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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

Trepka and colleagues develop novel entropy-based measures of choice behavior and use these to 
study the behavior of mice and monkeys performing different repeated choice tasks under 
stochastically changing reinforcement contingencies. They use these entropy-based metrics along 

with other classic model-independent measures to determine which are most associated with 
undermatching, a behavior where animals allocate fewer than expected choices to the better option 

leading to suboptimal reward intake. They show that their entropy-based metrics explain variability in 
undermatching, and show specifically that the strongest correlation is with the entropy metric 

capturing the consistency of choice strategy after not receiving a reward from choosing the worst 
option. The authors then use this insight to extend common reinforcement learning (RL) models to 
better account for trial-by-trial choice behavior. I found the development of the entropy metrics clear, 

and useful since they are based on easily understood unconditional and conditional probabilities. 
These measures could be incorporated into future studies as useful model-independent measures. I 

found the logic of the the RL-based part of the paper sensible, complementing the model-independent 
measures. That said, I have major concerns that should be resolved before judging the acceptability 
of the paper for Nature Communications. 

I was surprised when the authors noted that prior "outcome models were not examined for their ability 

to capture deviation from matching" (pg. 4) when the reference cited in the immediately preceding 
sentence is in fact focused on understanding deviations from matching using a number of model-
based and model-independent methods (Iigaya et al., 2019). Indeed, Iigaya et al. contains figures 

illustrating several metrics plotted against the degree of behaviorally observed undermatching, so I 
find quite misleading the current authors' claim that "none of those studies aimed to predicted 

observed undermatching" (pg. 22). I think the authors' work stands quite well on its own without 
underselling prior work, and provides opportunity for a nuanced discussion (and even more fruitfully a 

model comparison) given the similarity in approach (deriving local models that explain global 
undermatching aided by model-independent metrics) and behavioral task (binary choice probabilistic 
reinforcement with stochastically varying reinforcement schedules). 

The presentation of the RL model results is confusing. In part, this is due to mixing mouse and 

monkey results together. It's clear from the preceding model-independent metrics that the inter-
species behavior is different, which is probably expected given the numerous task difference. But as 
I'm reading the text on pg. 20, I can't help but keep wondering why the authors keep referring to RL2 

and Dyn LCM when the RL2+CM model is the winning model by AIC for monkey data? This 
paragraph is then followed by a breakdown of CM and LM components as if they are both novel, but 

the CM component is already well-known to be important for explaining choice behavior in mice, 
pigeons, monkeys and humans. It seems worth considering presenting the observation that previous 
RL models work for monkeys, but still (to be verified as in Figure 5f using RL2+CM) fail to capture the 

distribution of ERODS_{W-} values, but that for mice, it is different and the loss-memory component 
(but not the choice-memory component) is crucial. This latter point is interesting in light of prior work 

(e.g., Fonseca et al 2015) showing that choice-history effects in mice can be quite strong. 

This leads to the other reason the model results are confusing, which is that depsite undermatching 
being correlated with receiving no rewards following choices of the worst option in both species, a 
loss-memory component is only needed for the mouse data. The authors don't discuss this, but it 

could be due to many factors, even unrelated to species differences (overall reward rates, object 
versus spatial actions, baiting of rewards on unchosen option for mice which makes a certain degree 

of switching sensible, etc). The model fits are also worse for the mouse data (R^2 roughly half of that 
for the monkey), which may also merit discussion. Although the authors argue that their approach is a 
general framework for explaining global behavior, the inclusion of two datasets with marked 

differences warrants discussion about how application of the framework yielded different conclusions 
across datasets. 



Overall, the exposition of the reinforcement learning models is not clear. This seems to stem from not 
explicitly mentioning that the models are all nested, some confusing/inconsistent notation, and some 

unjustified assumptions. For example, for the sake of clarity, it seems like the full model should be 
referred to as RL2+CM+LM in keeping with the logic for the other model names rather than Dyn. 

LCM. The symbol W^{RL2}_C(t) in eq. 24 is undefined, as is V^{CM}_C(t) in eq. 25. \omega_1 and 
\omega_2 are used in eq. 25, but I assume these refer to \omega_{LM} and \omega{CM}, 
respectively. Even more confusing, I think \omega_{LM} is referred to as \omega_{reward} in the 

supplementary figures? If I understand correctly, both the loss-memory and choice-memory 
component influence subsequent choice, but do not get incorporated into subsequent expected value 

for each option. If so, the notation in eq. 25 does not distinguish this, and one would assume from the 
notation in eq. 18-19 that these components do indeed contribute to the updated values (indeed they 

are all symbolized by V, presumably for value). These could be more clearly indicated as choice 
biases by putting them in eq. 22. Finally, why constrain \gamma in all of the RL2+ models to equal the 
mean(\alpha_rew, \alpha_unrew)? Was this tested? If so, it should be stated, otherwise it's not clear 

why this parameter should be restricted this way. Together, these make understanding the 
relationships between the models extremely difficult, and I would recommend rewriting the methods 

and results surrounding these models, with an emphasis on explaining the novel component (loss-
memory), as the choice-memory component is commonly incorporated in RL models. 

The authors describe perfect matching as optimal in the mouse task. This is true for a stationary 
environment with fixed reward probabilties (Houston & McNamara 1981), but this is not generally true 

in a stochastic environment where reward probabilities change unbeknownst to the subjects (Iigaya et 
al. 2019). 

Minor concerns 

I'm confused about how the RL models were actually fit to the data. The authors state that they used 

maximum-likelihood, but do not explicitly state that a single set of parameters (for each model) was fit 
to the totality of the data from each species. Is this the case? I guessed so since there are only point 
estimates of AIC values in the tables and Figures. However, I was confused by Figure S7, where 

parameter distributions are shown. How were these calculated? Please clarify in the methods. 

Miss trials are excluded for mice, but please report the number of of these trials that were excluded. 
Also in computing behavioral metrics based on the action or reward on the last trial, how was this 
handled for trials preceded by a miss or nogo trial. Were these dropped from the calculations? How 

were these handled in the RL models? 

