standard ‘gravity model’ for mobility flows. 

The authors used Census data collected in the UK to study the performance of the proposed 

framework against the gravity model. They show that the deep neural network model outperforms 

the gravity model, especially in densely populated areas. 

The article is written very clearly, in a way that would be understandable by a relatively broad 



audience. Analyses are performed thoroughly (see comments below for minor suggestions). The 

code and methodology provided with the paper will certainly help researchers and practitioners 

working with Human Mobility data to make better predictions. However, in the current state, the 

findings do not add much to what is already known about the mechanisms governing human 

mobility. It is not surprising that a model based on non-linear complex interactions between 20 

features has better predictive power than a generalized linear model with two input variables. 

Additional analyses digging into the importance of features and their interactions could make this 

work more valuable. 

Two main comments are the following: 

Some sentences in the abstract and introduction seem to be misleading. In my understanding, the 

model allows to estimate mobility flows between areas, but only given that the number of outgoing 

trips per area is known. This information is, in general, hard to get. For this reason, sentences 

like: “When mobility data are not available for a particular region of interest, researchers must rely 

on mathematical models to generate mobility flows. Here we propose the Deep Gravity model as 

an effective method of flow generation...” need to be toned down. In my understanding, without 

mobility data (the total number of outgoing trips per location is mobility data), the model proposed 

in the paper can not estimate flows. 

The framework is quite general, but only applied to one dataset. Results should be corroborated 

with different datasets. In particular, analyses based on locations with the same size would add 

value to the paper (see also comments below). 

Below I provide detailed comments throughout the text. Line numbers were missing in the PDF, so 

I reported the sentences I am referring to in italic, followed by my comments (in the PDF 

attached). 

- The flow, y(li , lj ), between locations li and lj denotes the number of trips (people moving) from 

location li to location lj per unit time. For example, if our region of interest is in the England and 

our tessellation contains all UK postcodes, we can define the commuting flow y(SW1W0NY, 

PO167GZ) as the number of people that live in location (postcode) SW1W0NY and go to work in 

location PO167GZ every day. 

Here the definition of trip is unclear. People moving from i to j per unit time may be commuters or 

may move for other reasons. Please clarify the definition of trip. 

- This equivalence suggests to interpret the flow generation problem as a classification problem, 

where each observation (trip or unit flow from an origin location) should be assigned to the correct 

class (the actual location of destination) chosen among all possible classes (all locations in T ). 

What about the generation of the total outflow? 

- The metric used to evaluate the performance of flow generation models is the Sørensen-Dice 

index, also called Common Part of Commuters (CPC) 13, 43 

Here, since the total number of trips is an input of the model, isn’t the denominator simply equal 

to 2*sum_{(i,j)}(y^r)? In this case (and in my understanding), this metric measures the fraction 

of all trips that were assigned to the correct destination. This would be something worth saying 

explicitly to help the reader. Especially in light of the analogy with a classification problem 

presented in the introduction, the authors could even replace the term CPC with ‘accuracy’, which 

is most widely understood. 



- The location feature vector xi provides a spatial representation of an area, and it contains 

features describing some properties of location li 

Why isn’t the population size an input feature (in analogy with the gravity model)? 

- In addition, we included as a feature of Deep Gravity the distance, ri,j , between two locations 9 

li , lj , which is defined as the geographical distance (the distance measured along the surface of 

the earth) between the centroids of the two polygons representing the locations. 

In the introduction, the authors talk about transportation as a key feature. Have you considered 

adding the time between origin and destination by different transportation modalities? 

- All values of features for a given location (excluding distance) are normalized dividing them by 

the location’s area. 

Why do locations have different sizes? How different are they? A comparison with results obtained 

using locations with equal size would improve the paper. 

- All models degrade (i.e., CPC decreases) as the decile of the population increases, denoting that 

they are more accurate in sparsely populated output areas. 

May this be due to locations having different sizes? In sparsely populated areas, one has fewer 

locations and this makes the problem less complex. This could be better understood by comparing 

with a null model (e.g. even distribution of outgoing flows across edges). 

- Table 1 compares the performance of the models. Overall, DG has CPC = 0.31. 

It seems like the CPC measures accuracy. I find it interesting that despite the model being quite 

complex, the fraction of travellers assigned to the correct destination is relatively low. Can the 

authors comment on this? 

- We do not find any significant improvement of NG with respect to G, despite the use of the non-

linearity introduced by the deep neural network 

Could the author comment on the fact that NG does not improve on G, but DG improves on MFG? 

- This settings allows us to discover whether we can generate flows for a city for which we do not 

have any information, a peculiarity that we cannot fully investigate if the model partially ”see” a 

city (e.g., use some of the locations of a city in the training phase). 

If the total outgoing flow per location is an input of the model, the sentence above is misleading. 

- The negligible difference between the performance DG and L-DG shows that our model can 

generate flows also for geographic areas for which no knowledge is available about the mobility 

flow patterns. 

Same comment as above. 

- In general, there is no single category which is significantly more important than the others. 

What is the value gained by having different categories? What happens if one adds only the total 

number of POIs? 

- Note that the addition of geographic features alone is not sufficient to explain the improvement 

of DG over the other models: the non-linearity plays a crucial role as well. 



As per a previous comment, then how come NG does not perform better than G? 

- Third, DG is a geographic agnostic model able to generate flows on urban agglomerations never 

seen before. 

This claim should be toned down. The model helps estimating the flow network, given that the 

total outgoing flow per location is known. This is not a detail, because the total number of outgoing 

trips per location is not much easier to have than mobility network flows. 

- Code Availability 

Since this is also a methodological contribution, sharing the code with the paper would make this 

work more valuable. I can see that the instructions to access the code are provided with the 

paper, so maybe the section simply needs to be updated? 

- Author contributions 

Typo (FP) 

- Figure 2 

Why are there some grey cells in the map? 

What are the yellow squares in panel (g) 

- Figure 4 

This is minor but the edges in panel 4 seem quite homogeneous despite the differences in the 

distances between locations, 

Reviewer #3: 

Remarks to the Author: 

This paper introduces a new spatial interaction model to generate commuting flows based on a 

deep neural network architecture and voluntary geographic data. This model, called “Deep 

Gravity”, thanks to its multiple non-linear hidden layers, is able to outperform the classical gravity 

model in the estimation of commuting flows in UK. The introduction of non-linear hidden layers 

seems to be particularly effective when considering additional geographical features. The paper is 

well-written and presents an interesting piece of work. However, I am not convinced that this work 

should be published in a high impact journal like Nature Communications. 

