
 

Supplementary Figure 1: Comparison of motif occurrences and verified binding events. 

For the 216 tested transcription factors, actual binding events are on average 14-fold less frequent than 

binding sequence occurrences in the A. thaliana genome, for the respective transcription factor. The 

distribution on the left shows the number of individual motif occurrences for each transcription factor 

using the tool FIMO1. The distribution on the right shows the frequency of ampDAD-seq2 verified 

binding events for each transcription factor. The whiskers of the boxplots are drawn up to 1.5 times the 

interquartile range from the respective quartile. Quartiles are drawn at the 25th and 75th percentile and 

the center line represents the median for each distribution. 

 

 

 

 

 

 



 

Supplementary Figure 2: Comparison between “core motif” and “top 600 peaks motif” 

regarding the number genomic occurrences. 

Both approaches extract substantially more genomic sequences than verified binding sites for the 

respective transcription factor. Using the motif derived from the top 600 peaks results on average in a 

larger number of extracted genomic sequences that contain the motif. 

 



 

Supplementary Figure 3: Comparison of different train/test set ratios. 

For each of the 216 transcription factors, four models were trained with varying ratios of train and test 

set size to analyse the influence of dataset size on model performance. Independent of the train/test ratio 

used for hyperparameter tuning, the validation set AUPRC of the random forest models was similar for 

almost every transcription factor. 

 



 

Supplementary Figure 4: Evaluation of impact on performance when dimensionality reduction 

is applied on the feature set. 

All models were trained on the dimensionally reduced feature set and on the originally processed DNA 

shape feature set. After performing PCA, values of the 1st to 10th principal component were used as 

feature set. Training on the dimensionally reduced feature set leads to substantially lower prediction 

performance for most transcription factors. 

 

 

 

 

 



 

Supplementary Figure 5: Comparative analysis of family specific DNA-binding prediction 

performance. 

The comparison is based on the area under the precision recall curve (AUPRC) using ampDAP-seq 

peaks as ground truth. Only families with available data of at least 10 members were investigated to 

ensure a robust analysis. For the families C2C2dof, MYB related and G2like a significantly (p < 0.05, 

Wilcoxon-Mann-Whitney-Test) worse performance of the random forest model regarding precision-

recall relation was observed. For the transcription factor families NAC, AP2/EREBP and bZIP the 

performance was significantly (p < 0.05, Wilcoxon-Mann-Whitney-Test) better. The visualisation as 

well as the statistical tests were performed using the Dabest package3. 

 

Supplementary Table 1: Statistical test results for the comparative protein-family analysis.  

For each protein family a Wilcoxon-Mann-Whitney test was performed, calculating the two-sided p-

value, using the Python package Dabest3.  

 

control  test  p-value 

all TFs  C2C2dof 0.000011 

all TFs  WRKY  0.089488 

all TFs  NAC  0.003943 

all TFs  MYB related 0.000998 

all TFs  AP2/EREBP 0.000065 

all TFs  MYB  0.930433 

all TFs  G2like  0.010457 

all TFs  bZIP  0.006831 



 

Supplementary Figure 6: Individual binding prediction improvements regarding transcription 

factor protein families. 

Blue dots represent the area under the precision recall curve (AUPRC) using the regressor model which 

was trained on the DNA shape using DAP-seq data as ground truth, whereas red dots represent the 

AUPRC using solely the sequence motif derived from the ampDAP-seq peaks. For Members of the 

AP2EREBP, NAC and bZIP family, the binding prediction was consistently substantially improved. 

The improvement regarding the MYBrelated and C2C2dof family members was comparatively low. 



 

Supplementary Figure 7: Correlation between dataset size and prediction performance. 

The performance of each random forest model was plotted against the number of genomic sequences 

containing the binding motif. Overall, performance and dataset size correlate slightly negative with a 

R2 of 0.154. The linear regression, as well as the two-sided p-value, was calculated using the SciPy4 

Python package, which applies the Wald test. 

 



 

Supplementary Figure 8: Comparison of ChIP-seq and ampDAP-seq data performance. 