Figure 1d. Legend states that c-d represent individual sessions, but the monkey data only shows a 
"superblock", which is only part of a session. Would be nice to see the whole session, or at least as 
much data as the mouse (i.e., more transitions). 

Figure 3. Some transparency of the points would help readers see better whether there is mouse data 

underneath the monkey data. 

Figure 5. A relative AIC score might be more useful here. Something like the AIC difference relative to 
the minimum AIC, or even better Akaike weights (Burnham & Anderson 2002) giving the relative 
likelihood of each model. Also, it's not clear what the utility of panels c&d are given that the 

distributions and cumulative distributions are plotted in e&f? 

Please incorporate p-values for the Kolmogorov-Smirnov tests. I think that, unlike t-tests, most people 
won't be able to figure out what the D-statistic means. 



Reviewer #2 (Remarks to the Author): 

This paper presents a new analysis of matching behavior in both mice and monkeys. There are two 
main contributions. One is a new set of information-theoretic metrics for characterizing behavioral 

patterns. These metrics allow the authors to both capture a significant amount of variance in behavior 
and to identify shortcomings of existing models. The second main contribution is the identification of a 
new model that does a significantly better job at capturing the new metrics. 

Overall, I think this is a nice example of how careful analysis of behavior can guide model 

development. I'm also very glad that the authors have introduced concrete alternatives to wins-
stay/lose-shift, which in my experience has been pretty uninformative about underlying mechanisms. 

My comments are fairly minor. 

1) I wasn't sure if the regression analyses with the metrics was really necessary to report in the main 
text. As I understand it, these analysis basically demonstrate the the metrics are capturing a 

substantial amount of variance in the behavior. But I think this could just be mentioned in passing, 
since the main goal is to use the metrics not to explain behavior directly but to guide model 
development. 

2) Figure 4 is nearly unreadable. There's just too much going on there. Maybe it could go in the 

supplement and be replaced with some condensed form that is more manageable. 

3) In the Discussion, the authors address how negative choice weights can explain various 

phenomena in the decision making literature. I want to raise two issues here. First, there is more 
probability mass on positive choice weights in Fig S7i. Second, I think it's somewhat problematic to 

assume that some phenomena are explained by positive choice weights and some by negative choice 
weights, consistent with many other past studies. Presumably this is not an idiosyncratic property of 

the subjects in these studies; possibly it could be a property of the tasks. However, this parameter is 
not task-dependent in the model. So the model doesn't really offer a coherent explanation of why 
choice weights might be negative vs. positive. They are simply free parameters. I'm not arguing that 

the authors have to fill this gap in the current paper, just that they need to be somewhat careful in how 
they talk about what their model can or cannot explain. 

4) This is very minor, but I don't see why you need to define the conditional entropy in terms of the 
mutual information in Eq. 7. You can just define it directly. 
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Response to the reviewers’ comments, and summary of changes made in response to 

the comments of the reviewers. 

Title: Novel entropy-based metrics for predicting choice behavior based on local 

response to reward 

Authors: Trepka, Spitmaan, Bari, Costa, Cohen, and Soltani 

We are very thankful to all the reviewers for their careful reading of our manuscript 

and their thoughtful comments, suggestions, and feedback. We have performed 

additional analyses and made substantial changes in the revised manuscript to fully 

address all of the reviewers’ concerns and suggestions. Below, we provide a point-by-

point response to each of the concerns detailed. The corresponding changes in the 

revised manuscript have been clearly marked in blue and indexed by [RX.Y] (e.g., [R1.1] 

indicates changes in response to point 1 of Reviewer # 1, etc.).  

Reviewer #1 

“Trepka and colleagues develop novel entropy-based measures of choice behavior and use these to 

study the behavior of mice and monkeys performing different repeated choice tasks under 

stochastically changing reinforcement contingencies. They use these entropy-based metrics along 

with other classic model-independent measures to determine which are most associated with 

undermatching, a behavior where animals allocate fewer than expected choices to the better 

option leading to suboptimal reward intake. They show that their entropy-based metrics explain 

variability in undermatching, and show specifically that the strongest correlation is with the 

entropy metric capturing the consistency of choice strategy after not receiving a reward from 

choosing the worst option. The authors then use this insight to extend common reinforcement 

learning (RL) models to better account for trial-by-trial choice behavior. I found the development 

of the entropy metrics clear, and useful since they are based on easily understood unconditional 

and conditional probabilities. These measures could be incorporated into future studies as useful 

model-independent measures. I found the logic of the the RL-based part of the paper sensible, 

complementing the model-independent measures. That said, I have major concerns that should be 

resolved before judging the acceptability of the paper for Nature Communications.” 

Response: We thank the reviewer for the thoughtful and overall positive evaluation 

and summary of our work. We hope our answers here and corresponding changes in 

the revised manuscript address all of the reviewer’s concerns. 
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“I was surprised when the authors noted that prior "outcome models were not examined for their 

ability to capture deviation from matching" (pg. 4) when the reference cited in the immediately 

preceding sentence is in fact focused on understanding deviations from matching using a 

number of model-based and model-independent methods (Iigaya et al., 2019). Indeed, Iigaya et al. 

contains figures illustrating several metrics plotted against the degree of behaviorally observed 

undermatching, so I find quite misleading the current authors' claim that "none of those studies 

aimed to predicted observed undermatching" (pg. 22). I think the authors' work stands quite 

well on its own without underselling prior work, and provides opportunity for a nuanced 

discussion (and even more fruitfully a model comparison) given the similarity in approach 

(deriving local models that explain global undermatching aided by model-independent metrics) 

and behavioral task (binary choice probabilistic reinforcement with stochastically varying 

reinforcement schedules).” 