My main problem is that this paper focuses only on the predictive power of the model without 

giving any insights regarding the underlying mechanisms of human mobility. It is not really 

surprising that if you add more complexity and inputs to a model you obtain better results. In my 

opinion, what it is really important when proposing a new model is to understand why this new 

model performs better at a global or a local scale . And how this knowledge could be used to 

generalize the approach. I did not find an answer to these questions in the manuscript. It would 

also be a good idea to add more case study sites from different countries and/or different data 

sources to rigorously assess the predictive power of the model. Finally, I would also recommend 

the authors to add a few goodness-of-fit metrics to compare the observed and the simulated 

network topologies (based for example on the number of link in common, the commuting distance 

distribution…).



Summary of Changes for Revision

Deep Gravity: enhancing mobility flows generation with deep
neural networks and geographic information

Filippo Simini, Gianni Barlacchi, Massimiliano Luca, Luca Pappalardo

We thank the Referees for their insightful comments. In particular, we are glad that
Referee #3 says: “analyses are performed thoroughly [...] the code and methodology
provided with the paper will certainly help researchers and practitioners working with
human mobility data to make better predictions”, and that Referee #2 says “the
article is written very clearly, in a way that would be understandable by a relatively
broad audience”. Finally, we are proud that Referee #1 says “the method is well
motivated and sensible” and “the experiment results are detailed and convincing with
both quantitative and qualitative analysis”.

We addressed all the concerns in the new version of the manuscript. Moreover, we
replicated our experiments on other geographic places (Italy and New York State),
and, motivated by a comment by Referee3, we added a new part to show how to
explain the generated mobility flows from the geographic features. The new parts
and those that have been modified with respect to the previous version are
highlighted in blue.

We believe that the manuscript has improved significantly thanks to the comments of
the reviewers, and we hope that now the paper meets the high standards to be
published in Nature Communications.

Kind Regards, on behalf of all authors
Luca Pappalardo



Referee 1
We wish to thank Referee 1 for their comments, which gave us the opportunity to clarify
important aspects of our work.

Point 1.1
The key innovation and uniqueness of the proposed method is unclear. This model lacks
discussion and comparisons to some related work. Applying deep neural networks for flow
prediction is not new. Since 2016, multiple papers in the literature have been applying neural
networks for flow prediction ([1] for example). The authors need to be more clear about their
difference from those papers and why not compare with those existing methods.

[1] Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction, AAAI
2017

Response 1.1
We thank the Referee for this comment, which gives us the opportunity to highlight the
uniqueness of our work.

We are aware that there is a strand of research dedicated to applying deep neural networks
to human mobility (recently, we made a survey on this topic:
https://arxiv.org/abs/2012.02825). In particular, the work mentioned by the Referee (Zhang et
al. [1]) treats the problem of “crowd-flow prediction”, which differs from our problem (flow
generation) in two important aspects:

1. Crowd-flow prediction aims at predicting future crowd flows, given the historical ones
observed in the city. In contrast, flow generation aims to generate flows between
locations without any knowledge about the historical flows between locations. In
other words, crowd-flow prediction deals with a temporal aspect that is absent in flow
generation.

2. Given a location, its crowd flow is the total inflow or outflow of that location, without
any reference to the locations from which these people came. In contrast, in flow
generation we are interested in directed flows, i.e., in generating flows between an
origin and a destination.

While there is a vast literature on using the gravity model and its variants to solve flow
generation, our approach was the only deep learning approach to flow generation at the time
of submission.

We clarify the discussion above in the Introduction of the paper:

“Deep learning approaches exist for a different declination of the problem, namely
flow prediction: they use historical flows between geographic locations to forecast the



future ones, but they are not able to generate flows between pairs of locations for
which historical flows are not available. To what extent deep learning can generate
realistic flows without any knowledge about historical ones is barely explored in the
literature.”

Point 1.2
Even though this model is an improvement over the classic revenue model. There are still
several key limitations underlying the model's assumptions. First, the model still predicts for
each region independently, without modeling the correlations between regions. But the
correlations between regions are important to flow prediction. Second, the prediction is done
in a static way, without modeling the dynamic flows among regions over time.

Response 1.2
We thank the Referee for these two important comments. We answer them in the following:

1. On modelling the correlations between regions.
To investigate this aspect, we design a model (DG-Knn) that considers the features
of the k nearest areas to a flow’s origin and destination. The k nearest locations to
the origin (destination) are computed by sorting all locations in decreasing order with
respect to the geographic distance to the origin (destination) and then selecting the
top k. We then train a model that exploits the geographic features of the origin, the
geographic features of the destination, and the feature-wise average of the k nearest
locations to the origin and the destination (DG-Knn is based on 77 features in total,
while DG on 39 features).

We perform experiments for k = 2, …, 9 and do not find any significant improvement
of DG-Knn’s performance with respect to DG, regardless of the value of k. In
England, we observe an almost constant decrease of the relative improvement of
DG-knn with respect to DG regardless of the k.



We replicate our experiments on two other datasets, describing flows between
census tracts in Italy and the state of New York (see also Point 2.2 for a description
of the new datasets). In Italy, we find a slight increase of the performances in the
least populated areas and, in general, a deterioration of DG-knn up to the 10% with
respect to DG. For the state of New York, DG-knn slightly improves on DG, but this
improvement is in any case lower than 3%.

We describe in detail this experiment in Supplementary Information 2 for England
and two additional datasets (Italy and the state of New York) and add the following
sentence in section “Deep Gravity architecture” of the main manuscript:

“We also consider a more complex version of Deep Gravity, namely the
DG-Knn model, which considers the includes the geographic features of the
$k$ nearest locations to a flow’s origin and destination (77 features in total),
without finding any significant improvement with respect to the results
presented in this paper (see Supplementary Information 3).”

2. On modelling the dynamic flows among regions over time.
The problem we address in the paper (flow generation) is a generation problem, and
not a prediction problem. Indeed, the purpose of our model is to generate flows
between pairs of regions for which no historical data is available. In other words, we
aim to estimate the flow between two regions A and B for which we do not have any
previous estimate of the flow between them. The absence of the historical
observations impedes us to perform a predicting/forecasting task, and hence to
model dynamic flows over time.