For five transcription factors, which had data available for both experimental procedures2,5–8, the 

performance of binding site inference was compared. For ChIP-seq the ChIP-seq data were used as 

ground truth for training and for ampDAP-seq the ampDAP-seq data were used as ground truth. The 

sequence motif was searched throughout the Arabidopsis thaliana genome to extract all putative 

binding sites. For each TF the random forest models trained on ampDAP-seq data had higher AUPRCs 

than models trained on ChIP-seq data. 

 



 

Supplementary Figure 9: Binding site prediction performance for differing sequence windows. 

For each transcription factor the binding sequence window was varied up to 32 additional bases 

upstream and downstream from the core motif. The average AUPRC regarding the sequence search for 

the core motif is outperformed by calculating the DNA shape using only bases belonging to the core 

motif. Widening the sequence window with additional bases upstream and downstream from the core 

motif improves binding site predictiosn to an average AUPRC of approximately 0.6. The spread of 

prediction performance varies widely and is dependent on each transcription factor. 

 



 

Supplementary Figure 10: Comparison of prediction performance between different machine 

learning approaches. 

For each of the 216 transcription factors, three models using different machine learning approaches 

(gradient boosting, random forest and a baseline neural network) were trained. Each dot represents the 

performance of one of the 648 respective models. The data points are sorted according to the 

performance of the random forest approach.  

 

 

 



 

Supplementary Figure 11: Frequency of the respective top 5 most important shape features for 

all TFs. 

For each of the 216 TFs transcription factor a random forest model was trained. The respective feature 

importance was extracted and all features but the top 5 most important were discarded for each TF. 

Most of the important shape features are located within the core motif. 

 

 

 

 

 

 

 

 



 

Supplementary Figure 12: Intersections of “top 600 motif” occurrences and verified bind sites 

for AT3G16280 and AT5G51990. 

Using the published motif derived from the top 600 peaks to scan for motif occurrences results in 

103,779 hits. Although, the overlap between the locations is not as strong compared to using the core 

motif derived from all binding events instead of the top 600. Further, a noticeable amount of verified 

binding sites for AT5G51990 is only found in the extracted sequences for this transcription factor when 

the “top 600 motif” is applied. 

 

 



 

 

Supplementary Figure 13: Differentiation of binding specificity of two WRKY transcription 

factors with the same binding motif. 

A) Occurrence of the TTGAC(T/C) binding motif in the A. thaliana genome sequence and the 

experimentally validated binding sequences of the WRKY TFs AT2G23320 and AT1G29280. B) 

Performance of the random forest regressor trained on the genomic 3D shape. C) The Venn diagrams 

show the sequence distributions according to the cut-off represented by the dashed line, respectively. 

Fields with light colours show the overlap of predicted and validated binding sequences. Dark coloured 

fields show the quantity of sequences, which were not predicted as bound by the model regarding the 

shown cut-off. D) Impact of different local shape features on the prediction of the regressor model. The 

most influential features are at the top. Each row represents one shape feature at a single position within 

the sequence. The start of the core motif is at position 30. 

 

 

 



 

 

Supplementary Figure 14: Differentiation of binding specificity of two bZIP transcription factors 

with the same binding motif. 

A) Occurrence of the ACGTCA binding motif in the A. thaliana genome sequence and the 

experimentally validated binding sequences of the bZIP TFs AT5G65210 and AT5G10030. B) 

Performance of the random forest regressor trained on the genomic 3D shape. C) The Venn diagrams 

show the sequence distributions according to the cut-off represented by the dashed line, respectively. 

Fields with light colours show the overlap of predicted and validated binding sequences. Dark 

coloured fields show the quantity of sequences, which were not predicted as bound by the model 

regarding the shown cut-off. D) Impact of different local shape features on the prediction of the 

regressor model. The most influential features are at the top. Each row represents one shape feature at 

a single position within the sequence. The start of the core motif is at position 30.  

 

 

 



 

Supplementary Figure 15: Differentiation of binding specificity of two C2H2 transcription 

factors with the same binding motif. 