Response: We thank the reviewer for this comment and would like to point out upfront 

that by no means we intended to undersell previous work. The reviewer is correct that 

Iigaya and colleagues (2019) fit a new model to choice data during a similar task and 

examined correlations between an estimated model parameter and observed 

undermatching (Fig. 5 in Iigaya et al.). However, they did not perform model 

comparison nor did they show that simulated data using their model could replicate the 

observed variance in undermatching. Moreover, they measured undermatching over 

each session (and not each block) of the experiment (please see our response to [R1.12] 

later in the rebuttal for more discussion of this). Nonetheless, as suggested by the 

reviewer, we now have revised the sentence on page 4 (see [R1.1] in the revised 

manuscript) to focus on the opportunity for model comparison: 

(page 4) “Although these models all provide compelling explanations of the emergence of 

matching behavior, it remains unclear how they compare in terms of fitting local choice behavior 

and the extent to which they replicate observed variability in matching behavior [R1.1]”.

We also agree with the reviewer that the sentence on page 22 was misleading given that 

Iigaya et al. explained undermatching using both a model-independent metric and the 

values of fitted model parameters. We have removed that sentence, and now discuss 

the relationship between our behavioral results and those of Iigaya et al. elsewhere in 

the Discussion (please see our response to [R1.12] later in the rebuttal).  
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In addition, to further compare the ability of different models to capture choice 

behavior, we now have added fitting results based on the model proposed by Iigaya et 

al. (which we refer to as the multiple timescales model) to our model comparison. We 

found that the multiple timescales model was worse than RL2 (and thus our full model) 

in fitting choice behavior in terms of AIC for both mouse and monkey data (see Table 1 

below). Moreover, the multiple timescales model was worse than RL2 in terms of 

capturing the observed distributions of deviation from matching and ERODSw- (see 

Table 1 below). We also went further and explored alternative versions of the multiple 

timescales model that were more similar to RL2 including: (a) a multiple timescales 

model augmented with a sigmoid decision rule; (b) a multiple timescales model with 

fitted instead of fixed timescales; and (c) a version of RL2 with learning on two different 

timescales. None of these models achieved better fit or capture of metrics than our best 

fitting model, however, version (c) improved upon RL2 in fitting choice behavior and 

capturing metrics for mouse data. To avoid confusion, we only present the results from 

the original multiple timescales model of Iigaya et al (see [R1.1]). 

Model 
Model 

Description 
Parameters AIC 

D 
ERODSw- 

D
matching

Multiple 
Timescales 

Learning on 
multiple 

timescales 

ωfast-1,  
ωfast-2, 
 ωslow

402.99 
(30.02*) 

0.188 0.165 

49.76 
(6.66*) 

0.127 0.164 

RL2 
Income-based 

RL 
αrew, αunrew, β, 

decayrate

387.22 
(14.25*) 

0.121 0.091 

44.18 (1.08*) 0.072 0.101 

Table 1. Comparison of fit of choice data and capture of metrics in simulations for the 
multiple timescales model from Iigaya et al. and RL2. Each row provides a short description 
of a given model, its parameters, goodness-of-fit based on the AIC, and D-values based on 
Kolmogorov-Smirnov tests comparing distributions of ERODSw- and deviation from matching. 
Rows in orange and cyan correspond to mouse and monkey data, respectively [R1.1].  

These results now have been included in the revised manuscript (see [R1.1]) and Table 

1 above has been incorporated in Supplemental Table S2. We also have added the 

following paragraph to the Discussion (see [R1.1]) detailing these findings and their 

implications:  
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(page 26) “Moreover, we found that nearly all other models described here better accounted for 

local and global choice behavior than the multiple timescales model proposed in Iigaya et al. 

(2019) study. Nonetheless, it is possible that more complex models based on learning on multiple 

timescales may fit choice behavior better [R1.1].” 

“The presentation of the RL model results is confusing. In part, this is due to mixing mouse and 

monkey results together. It's clear from the preceding model-independent metrics that the inter-

species behavior is different, which is probably expected given the numerous task difference. But 

as I'm reading the text on pg. 20, I can't help but keep wondering why the authors keep referring 

to RL2 and Dyn LCM when the RL2+CM model is the winning model by AIC for monkey data? 

This paragraph is then followed by a breakdown of CM and LM components as if they are both 

novel, but the CM component is already well-known to be important for explaining choice 

behavior in mice, pigeons, monkeys and humans. It seems worth considering presenting the 

observation that previous RL models work for monkeys, but still (to be verified as in Figure 5f 

using RL2+CM) fail to capture the distribution of ERODS_{W-} values, but that for mice, it is 

different and the loss-memory component (but not the choice-memory component) is crucial. 

This latter point is interesting in light of prior work (e.g., Fonseca et al 2015) showing that 

choice-history effects in mice can be quite strong.” 

Response: We thank the reviewer for pointing out this issue and their helpful 

suggestion. As suggested by the reviewer, we now have revised the manuscript to 

discuss most of the results for the two species in separate paragraphs (see [R1.2]). The 

reviewer is correct that for the monkey data, the RL2+CM model actually captures the 

distributions of ERODS_W- and undermatching as well as the full model. As a result, 

we now focus our description of the monkey fitting results exclusively on the RL2+CM 

model and the mouse fitting results exclusively on the RL2+CM+LM model.   

The main model fitting results for monkey data now read as follows (see [R1.2]):  

(pages 17-18) “In monkeys, we found that the RL2 model augmented with a CM component, 

which we refer to as the RL2+CM model, fit choice behavior better than RL1, RL2, and RL1+CM 

as indicated by lower AIC (Fig. 5b; Table S2). Although the improvement in fit of choice 

behavior for RL2+CM over RL2 was statistically significant (paired-samples t-test of AICs: � =
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1.04 ∗ 10���; Table S2), the RL2+CM model was only twice as likely as RL2 to be the best 

model based on a comparison of Akaike weights.  

Importantly, the RL2+CM model improved capture of the observed distribution of ERODSW- in 

monkeys (Fig. 5d; two-sided Kolmogorov-Smirnov test; � = 0.037,� = 8.91 ∗ 10��). This 

improvement in capturing ERODSW- corresponded with similar improvements in capturing 

deviation from matching. The predicted distribution of deviation from matching from the 

RL2+CM model better replicated the observed distribution of deviation from matching than the 

predicted distribution from RL2 (Fig. 5f; two-sided Kolmogorov-Smirnov test; � = 0.065,� =

2.07 ∗ 10��). This improvement was significant; there was an over 30% reduction in the 

maximum difference between CDFs in the RL2+CM model from the RL2 model [R1.2].” 