The problem the Referee presumably refers to is flow prediction, which differs from
ours because it aims at predicting the value of future flows given historical
observations about the same flows. In other words, given the historical flows between
two regions A and B at times t1, t2, …, ti, flow prediction aims at forecasting the value
of the flow between A and B at time t i+1.

We highlighted the difference between our problem (flow generation) and flow
prediction in the section “Introduction” of the manuscript.



Referee 2
We thank Referee 2 for the careful reading of our paper and for their useful comments and
suggestions, which we sincerely believe helped improve the paper significantly.

Point 2.1
Some sentences in the abstract and introduction seem to be misleading. In my
understanding, the model allows to estimate mobility flows between areas, but only given
that the number of outgoing trips per area is known. This information is, in general, hard to
get. For this reason, sentences like: “When mobility data are not available for a particular
region of interest, researchers must rely on mathematical models to generate mobility flows.
Here we propose the Deep Gravity model as an effective method of flow generation...” need
to be toned down. In my understanding, without mobility data (the total number of outgoing
trips per location is mobility data), the model proposed in the paper can not estimate flows.

Response 2.1
We thank the Referee for this important point. Although the total number of outgoing trips per
location is needed to obtain the quantitative estimation of the flows between locations, the
flow generator may be used without that information, too. In this scenario, the model outputs
the probabilities of going to each possible destination given the origin. The flow probabilities
may be used in urban planning to perform what-if analysis and simulations by varying the
total outflow per location.

To clarify this important aspect, we specified in the abstract that the model generates flow
probabilities and rephrased the sentence highlighted by the Referee as follows (see also
responses to points 2.4 e 2.16):

“Here we propose the Deep Gravity model as an effective method to generate flow
probabilities that exploits many variables (e.g., land use, road network, transport,
food, health facilities) extracted from voluntary geographic data and uses deep neural
networks to discover non-linear relationships between those variables and mobility
flows.”

Point 2.2
The framework is quite general, but only applied to one dataset. Results should be
corroborated with different datasets. In particular, analyses based on locations with the same
size would add value to the paper (see also comments below).



Response 2.2
We thank the Referee for this useful suggestion. We replicated the experiments on two new
datasets of flows between census areas in Italy and the state of New York (US).

In Italy, the mobility flows are among 1551 regions of interest consisting of non-overlapping
square regions of 25 by 25 km2, which cover the whole of the country. Half of these regions
are used to train the models and the other half are used for testing. Each region of interest is
further subdivided into locations, according to the definition of census tracts provided by the
Italian census bureau (ISTAT).

We also consider mobility flows among 5367 census tracts provided by the United States
Census Bureau in the state of New York (US), extracted from millions of anonymous mobile
phone users’ visits to various places and aggregated at the census tract level [Kang2020].
We describe the characteristics of the datasets in Supplementary Table 1 and, in the section
“Methods” of the manuscript, we provide details on the definition of the regions of interest,
the Output Areas, the location features and the real flows used to train and validate the
models on Italy and the state of New York.

[Kang2020] Kang, Y. et al., Multiscale dynamic human mobility flow dataset in the
US during the COVID-19 epidemic. Scientific data 7, 1–13 (2020).

The results we obtain for Italy and New York are similar to those of England: DG performs
significantly better than the other models, with an improvement in terms of global CPC over
G of 50% in Italy and 1066% in the state of New York. Below, the Referee can find a table
with the complete results for England, Italy, and the state of New York (it is Table 1 in the
new version of the manuscript).



Similarly to what we did for England, to investigate the impact of population to the model
performance, we split each country’s regions of interest into ten equal-sized groups, i.e.,
deciles, based on their population, where decile 1 includes the regions of interest with the
smaller population and decile 10 includes the regions of interest with the larger population,
and we analyze the performance of the four models in each decile.

In Italy, all models degrade (i.e., CPC decreases) as the decile of the population increases,
denoting that they are more accurate in sparsely populated output areas. This is not the
case for the state of New York, in which the model's performance increases slightly as the
decile of the population increases. Nevertheless, in all three countries, the relative
improvement of DG with respect to G increases as the population increases. In other words,
the performance of DG degrades less as population increases. Below, the Referee can find
plots documenting the comparison between the performance of the models in the three
datasets (it is Figure 3 in the new version of the manuscript).



Similarly to England, in the other two countries we have an improvement of MFG and DG
over G of 14% and 66% (Italy) and of 351% and 1076% (New York State), respectively. DG's
improvement on G is a common characteristic of all three datasets, as DG improves on G in
all the tiles for all countries.

We added the above results and discussion in section “Experiments” of the new version of
the manuscript.



Regarding the size of the locations, information about real commuting flows at country level
are provided by official statistics bureaus at the level of output areas and census tracts only,
which are administrative units of different shapes. It is not possible to aggregate or
disaggregate flows between OAs onto flows between locations of the same size (e.g., using
a squared tessellation) without introducing significant distortions in the data or obtaining
aggregated locations of size much larger than the area of the largest OA. See also Point 2.8
for a detailed answer to this point.

Point 2.3
“The flow, y(li, lj), between locations li and lj denotes the number of trips (people moving)
from location li to location lj per unit time. For example, if our region of interest is in the
England and our tessellation contains all UK postcodes, we can define the commuting flow
y(SW1W0NY, PO167GZ) as the number of people that live in location (postcode)
SW1W0NY and go to work in location PO167GZ every day.”

Here the definition of trip is unclear. People moving from i to j per unit time may be
commuters or may move for other reasons. Please clarify the definition of trip.

Response 2.3
Thanks for this suggestion. In general, a flow between two locations indicates the total
number of people moving between them for any reason (e.g., for commuting or tourism).
Specifically, in our experiments in England and Italy, we use flows from the UK Census and
Italian Census, which collect information about commuting flows between output areas and
census tracts, respectively. For the state of New York, flows indicate movements of any kind
between two US census tracts, extracted from mobile phone data.

We clarify the concept of flow in section “Results” as follows:

“The flow, y(li, lj), between locations li and lj denotes the total number of people
moving for any reason from location li to location lj per unit time. As a concrete
example, if the region of interest is the UK and we consider commuting (i.e. home to
work) trips between UK postcodes, a flow y(SW1W0NY, PO167GZ) may be the total
number of people that commute every day between location (postcode) SW1W0NY
and location PO167GZ.”