A) Occurrence of the TTGTC(T/G)T binding motif in the A. thaliana genome sequence and the 

experimentally validated binding sequences of the C2H2 TFs AT5G66730 and AT3G13810. B) 

Performance of the random forest regressor trained on the genomic 3D shape. C) The Venn diagrams 

show the sequence distributions according to the cut-off represented by the dashed line, respectively. 

Fields with light colours show the overlap of predicted and validated binding sequences. Dark coloured 

fields show the quantity of sequences, which were not predicted as bound by the model regarding the 

shown cut-off. D) Impact of different local shape features on the prediction of the regressor model. The 

most influential features are at the top. Each row represents one shape feature at a single position within 

the sequence. The start of the core motif is at position 30. 

 

 

 



 

Supplementary Figure 16: Competition EMSA with the A. thaliana transcription factor HY5. 

For experimental validation of the regressor predictions, DNA sequence with a high and low regressor 

prediction containing the same sequence motif not present in the genome of A. thaliana were generated. 

One sequence with a high prediction was labeled with biotin to detect DNA binding of HY5 by 

performing an EMSA. To compare binding affinities three sequences with high and low regressor 

predictions were used as competitors for the labeled sequence containing the same sequence motif. A 

shifted band is visible for all samples with low binding affinity prediction, one sample with high affinity 

prediction and the control without competitor sequence. Less visible shifted bands are observed in two 

samples with high predicted affinity and the control with the same competitor sequence. This EMSA 

experiment was performed two times. A cropped version of this gel image is visible in figure 3 and an 

uncropped version is available in the source data file. 

 



 

Supplementary Figure 17: Competition EMSA with the A. thaliana transcription factor 

ANAC050. 

For experimental validation of the regressor predictions, DNA sequences not present in the genome of 

A. thaliana were generated. All sequences contain the extracted sequence motif for ANAC050. One 

sequence with a high regressor prediction was labeled with biotin to detect DNA binding of ANAC050 

by performing an EMSA. To compare binding affinities three sequences with high and low regressor 

predictions were used as competitors for the labeled sequence. A shifted band is visible for two out of 

three samples with low binding affinity prediction and the control without competitor sequence. Less 

visible shifted bands are observed in all samples with high predicted affinity. This EMSA experiment 

was performed once. A cropped version of this gel image is visible in figure 3 and an uncropped version 

is available in the source data file. 

 

 



 

Supplementary Figure 18: Top 5 most important shape features for HY5 binding. 

The SHAP Python package9 was used to extract the most important features of the random forest model 

trained on experimentally validated HY5 binding sequences. The most important shape feature is the 

Opening at the -1 position, which is one base upstream of the motif sequence. 
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Supplementary Figure 19: Western blot of Protein-Halo-Tag fusion. 

To confirm the expression of the N-terminal fusion of HY5 and the Halo tag a SDS-Page with a 10% 

acrylamide gel followed by a western blot on a 0,22 µm Nitrocellulose membrane (Sartorius, Göttingen, 

Germany) was performed. The HY5 protein was expressed with TnT® SP6 High-Yield Wheat Germ 

Protein Expression System (Promega, Madison, Wisconsin, United States) using 2 µg Plasmid DNA 

per 50 µL expression reaction (HY5). For size comparison the PageRuler™ (M) (Thermo Fisher 

Scientific, Waltham, Massachusetts, United States) was used. The Anti-HaloTag® Monoclonal 

Antibody (Promega, Madison, Wisconsin, United States) and an HRP conjugated Anti-mouse antibody 

(abcam, Cambridge, United Kingdom) were used to detect the fusion protein. Detection was performed 

using PierceTM ECL Western Blotting Substrate (Thermo Fisher Scientific, Waltham, Massachusetts, 

United States) and the imaging system Fusion Fx7(Vilber, Collégien, France). The expression reaction 

with the plasmid DNA shows a strong band with a size of approximately 60 kDa which is consistent 

with the expectations, as the Halo Tag adds 33 kDA to the protein. The western blot was performed 

once and an uncropped version of this image is available in the source data file. 
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