The main model fitting results for mouse data now read as follows (see [R1.2]):  

(page 20) “In mice, the RL2+CM+LM model (RL2 augmented with a choice-memory and a loss-

memory component) fit choice behavior better than all previous RL models as indicated by a 

lower AIC (Fig. 5a). The Akaike weight for the RL2+CM+LM model was 0.84, which suggests 

there is a high probability that the RL2+CM+LM model is the best model out of all models 

examined. The RL2+CM+LM model also captured the observed distribution of ERODSW- for 

mice better than RL2 (Fig 5c–d; two-sided Kolmogorov-Smirnov test; � = 0.049, � = 3.77 ∗

10��). Moreover, the predicted distribution of deviation from matching from the RL2+CM+LM 

model better replicated the observed distribution of deviation from matching than the predicted 

distribution from RL2 (Fig 5e; two-sided Kolmogorov-Smirnov test; mice: � = 0.065, � =

2.19 ∗ 10���). This improvement corresponds to an over 20% reduction in the maximum 

difference between cumulative distribution functions (CDFs) for deviation from matching 

computed from observed and simulated data [R1.2].”

We also now have better clarified that the choice-memory component is not novel and 

discuss its relationship to the entropy-based metrics (see [R1.2]). To that end, the 

revised description of the choice-memory component now begins with the following:  

(page 17) “To improve capture of option-dependent strategy, we added a common choice-

memory component to estimate the effects of previous choices on subsequent decisions (Lau and 

Glimcher, 2005; Fonseca et al., 2015; Wittmann et al., 2020). The choice-memory component 

encourages either staying on or switching from options that have been chosen recently. Because 
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standard RL models typically choose the option with a higher value, the choice-memory 

component can capture strategy in response to selection of the better or worse option reflected in 

the option-dependent entropy-based metrics [R1.2].” 

Finally, we also thank the reviewer for providing the relevant reference. We now 

address the relationship of these findings to previous work such as Fonseca et al., 2015 

in the Discussion (see [R1.2]):  

(page 25) “We also observed weak, positive choice-memory effects in mice such that mice tended 

to choose options that they had recently chosen. A previous study using a nearly identical task 

(reversal learning with same reward schedules (40/10) and baited rewards, but longer blocks) 

observed a much stronger, negative choice memory effect in mice (Fonseca et al., 2015). The 

reason for this difference is unclear given the similarity of the two tasks used. Consistent with 

prior studies of choice-history effects in monkeys (Lau and Glimcher, 2005), we identified strong, 

negative choice memory effects in monkeys such that the choice-memory component encouraged 

switching from recently chosen options. Thus, the incorporation of the negative weights was only 

important for capturing behavior in the monkey task and therefore could be task dependent 

[R1.2] [R2.3].”

“This leads to the other reason the model results are confusing, which is that depsite 

undermatching being correlated with receiving no rewards following choices of the worst option 

in both species, a loss-memory component is only needed for the mouse data. The authors don't 

discuss this, but it could be due to many factors, even unrelated to species differences (overall 

reward rates, object versus spatial actions, baiting of rewards on unchosen option for mice which 

makes a certain degree of switching sensible, etc).”  

Response: We thank the reviewer for pointing this out and appreciate the suggested 

explanations. We now elaborate on potential explanations for why a loss-memory 

component is only needed for the mouse data in the Discussion as follows (see [R1.3]):  

(page 24) “Despite the significant correlation between ERODSW- and deviation from matching 

in both species, the novel loss-memory component introduced here only improved fit of choice 

behavior and capture of metrics in the full model in mice. This finding may be related to the close 

correspondence between reward- and option-dependent strategies in the monkey task since 
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winning (respectively, losing) almost always corresponds with choosing the better (respectively, 

worse) side. Due to this significant overlap, one component may be sufficient to capture both 

strategies. In the mouse task, however, these strategies were dissociated because losing was likely 

when choosing either the better or worse option (but more for the worse option). This could 

explain why for monkeys, the LM component improved capture of entropy-based metrics and 

deviation from matching in the RL2+LM model relative to the RL2 model but was not useful in 

conjunction with the choice-memory component. Moreover, we observed a higher overall 

probability of switching in mice than in monkeys, indicating that mice occasionally switch from 

the more-rewarding side to harvest baited rewards on the less-rewarding side, whereas monkeys 

typically exploit the more-rewarding stimulus. Because of this, a loss-memory component that 

encourages switching in response to loss would be more helpful in capturing that behavior in 

mice than in monkeys [R1.3].”

“The model fits are also worse for the mouse data (R^2 roughly half of that for the monkey), 

which may also merit discussion.” 

Response: We thank the reviewer for pointing this out and have added the following 

explanation to the Discussion to address it (see [R1.4]):  

(page 26) “The model fits were also worse for mouse data than the monkey data in terms of 

explained variance in choice behavior, likely due to differences in the overall entropy in choice 

behavior and task structure. More specifically, mice showed higher average entropy in their 

choice behavior than monkeys across different measures, suggesting that the observed difference 

in the quality of fit occurred because mice choice behavior was more random and thus harder to 

predict. In addition, sessions in the mouse task were longer than superblocks in the monkey task, 

so the same number of parameters were used to account for more choices in mice than in 

monkeys, resulting in an overall poorer fitting quality [R1.4].”

“Although the authors argue that their approach is a general framework for explaining global 

behavior, the inclusion of two datasets with marked differences warrants discussion about how 

application of the framework yielded different conclusions across datasets.” 