Moreover, we describe in detail the type of flow described by each dataset in subsections
“Regions of interest” and “Locations” of section “Methods”.

Point 2.4
“This equivalence suggests to interpret the flow generation problem as a classification
problem, where each observation (trip or unit flow from an origin location) should be



assigned to the correct class (the actual location of destination) chosen among all possible
classes (all locations in T ).”

What about the generation of the total outflow?

Response 2.4
The flow generator outputs the probabilities of moving from an origin to each possible
destination. The origin’s total outflow is used to transform the flow probabilities into average
flows. To clarify this aspect, we modify the sentence above as follows:

“This equivalence suggests to interpret the flow generation problem as a
classification problem, where each observation (trip or unit flow from an origin
location) should be assigned to the correct class (the actual location of destination)
chosen among all possible classes (all locations in T). In practice, for each possible
destination in the tessellation, the model outputs the probability that an individual
from a given origin would move to that destination location. To compute the average
flows from an origin, these probabilities are multiplied by the origin's total outflow.”

As suggested by the Referee, the flow generation problem may be extended to include the
generation of the total outflows to further enhance its geographical transferability. However,
this is outside the scope of this paper and we leave it for future work.

We have added the following paragraph in the “Discussion” section discussing the possibility
of including the generation of the  total outflows:

“DG is a geographic agnostic model able to generate flows between locations for any
urban agglomeration, given the availability of appropriate information such as the
tessellation, the total outflow per location, the population in the output areas, and the
information about POIs. This opens the doors to a set of intriguing questions
regarding the limits of the model's geographical transferability. In this sense, the
problem of flow generation may be extended to include the generation of each
location's total outflow to allow the application of the model to regions for which only
the population and public POIs are available.”

Point 2.5
The metric used to evaluate the performance of flow generation models is the
Sørensen-Dice index, also called Common Part of Commuters (CPC) 13, 43

Here, since the total number of trips is an input of the model, isn’t the denominator simply
equal to 2*sum_{(i,j)}(y^r)? In this case (and in my understanding), this metric measures the
fraction of all trips that were assigned to the correct destination. This would be something
worth saying explicitly to help the reader. Especially in light of the analogy with a



classification problem presented in the introduction, the authors could even replace the term
CPC with ‘accuracy’, which is most widely understood.

Response 2.5
The Referee’s reasoning is correct, and we agree that highlighting the equivalence between
CPC and accuracy may improve the understanding of this measure and strengthen the
analogy between flow generation and classification problems. We also note that the CPC
can be used even when the generated total outflow is different from the real total outflow
(like in globally constrained gravity models not considered in this paper) and hence cannot
be interpreted as an accuracy.

To clarify this point we added the following sentence in the “Results” section:

“Note that when the generated total outflow is equal to the real total outflow, as for all
the models we consider here, the CPC is equivalent to the accuracy, i.e., the fraction
of trips' destinations correctly predicted by the model. In fact, when the generated
total outflow is equal to the real total outflow, the denominator becomes $2 \sum_{i,j}
y^r(l_i, l_j)$ and the CPC measures the fraction of all trips that were assigned to the
correct destination, i.e., the fraction of correct predictions or accuracy. ”

Point 2.6
“The location feature vector xi provides a spatial representation of an area, and it contains
features describing some properties of location li”.

Why isn’t the population size an input feature (in analogy with the gravity model)?

Response 2.6
Thanks for this comment. We agree that population is an important feature and should be
considered in the DG model as well. We remade all the experiments including the population
feature and updated Table 1 of the manuscript accordingly.

With the inclusion of the population feature, we do not find any significant difference in the
results with the respect to the previous version of the models. We clarified that we now use
the population feature in the section “Architecture of Deep Gravity” of the manuscript:

“The location features we use include the population size of each location and
geographical features extracted from OpenStreetMap.”



Point 2.7
“In addition, we included as a feature of Deep Gravity the distance, rij, between two locations
li, lj, which is defined as the geographical distance (the distance measured along the surface
of the earth) between the centroids of the two polygons representing the locations.”

In the introduction, the authors talk about transportation as a key feature. Have you
considered adding the time between origin and destination by different transportation
modalities?

Response 2.7
We thank the Referee for this interesting question. Travel time associated with different
transportation modalities is surely an interesting feature to characterize the flow between two
locations. We did not include this feature because it was not available from the census
survey datasets we considered in our experiments. Given the flexibility of DG’s architecture,
any other feature, including travel times and costs with different transportation means, may
be included to improve the characterization of locations and flows. We leave these
improvements to our approach to future work.

We summarize the discussion above by adding the following paragraph in section
“Discussion” of the manuscript:

“The addition of the geographic features is crucial to boost the realism of our
approach. In this regard, DG's architecture allows for adding many other geographic
features such as travel time with different transportation modalities, the structure of
the underlying road network, or socio-economic information such as a
neighborhood's house price, degree of gentrification, and segregation.”

Point 2.8
“All values of features for a given location (excluding distance) are normalized dividing them
by the location’s area.”

Why do locations have different sizes? How different are they? A comparison with results
obtained using locations with equal size would improve the paper.

Response 2.8
Thank you for these questions, which give us the opportunity to clarify the definition of
locations.

Actually, as Figure 1a of the manuscript shows for England (we report it below for the
Referee’s convenience), we first split the entire country into tiles of the same size (left part of



the figure). Then, each tile is further split into Output Areas (aka OAs, right part of the figure)
of irregular shape, provided by the UK Census in 2011. By construction, OAs should all
contain a similar number of households (125), hence in cities and urban areas where
population density is higher, there is a larger number of Output Areas and they have a
smaller size than average. Similar reasoning applies to the new datasets we add in the new
version of the manuscript, corresponding to census tracts in Italy and New York State.

Unfortunately, information about real commuting flows at country level are provided by
official statistics bureaus at the level of OAs or census tracts only, which are administrative
units of different shapes. It is not possible to aggregate or disaggregate flows between OAs
onto flows between locations of the same size (e.g., using a squared tessellation) without
introducing significant distortions in the data or obtaining aggregated locations of size much
larger than the area of the largest OA.

We clarified this point in the subsection “Locations” of section “Methods” of the manuscript.