Response: We thank the reviewer for raising this concern. Our intention was not to 

claim that entropy-based metrics can fully explain global behavior. Instead, we meant to 
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say that they can be used to identify limitations of current models and construct better 

models. We have addressed issues related to differences in the two datasets in our three 

previous responses above. In addition, we now have clarified our claims about the 

generality and use of our approach and detailed its limitations in the Discussion more 

clearly (see [R1.5]). More specifically, we have removed the claim that our approach is a 

general framework for explaining global behavior and replaced it with the following 

more conservative statement about exploring choice behavior:  

(page 23) “Our aim here was not to find the best model for capturing all aspects of behavior but 

instead to provide a framework for how local response to reinforcement can be used to guide 

model development and explore interesting properties of local and global choice behavior [R1.5].” 

In addition, we have also added the following paragraph to the Discussion regarding 

the limitations of our approach:  

(page 24) “Although aforementioned differences in results for these two datasets may be 

partially explained by differences in task structure and species, they also highlight the limitations 

of using entropy-based metrics to guide model development. Entropy-based metrics describe 

properties of choice behavior that are helpful for making educated guesses about model structure, 

but alone, cannot provide a generative account of behavior [R1.5] [R2.3].”

“Overall, the exposition of the reinforcement learning models is not clear. This seems to stem 

from not explicitly mentioning that the models are all nested, some confusing/inconsistent 

notation, and some unjustified assumptions.” 

Response: We thank the reviewer for pointing out the lack of clarity in our explanation 

and presentation of the RL models. To address this, we now have completely rewritten 

the Methods section and corrected some of the notational and structural inconsistencies 

throughout the manuscript as explained below (see [R1.6] in the revised manuscript). 

We also now have explicitly stated that models are all nested as follows:  

(page 33) “Models were defined in a nested fashion with subsequent models building on the 

update rules of their predecessor [R1.6].”

“For example, for the sake of clarity, it seems like the full model should be referred to as 
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RL2+CM+LM in keeping with the logic for the other model names rather than Dyn. LCM. The 

symbol W^{RL2}_C(t) in eq. 24 is undefined, as is V^{CM}_C(t) in eq. 25.” 

Response: We thank the reviewer for pointing out these inconsistencies and their 

helpful suggestion. We now refer to the full model as RL2+CM+LM throughout the 

paper. We have also updated those equations in the revised Methods section (see [R1.7]) 

as to ensure all variables are completely defined (the previous Eq. 24 is now Eq. 22; 

previous Eq. 25 is now Eq. 24). 

“\omega_1 and \omega_2 are used in eq. 25, but I assume these refer to \omega_{LM} and 

\omega{CM}, respectively. Even more confusing, I think \omega_{LM} is referred to as 

\omega_{reward} in the supplementary figures?”

Response: Yes, the reviewer is correct. We now refer to these variables as \omega_CM 

and \omega_LM throughout the methods and figures (see [R1.8]). 

“ If I understand correctly, both the loss-memory and choice-memory component influence 

subsequent choice, but do not get incorporated into subsequent expected value for each option. If 

so, the notation in eq. 25 does not distinguish this, and one would assume from the notation in 

eq. 18-19 that these components do indeed contribute to the updated values (indeed they are all 

symbolized by V, presumably for value). These could be more clearly indicated as choice biases by 

putting them in eq. 22.” 

Response: We thank the reviewer for this suggestion and apologize for the confusing 

notation. The reviewer’s understanding was correct; the loss-memory and choice-

memory components influence choice, but not the update of expected reward value for 

each option.  In the revised Methods section on models, we now have implemented the 

suggested changes and now use � to symbolize reward values that are updated and ��

to symbolize the decision values that are input into the sigmoid function as described 

below (see [R1.9]): 

(page 33) “In all models except the multiple timescales model, reward values associated with the 

right and left sides (������ and �����) for mice or circle and square stimuli (������� and �������) 

for monkeys were updated differently depending on whether a given choice was rewarded or not. 

Some of the models incorporated additional loss- or choice-memory components that influenced 
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choice but did not affect the update of reward values. As such, we refer to the final reward and 

non-reward values used for decision making as decision values, �� (e.g., ��������), to 

distinguish them from the updated reward values [R1.9].” 

“Finally, why constrain \gamma in all of the RL2+ models to equal the mean(\alpha_rew, 

\alpha_unrew)? Was this tested? If so, it should be stated, otherwise it's not clear why this 

parameter should be restricted this way.” 

Response: We thank the reviewer for questioning this assumption. The assumption 

behind the constraint was that learning from choice history occurs at a similar rate as 

learning from reward history. To address this issue and test this assumption explicitly, 

we have fit choice data using models with fixed and free �. Indeed, we found that all 

RL2+ models with fixed � fit choice data better than all RL2+ models with free � for 

monkey choice data. The reverse was true for mice: all RL2+ models with free � fit 

choice data significantly better than RL2+ models with fixed �. We suspect that this 

occurred because a superblock for monkeys was only 80 trials, whereas a session for 

mouse experiment was much longer and thus, the threshold for how useful a parameter 

must be on a trial-by-trial basis to be added to a model is slightly more stringent for 

monkey data.  As a result, in the revised manuscript, we now have re-fit and simulated 

all of the RL2+ models for mice data to incorporate a free � parameter. We indicate this 

in all model figures and tables by appending (fix �) and (fitted �) to model names for 

monkeys and mice, respectively (see [R1.10]). We also have added the following 

paragraph to the Methods detailing this change (see [R1.10]):  

(page 37) “For fit of mouse data, � was fit as a free parameter, but for fit of monkey data, � was 

fixed as � = ����(���� ,������) such that learning in choice- and loss-memory components 

occurred at the same rate as the acquisition of reward values. This was done because models with 

fixed � had lower AIC than models with fitted � for monkey data and models with fixed � had 

higher AIC than models with fitted � for mouse data. This difference may be attributable to 

different task structure: a superblock for monkeys is only 80 trials, whereas a session for mice is 

much longer, making the threshold for how useful a parameter must be on a trial-by-trial basis to 

be added to a model more stringent for monkeys [R1.6] [R1.10].”

“Together, these make understanding the relationships between the models extremely difficult, 
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and I would recommend rewriting the methods and results surrounding these models, with an 

emphasis on explaining the novel component (loss-memory), as the choice-memory component is 

commonly incorporated in RL models.” 

Response: We appreciate this recommendation and as explained above, have 

substantially revised both the Methods and Results sections to emphasize the novel 

loss-memory component. Moreover, we now have dedicated a subsection in the 

Methods to explain the loss-memory component as follows (see [R1.11]):  

(pages 34-35) “The loss-memory component influences stay/switch strategy in response to 

receiving no reward. In unrewarded trials, the value of the loss-memory component for the 

chosen side (��(� + 1)) is the negative expected reward prediction error, and in rewarded trials, 

the value of the component is 0:  

��(� + 1) =  �
0               �� ��(�) = 1

−����(� + 1) �� ��(�) = 0 
 (Eq. 21) 

where ���� denotes the expected unsigned reward prediction error.  

The expected unsigned reward prediction error tracks expected uncertainty and is updated on 

every trial as follows:  

����(� + 1) = ����(�) + �(|��(�) − ��
���(�)| − ����(�))   (Eq. 22)

where � is the decay rate for expected reward prediction error and ��(�) − ��
���(�) is the reward 

prediction error on the current trial [R1.7]. Because the value of the loss-memory component is 

proportional to expected uncertainty, the no reward outcome has a greater influence on choice 

during times of high uncertainty [R1.6] [R1.11].” 

“The authors describe perfect matching as optimal in the mouse task. This is true for a stationary 

environment with fixed reward probabilties (Houston & McNamara 1981), but this is not 

generally true in a stochastic environment where reward probabilities change unbeknownst to 

the subjects (Iigaya et al. 2019).” 

Response: We thank the reviewer for this comment and helpful references. We agree 

that descriptions of a particular strategy as optimal are questionable, especially in a 

stochastic environment in which performance and matching can be defined differently 

and across various timescales. For example, in our manuscript we measure performance 

as the total number of harvested rewards in “each block” of trials (with a specific 
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reward probabilities) and undermatching as the difference between choice and reward 

fractions in each block. In contrast, Iigaya et al. (2019) use “harvesting efficiency”, equal 

to the number of rewards harvested divided by the maximum number of rewards that 

could have been collected, in “each session” of experiment (consisting of multiple 

blocks) as a measure of performance and quantify undermatching as the difference 

between the slope of choice vs. reward fractions and one in each session. This could 

explain why Iigaya et al. find undermatching to be optimal despite “optimality of 

matching behavior” within a single block of their task.    

Therefore, in the revised manuscript, we now have downplayed most discussions of 

optimality and instead, focused on explaining variability in matching which is one of 

the main points of our study. Specifically, all sentences relating perfect matching and 

optimal behavior have been removed.  Moreover, in the Results and Discussion 

sections, we now clearly mention that our claim of undermatching being sub-optimal in 

the mouse task is based on the observed strong negative correlation between 

undermatching and the total harvested rewards (see [R1.12]). More specifically, we 

have revised the following text in the Results section:  

(page 6) “As a result, selecting the worse side (side with lower base reward rate) occasionally 

can improve the overall total harvested reward because due to baiting, the reward rate of the 

worse side will exceed the reward rate of the better side if the worse side is not chosen for many 

trials [R1.12].” 

(page 13) “Out of all behavioral metrics tested, the probability of winning and probability of 

staying had the two strongest correlations with deviation from matching for mice and monkeys, 

respectively, but each metric individually only captured about 25% of variance in deviation from 

matching (Fig. 4). The correlation between the probability of winning (total harvested rewards) 

and deviation from matching was positive such that increased total harvested rewards 

corresponded with less undermatching [R1.12].”  

And we have added the following comment to the Discussion to compare our findings 

with those of Iigaya et al.:  

(page 25) “The goal of our approach, to predict and develop new generative models to explain 

undermatching, was similar to a recent study that suggested limited undermatching results in 

optimal performance in stochastic environments and proposed learning on multiple timescales to 

account for such undermatching (Iigaya et al., 2019). In contrast, we identified a positive 
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correlation between reward harvesting and deviation from matching which suggests that the 

degree of undermatching observed here corresponded with suboptimal choice. This difference 

between Iigaya et al (2019) and our study could be due to differences in how performance and 

undermatching are defined. More specifically, here we measure performance as the total number 

of harvested rewards in each block of trials and undermatching as the difference between choice 

and reward fractions in each block. In contrast, Iigaya et al (2019) use “harvesting efficiency”, 

equal to the number of rewards harvested divided by the maximum number of rewards that could 

have been collected in each session of experiment (consisting of multiple blocks) as a measure of 

performance and quantify undermatching as the difference between the slope of choice vs. reward 

fractions and one in each session [R1.12].” 

Minor concerns 

“I'm confused about how the RL models were actually fit to the data. The authors state that they 

used maximum-likelihood, but do not explicitly state that a single set of parameters (for each 

model) was fit to the totality of the data from each species. Is this the case? I guessed so since 

there are only point estimates of AIC values in the tables and Figures. However, I was confused 

by Figure S7, where parameter distributions are shown. How were these calculated? Please 

clarify in the methods.”

Response: We thank the reviewer for mentioning these ambiguities in our presentation. 

Actually, one set of model parameters was fit to data from each individual sessions for 

mouse data and each individual superblocks for monkey data. Therefore, each session 

for mice and each superblock for monkeys yielded a different set of parameters that are 

used for plotting distributions shown in Figure S7. We now have modified the Methods 

section to clarify these points as follows (see [R1.13]):  

(page 38) “One set of model parameters was fit to each session of mouse data and each 

superblock of monkey data. We then used estimated parameters across sessions (in mice) and 

superblocks (in monkeys) to generate the distributions of parameters for each model (Fig. S8) 

[R1.13].”