Point 2.9
“All models degrade (i.e., CPC decreases) as the decile of the population increases,
denoting that they are more accurate in sparsely populated output areas.”

May this be due to locations having different sizes? In sparsely populated areas, one has
fewer locations and this makes the problem less complex. This could be better understood
by comparing with a null model (e.g., even distribution of outgoing flows across edges).

Response 2.9
We thank the Referee for this useful comment. As we explain in response to Point 2.8, we
first split the entire country into tiles of the same size and further split each tile into Output



Areas (OAs) of irregular shape, provided by the UK Census in 2011. Similarly we do for Italy
and the state of New York.

As the Referee correctly points out, the most populated tiles are those with the highest
number of OAs or census tracts (i.e., possible destinations of movements), making it more
difficult for the model to determine the correct destination. We clarify this point in section
“Results” of the manuscript:

“The relative improvement of DG with respect to G increases as the population
increases. In other words, the performance of DG degrades less as population
increases. This is a remarkable outcome because in highly populated regions of
interest there are many relevant locations, and hence predicting the correct
destinations of trips is harder.“

Regarding the comparison with a null model, we decided to compare DG with the gravity
model of human mobility (G), which works significantly better than a null model in which
flows are evenly distributed at random across the edges of the mobility network. We remark
this discussion in section “Results” of the manuscript:

“Given the formal similarity between Deep Gravity (DG) and the Gravity model (G),
we use the latter as a baseline to assess Deep Gravity's improved predictive
performance. Indeed, the Gravity model is the state-of-the-art model for flow
generation and it is thus preferred to a null model in which flows are evenly
distributed at random across the edges of the mobility network.”

Point 2.10
“Table 1 compares the performance of the models. Overall, DG has CPC = 0.31.”

It seems like the CPC measures accuracy. I find it interesting that despite the model being
quite complex, the fraction of travellers assigned to the correct destination is relatively low.
Can the authors comment on this?

Response 2.10
We thank the Referee for this interesting question. The Common Part of Commuters (CPC),
also known as Sørensen-Dice index, is a well-established measure to compute the similarity
between real flows and generated flows. It ranges between [0, 1], the higher the better, and it
may be interpreted as the accuracy of the model, or more precisely as the realism of the
generated flows.

In England, for DG we find that CPC=0.32. This value is significantly higher than that of G
(CPC=0.11, with an improvement of 190% in the UK), which may be considered as a
baseline for our model. Note that CPC varies with the population within the region of interest:
it is higher in sparsely populated areas (e.g., 0.67 in the first decile for the UK) and lower in



densely populated areas (e.g., 0.28 in the last decile for the UK). We obtain similar results
for Italy and the state of New York.

Although CPC=0.32 may seem low, one should consider that:
1. The CPC may vary with the composition and size of the locations: in densely

populated areas such as London, for example, our results for G are in line with those
in previous papers.

2. Human mobility is a highly complex system: on the one hand, the number of factors
influencing the decision underlying people's displacements are far more than those
captured by the available features; on the other hand, mobility flows have an intrinsic
random component and hence the prediction of a single event cannot be determined
in a deterministic way.

We summarized the discussion above in the section “Experiments” of the manuscript.

Point 2.11
“We do not find any significant improvement of NG with respect to G, despite the use of the
non-linearity introduced by the deep neural network”

Could the author comment on the fact that NG does not improve on G, but DG improves on
MFG?

Response 2.11
Thanks for this question, which gives us the opportunity to clarify our interpretation of this
important aspect.

The analyses on two more countries, Italy and New York State, help us understand that the
actual performances of NG and MFG are country specific. In England, we observe that MFG
outperforms NG, as opposed to Italy and New York State where NG outperforms MFG.
Despite these country-specific differences, we observe a clear pattern in our results that is
valid for all countries: G has always the worst performance and DG has always the best
performance, while MFG and NG have intermediate performances. This confirms our
hypothesis that the increased performance of DG originates from the interplay between a
richer set of geographics features (present in MFG but not in NG) and the model’s
nonlinearity (present in NG but not in MFG).

To clarify this point we added the following text in the “Experiments” section of the
manuscript:

“We note that the performances of NG and MFG are country specific. In England,
MFG outperforms NG, as opposed to Italy and New York State where NG
outperforms MFG (Figure 3). Despite these country-specific differences, we observe
a clear pattern in our results that is valid for all countries: G has always the worst



performance and DG has always the best performance, while MFG and NG have
intermediate performances. This confirms our hypothesis that the increased
performance of DG originates from the interplay between a richer set of geographics
features (present in MFG but not in NG) and the model’s nonlinearity (present in NG
but not in MFG). ”

Point 2.12
“This settings allows us to discover whether we can generate flows for a city for which we do
not have any information, a peculiarity that we cannot fully investigate if the model partially
”see” a city (e.g., use some of the locations of a city in the training phase).”

If the total outgoing flow per location is an input of the model, the sentence above is
misleading.

Response 2.12
The Referee is right, and we agree that the sentence above may be misleading. To avoid
misunderstanding, we changed the sentence above as follows:

“This setting allows us to discover whether we can generate flows for a city where no
flows have been used to train the model, a peculiarity that we cannot fully investigate
if the model partially “see” a city (e.g., use some of the city flows during the training
phase).”

Point 2.13
“The negligible difference between the performance DG and L-DG shows that our model can
generate flows also for geographic areas for which no knowledge is available about the
mobility flow patterns.”

Same comment as above.

Response 2.13
Again, the Referee is right and we agree that the sentence may lead to misunderstanding.
We rephrased it as follows:

“The negligible difference between the performance DG and L-DG shows that our
model can generate flow probabilities also for geographic areas for which there is no
data availability for training the model.”



Point 2.14
“In general, there is no single category which is significantly more important than the others.”
What is the value gained by having different categories? What happens if one adds only the
total number of POIs?

Response 2.14
We thank the Referee for this useful suggestion. To investigate the contribution of different
categories, we created a model (DG-sum) in which the only geographic feature is the total
number of POIs in a location, regardless of the specific category they belong to. Each flow in
DG-sum is hence described by 5 features only (sum of POIs of origin and destination,
distance between origin and destination and their populations). We find that DG-sum has a
lower performance than DG, regardless the decile of the population considered and the
dataset (England, Italy, state of New York):



These results suggest that splitting POIs in categories brings a significant contribution,
especially in England where DG has an improvement of about 141% in the last decile on
DG-sum. While this improvement is less marked in Italy and the state of New York, we find
an improvement of DG over DG-sum up to 17% (Italy) and 6% (state of New York).