The AIC values reported in the tables and figures are the average AIC values across all 

sessions or superblocks. Because there is a different number of trials in each session for 

mouse data, the standard error of AIC is not very meaningful (AIC depends on the 
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number of trials similar to -LL) and thus, is not included. Instead, we include asterixis 

in Table S2 to indicates significant differences in AIC for each model from the full 

model using paired-samples t-tests. Using this approach, we found that all models were 

significantly worse than the best-fitting model in both mice and monkeys. We now have 

clarified this in the Methods section as follows (see [R1.13]):  

(page 38) “To test for significant differences in AIC, we conducted paired-samples t-tests 

comparing the mean of AIC of each model with the mean AIC of the best-fitting model (Table 

S2) [R1.13].”

“Miss trials are excluded for mice, but please report the number of of these trials that were 

excluded. Also in computing behavioral metrics based on the action or reward on the last trial, 

how was this handled for trials preceded by a miss or nogo trial. Were these dropped from the 

calculations? How were these handled in the RL models?” 

Response: We thank the reviewer for asking about these details that we now have 

included in the Methods section (see [R1.14]).  

With regard to the number of excluded miss/nogo trials, we have added the following: 

(page 26) “Miss trials, in which the mouse did not make a choice, and no-go trials were 

excluded for all analyses described here. In total, 1706 miss trials (average of 3.64 per session) 

and 7893 no-go trials (average of 16.83 trials per session) were excluded from our analyses 

[R1.14].” 

With regard to how metrics were computed with miss/nogo trials, we have added the 

following:  

(page 28) “When computing metrics based on action or reward in the previous trial for mice, we 

treated each miss trial as though the trial did not exist. For example, if a mouse chose left and 

was rewarded on trial t, did not respond on trial t+1 (miss trial), then chose left on trial t+2, trial 

t+2 would be labeled as win-stay [R1.14].”

With regard to how miss/nogo trials were handled in fitting RL models, we have added 

the following:  



15

(page 38) “When fitting and simulating RL models with mouse data, we treated miss and no-go 

trials as if they had not occurred [R1.14].” 

“Figure 1d. Legend states that c-d represent individual sessions, but the monkey data only shows 

a "superblock", which is only part of a session. Would be nice to see the whole session, or at least 

as much data as the mouse (i.e., more transitions).”

Response: We thank the reviewer for this comment. We previously did not include a 

larger session for monkey data because in the monkey task, different colored stimuli 

were used in adjacent superblocks such that divisions between superblocks were not 

reversals, but instead new learning periods. We now have revised Figure 1 (see Figure 1 

below) to show 400 trials of a session from a monkey (same number of trials as mice) 

and marked divisions between superblocks with solid vertical lines to avoid any 

confusion (see [R1.15]). 

Figure 1. Schematic of the experimental paradigms in mice and monkeys and basic 
behavioral results. (a–b) Timeline of a single trial during experiments in mice (a) and monkeys 
(b). To initiate a trial, mice received an olfactory "go" cue (or "no go" cue in 5% of trials) (a), 
and monkeys fixated on a central point (b). Next, animals chose (via licks for mice and saccades 
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for monkeys) between two options (left or right tubes for mice and circle or square for monkeys) 
and then received a reward (drop of water and juice for mice and monkeys, respectively) 
probabilistically based on their choice.  (c–d) Average choice and reward using a sliding window 
with a length of 10 for a representative session in mice (c) and five superblocks of a 
representative session in monkeys (d). Vertical grey dashed lines indicate trials where reward 
probabilities reversed. Vertical grey solid lines indicate divisions between superblocks in the 
monkey experiment [R1.15]. (e–f) Average choice and reward fractions around block switches 
using a non-causal smoothing kernel with a length of 3 separately for all blocks with a given 
reward schedule in mice (e) and monkeys (f).  The better (or worse) option is the better (or 
worse) option prior to the block switch. Trial zero is the first trial with the reversed reward 
probabilities. Average choice fractions for the better option (side or stimulus) are lower than 
average reward fractions for that option throughout the block for both mice and monkeys, 
corresponding to undermatching behavior. 

“Figure 3. Some transparency of the points would help readers see better whether there is mouse 

data underneath the monkey data.” 

Response: We appreciate this suggestion and have added transparency of points to 

revised Figure 3 as shown in Figure 2 below (see [R1.16]).
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Figure 2. Relationship between new entropy-based metrics and win-stay, lose-switch 

strategies. (a–c) Plotted are ERDS and ERDS decompositions as a function of p(win), p(lose), 

win-stay, and lose-switch. Darker colors correspond to larger values of metrics. For the plot in 

panel A, p(win) is set to 0.5. Observed entropy-based metrics and constituent probabilities for 

each block for mice (orange dots) and monkeys (green dots) are superimposed on surfaces. (d–f)

EODS and EODS decompositions as a function of the probabilities of choosing the better and 

worse option, p(better) and p(worse), probability of stay on the better option, and probability of 

switch from the worse option. For the plot in panel (d), p(better) is set to 0.5. For all plots, the 

units of entropy-based metrics are bits. (g–i) Same as in panels (a–c) but using heatmap. (j–l)

Same as in panels (d–f) but using heatmap [R1.16].



18

“Figure 5. A relative AIC score might be more useful here. Something like the AIC difference 

relative to the minimum AIC, or even better Akaike weights (Burnham & Anderson 2002) 

giving the relative likelihood of each model. Also, it's not clear what the utility of panels c&d are 

given that the distributions and cumulative distributions are plotted in e&f?”

Response: We appreciate this suggestion and now have added Akaike weights to 

Figure 5 in the main text and AIC difference in Table S2. As suggested, we also have 

removed panels c&d from the revised Figure 5 (see [R1.17]).

“Please incorporate p-values for the Kolmogorov-Smirnov tests. I think that, unlike t-tests, most 

people won't be able to figure out what the D-statistic means.”

Response: We thank the reviewer for pointing this out and now have included p-values 

of the Kolmogorov-Smirnov tests to the main model fitting figure. We note that these p-

values are very small due to the large number of simulations performed. We also have 

added a text to help clarify the meaning of the D-value for more general audience as 

explained below (see [R1.18]): 

(page 16) “To evaluate the similarity of observed and predicted distributions of entropy-based 

metrics and matching, we computed Kolmogorov’s � statistic that measures the maximum 

difference (or distance) between two empirical cumulative distribution functions [R1.18].”