We added the results above in Supplementary Information 3 and mentioned this experiment
in section “Architecture of Deep Gravity” of the main manuscript:

“Each flow in Deep Gravity is hence described by 39 features (18 geographic
features of the origin and 18 of the destination, distance between origin and
destination, and their population). We also consider a light version of Deep Gravity,
namely DG-sum, in which we just count a location’s total number of POIs without
distinguishing among the categories (5 features per flow in total), and a more
complex version of Deep Gravity, namely DG-Knn, which includes the geographic
features of the $k$ nearest locations to a flow’s origin and destination (77 features
per flow in total). The performance of these two models is comparable to (DG-Knn) or
worse than (DG-sum) the performance of Deep Gravity (see Supplementary
Information 3).”

Point 2.15
“Note that the addition of geographic features alone is not sufficient to explain the
improvement of DG over the other models: the non-linearity plays a crucial role as well.”

As per a previous comment, then how come NG does not perform better than G?

Response 2.15
Please see answer to Point 2.11.



Point 2.16
“Third, DG is a geographic agnostic model able to generate flows on urban agglomerations
never seen before.”

This claim should be toned down. The model helps estimating the flow network, given that
the total outgoing flow per location is known. This is not a detail, because the total number of
outgoing trips per location is not much easier to have than mobility network flows.

Response 2.16
We thank the Referee for this comment: you are right and we agree that the sentence must
be rephrased.

It is true that, for generating a region of interest’s flow network, the total outgoing flow as well
as other information to run the model is needed (tessellation, population of output areas,
POIs). We rephrased the sentence above in section Discussion as follows:

“Third, DG is a geographic agnostic model able to generate flows between locations
for any urban agglomeration, given the availability of appropriate information such as
the tessellation, the total outflow per location, the population in the output areas, and
the information about POIs.”

Point 2.17
Code Availability
Since this is also a methodological contribution, sharing the code with the paper would make
this work more valuable. I can see that the instructions to access the code are provided with
the paper, so maybe the section simply needs to be updated?

Response 2.17
Thank you for this suggestion. We created a GitHub repository with the code of the models
and the data to reproduce the experiments: https://github.com/scikit-mobility/DeepGravity.

Point 2.18
Author contributions
Typo (FP)

Response 2.18
Thanks for notifying us of this typo. Corrected.

https://github.com/scikit-mobility/DeepGravity


Point 2.19
Figure 2
Why are there some grey cells in the map?
What are the yellow squares in panel (g)

Response 2.19
The two yellow squares in Figure 2g indicated regions of interest in England for which G
works slightly better than DG. With the new experiments, in which we add the population
size too as requested by the Referee, there no yellow cells anymore (see Figure 4 of the
manuscript, that we report in the following):





Point 2.20
Figure 4
This is minor but the edges in panel 4 seem quite homogeneous despite the differences in
the distances between locations

Response 2.20
Thanks for this comment. We remade the plots to highlight the differences between the
origin networks of flows and those generated by G and DG better (see Figure below).



Referee 3

Point 3.1
My main problem is that this paper focuses only on the predictive power of the model without
giving any insights regarding the underlying mechanisms of human mobility. It is not really
surprising that if you add more complexity and inputs to a model you obtain better results. In
my opinion, what is really important when proposing a new model is to understand why this
new model performs better at a global or a local scale. And how this knowledge could be
used to generalize the approach. I did not find an answer to these questions in the
manuscript.

Response 3.1
The point raised by the Referee is very important and in the revised version we have made
great efforts to address it. Understanding how to explain and interpret the predictions of
complex models, like DG, is   an active area of research and a wide variety of different
methods have been recently proposed to address this issue.

Relying on explainability AI techniques, we now introduce and use Shapely values from
game theory to quantify the contribution of each feature to the predictions of DG, at both
global and local scales. This analysis is described in a new part in section “Experiments” and
in the new Figure 5. Both are reported below:

“Understanding why a model makes a certain prediction is crucial to explain
differences between models and interpret results. In this work, we use
SHapley Additive exPlanations (SHAP) to understand how the input geographic
features contribute to determine the output of Deep Gravity. SHAP is based on game
theory and estimates the contribution of each feature based on the optimal Shapley
value, which denotes how the presence or absence of that feature changes the
model prediction of a particular instance compared to the average prediction for the
dataset. In Figure 5, we show some insights provided by SHAP in England both for
global (Figure 5a) and local (Figures 5b-d) explanations. From a global perspective,
the most relevant feature (the one with largest Shapely value) is the geographic
distance: as expected, a large distance between origin and destination contributes to
a reduction of flow probability, while a small distance leads to an increase (Figure
5a). The population of the destination (“D: Population” in Figure 5) is also globally
relevant. However, in contrast with the usual assumption of the gravity model that
the flow probability is an increasing function of the population, we find that population
has a mixed effect, with high values of the population feature (red points in Figure
5a) that may also contribute to a decrease of the predicted flow. This is probably
because residential areas have a high population, but are not likely destinations of
commuting trips. Instead, other geographical features related to commercial and
industrial land use, healthcare, and food are more relevant than population. For



instance, locations having a large number of food facilities, retail, and industrial
zones are predicted to attract commuters. On the other hand, locations with
health-related POIs and commercial land use are predicted to have fewer
commuters. Finally, we use Shapely values to explain the contribution of each feature
to the model’s prediction for a single origin-destination pair. Specifically, we select
two locations in England, E00137201 and E00137194, with similar populations and
in a highly populated region (in the 9th decile) and we consider the flows between
them, from E00137201 to E00137194 and from E00137194 to E00137201. While the
gravity model (G) generates identical flows because distances and populations are
the same, Deep Gravity assigns different probabilities for the two flows and the
Shapely values indicate that various geographical features (like transportation points
and land use) are much more relevant than populations in this case (Figure 5b-d).
This example illustrates how DG’s predictions for individual flows depend on the
various geographical variables considered and that the most relevant features for a
specific origin-destination pair can be very different from the most relevant features
overall (Figure 5a).”

Point 3.2
It would also be a good idea to add more case study sites from different countries and/or
different data sources to rigorously assess the predictive power of the model.



Response 3.2
We thank the Referee for this useful suggestion. We replicated all the experiments on two
new datasets, corresponding to flows between census areas in Italy and the state of New
York (US).

In Italy, the mobility flows are among 1551 regions of interest consisting of non-overlapping
square regions of 25 by 25 km2, which cover the whole of the country. Half of these regions
are used to train the models and the other half are used for testing. Similarly to the UK, each
region of interest is further subdivided into locations, according to the definition of Output
Areas (OAs) provided by the Italian census bureau (ISTAT).

We also consider mobility flows among 5367 census tracts provided by the United States
Census Bureau in New York State (US), extracted from millions of anonymous mobile phone
users’ visits to various places and aggregated at the census tract level [Kang2020]. We
describe the characteristics of the datasets in Supplementary Table 1 and we provide in the
“Methods” section of the manuscript details on the definition of the regions of interest, the
Output Areas, the location features and the real flows used to train and validate the models.

[Kang2020] Kang, Y. et al., Multiscale dynamic human mobility flow dataset in the
US during the COVID-19 epidemic. Scientific data 7, 1–13 (2020).

The results we obtain for Italy and New York State are similar to those of England: DG
performs significantly better than the other models, with an improvement in terms of global
CPC over G of 50% in Italy and 1066% in New York State. Below, the Referee can find a
table with the complete results for England, Italy, and New York State (it is Table 1 in the new
version of the manuscript).



Similarly to what we did for England, to investigate the impact of population to the model
performance, we split each country’s regions of interest into ten equal-sized groups, i.e.,
deciles, based on their population, where decile1 includes the regions of interest with the
smaller population and decile 10 includes the regions of interest with the larger population,
and we analyze the performance of the four models in each decile.

In Italy, all models degrade (i.e., CPC decreases) as the decile of the population increases,
denoting that they are more accurate in sparsely populated output areas. This is not the
case for New York State, in which the model's performance increases slightly as the decile of
the population increases. Nevertheless, in all three countries, the relative improvement of
DG with respect to G increases as the population increases. In other words, the performance
of DG degrades less as population increases. Below, the Referee can find plots
documenting the comparison between the performance of the models in the three datasets
(it is Figure 3 in the new version of the manuscript).



Similarly to England, in the other two countries we have an improvement of MFG and DG
over G of 14% and 66% (Italy) and of 351% and 1076% (New York State), respectively. DG's
improvement on G is a common characteristic of all three datasets, as DG improves on G in
all the tiles for all countries.

We added the above results and discussion in the new version of the manuscript.

Regarding the size of the locations, information about real commuting flows at country level
are provided by official statistics bureaus at the level of OAs only, which are administrative
units of different shapes. It is not possible to aggregate or disaggregate flows between OAs



onto flows between locations of the same size (e.g., using a squared tessellation) without
introducing significant distortions in the data or obtaining aggregated locations of size much
larger than the area of the largest OA. See also Point 2.8 for a detailed answer to this point.

Point 3.3
I would also recommend the authors to add a few goodness-of-fit metrics to compare the
observed and the simulated network topologies (based for example on the number of link in
common, the commuting distance distribution…).

Response 3.3
We thank the Referee for this useful suggestion. Besides the CPC, which is by far the most
common metric used to evaluate flow generation, we add the Pearson correlation coefficient,
the Normalized Root Mean Squared Error (NRMSE), and a measure of distance (the
Jesen-Shanno divergence or JSD) between the distribution of real flows and the distribution
of generated flows. We added the formal definition and a description of these three metrics
in Supplementary Information 1.

In the new version of the manuscript, we specify that we use these two additional evaluation
metrics:

“For a more comprehensive evaluation, we also use the Pearson coefficient, the
Normalized Root Mean Squared Error (NRMSE) and the Jensen-Shannon
divergence (JSD), which measure the correlation, the error, and the distribution
distance between the real and the generated flows, respectively (see Supplementary
Information 4 for mathematical definitions).”



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

In this revision, the authors have addressed all my concerns in the previous review. I also 
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the significance of the study. 

In the revised version, they have acknowledged that, as it is, the model can not be used without 

access to mobility data because it does not generate flows, and there is no guarantee of 

geographical transferability across countries. In my opinion, this implies that, as it is, the model 

has quite limited practical value, but I agree with the authors that this work paves the way for the 

development of future models based on deep learning that could be used in practice. 

In terms of scientific understanding of Human Mobility, I find that the new section focusing on the 

interpretation of the model is one of the most interesting parts of the paper. For this reason, I 

would suggest the authors expand it, by showing the Shapley values for all the countries under 

study. I think the authors could also give more space to the results of this section in the abstract, 

introduction and discussion. It is interesting how amenities attract or repel commuters based on 

their type. And it would be interesting to compare the results obtained in England and Italy, for 

commuting patterns, against New York, where the mobility data is more detailed and 

comprehensive. 

As a minor comment, it would be good to have a small description of SHAP in the methods or 

supplementary information. The authors should also explain why points spread along the y-axis in 

Figure 5a. 
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Remarks to the Author: 

The authors have addressed all my concerns.



Summary of Changes for Revision

Deep Gravity: enhancing mobility flows generation with deep
neural networks and geographic information

Filippo Simini, Gianni Barlacchi, Massimiliano Luca, Luca Pappalardo

We thank the Referees for their insightful comments. In particular, we are proud that
Referee #1 says: “ also appreciate that the authors have added experiments on extra
data sets to showcase the generality of their method”, and that Referee #2 says “I
would like to congratulate the authors for the extensive revision, as they have done
an impressive amount of work to address the reviewers’ comments”.

We addressed all the concerns in the new version of the manuscript. In particular, we
replicated our experiments about explanations on Italy and New York State, as
requested by Referee #2. The new parts and those that have been modified with
respect to the previous version are highlighted in blue.

Note that, since the previous title of the paper contained punctuation, we changed it
to “A Deep Gravity model for mobility flows generation”.

We believe that the manuscript has improved significantly thanks to the comments of
the reviewers, and we hope that now the paper meets the high standards to be
published in Nature Communications.

Kind Regards, on behalf of all authors
Luca Pappalardo



Referee 1
“In this revision, the authors have addressed all my concerns in the previous review. I also
appreciate that the authors have added experiments on extra data sets to showcase the
generality of their method.”

We would like to thank Referee1 for their insightful comments and suggestions, and we are
glad that they appreciated the new version of our paper.



Referee 2

Point 2.1
In the revised version, they have acknowledged that, as it is, the model can not be used
without access to mobility data because it does not generate flows, and there is no
guarantee of geographical transferability across countries. In my opinion, this implies that, as
it is, the model has quite limited practical value, but I agree with the authors that this work
paves the way for the development of future models based on deep learning that could be
used in practice.

Response 2.1
Thanks for this comment. We highlight that the model may be improved into the direction
desired by the Referee in the Discussion:

“Regarding transferability, flow generation may be extended to include the generation
of each location's total outflow to allow the application of the model to regions for
which only the population and public POIs are available.”

Point 2.2
In terms of scientific understanding of Human Mobility, I find that the new section focusing on
the interpretation of the model is one of the most interesting parts of the paper. For this
reason, I would suggest the authors expand it, by showing the Shapley values for all the
countries under study. I think the authors could also give more space to the results of this
section in the abstract, introduction and discussion. It is interesting how amenities attract or
repel commuters based on their type. And it would be interesting to compare the results
obtained in England and Italy, for commuting patterns, against New York, where the mobility
data is more detailed and comprehensive.

Response 2.2
Thank you for this useful comment. As suggested by the Referee, we have expanded the
discussion about explanations in the abstract, introduction, and discussion, and
Supplementary Information 5. In particular, we added the following paragraph in the
Abstract:

“Finally, we show how flows generated by Deep Gravity may be explained in terms of
the geographic features and highlight crucial differences among the three considered
countries interpreting the model's prediction with explainable AI techniques.”

and the following paragraphs in the Introduction:



“Finally, since deep learning models are not transparent, explainability is crucial to
gain a deeper understanding of the patterns underlying mobility flows. We may
achieve this goal using explainable AI techniques, which unveil the most important
variables overall as well as explain single flows between locations on the basis of
their geographic characteristics.
[...]
In particular, we observe that while in Italy and New York State the nonlinear
relationship between population and distance captured by the model provides the
strongest contribution to predict the flow probability, in England the interplay between
the various geographic features plays a key role in boosting the model's predictions.”

In the Discussion, we added the following paragraphs:

“In this regard, as depicted by the explanations extracted from DG, the impact of the
voluntary geographic information and non-linearity varies from country to country, as
in England geographic information the former plays the strongest role in the model's
performance while it predominates in Italy and New York. More work is needed to
delve into this interesting dichotomy.
[...]
Regarding explainability, while we use agnostic techniques to explain the geographic
variables' role to the model's predictions, there is the need for more sophisticated
explanations tailored for human mobility models. These explanations should take into
account the peculiarities of mobility tasks such as flow generation (e.g., spatiality,
network), providing more suitable global and local explanations of mobility flows.”

Second, we have added the explanations for Italy and New York State in the new version of
the manuscript.

“We use SHapley Additive exPlanations (SHAP) to understand how the input
geographic features contribute to determine the output of Deep Gravity. SHAP is
based on game theory and estimates the contribution of each feature based on the
optimal Shapley value, which denotes how the presence or absence of that feature
change the model prediction of a particular instance compared to the average
prediction for the dataset (see Methods for details).

From a global perspective (Figure 5), one of the most relevant features with
large Shapely values is the geographic distance: as expected, a large distance
between origin and destination contributes to a reduction of flow probability, while a
small distance leads to an increase.The population of the destination (D: Population'
in Figure 5) is also globally relevant, especially in Italy and New York. In England
however, in contrast with the usual assumption of the gravity model that the flow
probability is an increasing function of the population, we find that population has a
mixed effect, with high values of the population's features (red points in Figure 5a)
that may also contribute to a decrease of the predicted flow. A possible explanation is
that residential areas have a high population, but are not likely destinations of
commuting trips, while other geographical features related to commercial and



industrial land use, healthcare, and food are more relevant than population. For
instance, locations having a large number of food facilities, retail, and industrial
zones are predicted to attract commuters. On the other hand, locations with
health-related POIs and commercial land use are predicted to have fewer
commuters. Differently from England, in Italy and New York (Figure 5b,c) the
populations in the origin and destination locations are the features with the strongest
impact on the model output. In particular, both a small population in the origin and a
large population in the destination increase the flow probability. The fact that
populations and distance are more relevant than other geographic features in Italy
and NY explains why the Nonlinear Gravity model (NG) outperforms the
Multi-Feature Gravity model (MFG) in these two countries: a deep-learning model
that is able to capture the existing nonlinear relationship between populations and
distance can accurately predict the flow probabilities, while the other geographic
features only bring a marginal contribution.”

Point 2.3
As a minor comment, it would be good to have a small description of SHAP in the methods
or supplementary information. The authors should also explain why points spread along the
y-axis in Figure 5a.

Response 2.3
We thank the Referee for this useful suggestion. We added a description of SHAP in the
Methods section (see below) and explained why points spread along the y-axis in Figure 5a.

“SHAP (SHapley Additive exPlanations) applies a game theoretic approach to
explain the output of any machine learning model.
It relies on the Shapley values from game theory, which connect optimal credit
allocation with local explanations. Shapley values consist in the average of the
marginal contributions across all the permutations of the players solving a game.
They are obtained by composing a combination of variables and their average
change depending on the presence or absence of the variables to determine the
importance of a single variable based on game theory. Based on this idea, SHAP
values (SHapley Additive exPlanation values) are used in SHAP as a unified
measure of feature importance. The interpretation of the SHAP value for variable
value $j$ is: the value of the $j$-th variable contributed $\phi_j$ to the prediction of a
particular instance compared to the average prediction for the dataset.
SHAP values allow us to give both a global and local explainability of Deep Gravity.
In the first case, we use the collective SHAP values to understand which predictors
contributed (both positively or negatively) to the prediction. In the latter, we use single
observations or smaller sets of observations (e.g., a specific decile) to both
understand which features played a role in a specific prediction or, more in general, if
the set of features used to predict flows in different deciles vary and how much it
changes.”



Referee 3
“The authors have addressed all my concerns.”

We thank the Referee for the overall appreciation of our work and for all their useful
comments and suggestions, which helped us improve the paper.
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