Reviewer #2 

“This paper presents a new analysis of matching behavior in both mice and monkeys. There are 

two main contributions. One is a new set of information-theoretic metrics for characterizing 

behavioral patterns. These metrics allow the authors to both capture a significant amount of 

variance in behavior and to identify shortcomings of existing models. The second main 

contribution is the identification of a new model that does a significantly better job at capturing 

the new metrics. 

Overall, I think this is a nice example of how careful analysis of behavior can guide model 

development. I'm also very glad that the authors have introduced concrete alternatives to wins-

stay/lose-shift, which in my experience has been pretty uninformative about underlying 

mechanisms.”
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Response: We thank the reviewer for the positive evaluation of our work. We hope that 

our answers here and changes in the revised manuscript address all the reviewer’s 

concerns.  

“My comments are fairly minor. 

1) I wasn't sure if the regression analyses with the metrics was really necessary to report in the 

main text. As I understand it, these analysis basically demonstrate the the metrics are capturing 

a substantial amount of variance in the behavior. But I think this could just be mentioned in 

passing, since the main goal is to use the metrics not to explain behavior directly but to guide 

model development.” 

Response: We thank the reviewer for this suggestion. As the reviewer pointed out, 

much of the regression analyses originally included in the text were not directly 

relevant to the use of metrics to guide model development. However, another 

conclusion we were hoping to draw from these analyses was that different entropy-

based metrics capture unique aspects of variance in deviation from matching. In the 

revised manuscript, we now have clarified this and moved most of the details of the 

regressions to a supplementary text. We now only include a description of the 

regression and �� values for each stepwise regression in the main text (see [R2.1] in the 

revised manuscript).  

Accordingly, the first two regressions with behavioral metrics in the main text now read 

as follows:  

(pages 8-9) “To examine the relationship between existing behavioral metrics and 

undermatching, we first performed stepwise multiple regressions to predict deviation from 

matching for both mice and monkeys based on commonly used behavioral metrics including:  

�(���), �(����),�(����|���) and �(�����ℎ|����) . The threshold for adding a predictor was 

set at �<0.0001 (see Methods for more details and Supplementary Note 1 for regression 

equations). These regression models explained 31% and 34% of the variance in deviation from 

matching for mice and monkeys, respectively, which are significant but unsurprising amounts of 

overall variance (mice: �������� �� = 0.31; monkeys: �������� �� = 0.34).  
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We next included the Repetition Index (RI) on the better (RIB) and worse (RIW) options (side or 

stimulus), which measure the tendency to stay beyond chance on the better and worse options, to 

predict undermatching (Soltani et al., 2013). To that end, we conducted additional stepwise 

multiple regressions that predicted deviation from matching using: ��� , ���, �(���),

�(����), �(����|���), and �(�����ℎ|����) as predictors. These models explained 48% and 

49% of the variance in deviation from matching for mice and monkeys, respectively (mice: 

�������� �� = 0.48;  �������: �������� �� = 0.49). Thus, including RIB and RIW enabled 

us to account for additional 17% and 15% of variance, suggesting that staying beyond chance on 

both the better and worse choice options is a significant contributor to undermatching behavior 

[R2.1].” 

The third regression with entropy-based metrics in the main text now reads as follows:  

(pages 14-15) “To verify the utility of entropy-based metrics in predicting deviation from 

matching, we performed additional stepwise regressions to predict deviation from matching 

using our entropy-based metrics. In these models, we included �����, �����,����� ,

����� ,�������,�������, �������, �������,��� , ��� , �(���), �(����),

���-����, and ����-�����ℎ as predictors (see Supplementary Note 1 for regression equations).  

These models explained 74% and 57% of total variance in deviation from matching for mice and 

monkeys, respectively (mice: �������� �� = 0.74; monkeys: �������� �� = 0.57). For mice, 

the regression model explained 26% more variance than the model with repetition indices and 

basic behavioral metrics and 43% more variance than the model with basic behavioral metrics 

only. For monkeys, the regression model explained 8% more variance than the model with 

repetition indices and basic behavioral metrics and 23% more variance than the model with basic 

behavioral metrics only. These are significant improvements over previous models, suggesting 

that most variance in undermatching behavior can be explained by trial-by-trial response to 

reward feedback. 

In terms of the predictive power of different metrics, we found that for mice, the first three 

predictors added to the regression models were ERODSW- (��� = 0.59), ERODSW+ (��� =

0.04), and ERODSB+ (��� = 0.02). For monkeys, the first three predictors added were 

ERODSW- (��� = 0.31), EODSW (��� = 0.09), and ERODSB+ (��� = 0.06). These results 

indicate that entropy-based metrics were the best predictors of deviation from matching when 

considering all metrics together. In addition, most entropy-based metrics included as predictors 
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were added to the final regression equations for both mice and monkeys. This suggests that 

despite their overlap, each entropy-based metric captures a unique aspect of the variance in 

deviation from matching behavior [R2.1].”

“2) Figure 4 is nearly unreadable. There's just too much going on there. Maybe it could go in the 

supplement and be replaced with some condensed form that is more manageable.

Response: We thank the reviewer for pointing this out and for their helpful suggestion. 

We now have replaced original Figure 4 it with the more readable Figure below that 

includes only Pearson correlations of different metrics with deviation from matching. 

This new figure still shows that entropy-based metrics are highly correlated with 

deviation from matching which was the primary purpose of including the previous 

Figure 4 (that we now have included as supplemental Figure S2) (see [R2.2]). 

Figure 3. Correlation between undermatching and proposed entropy-based metrics and 
underlying probabilities. (a) Pearson correlation between new and old behavioral metrics and 
deviation from matching in mice. Correlation coefficients are computed across all blocks, and 
metrics with non-significant correlations (� > .0001 to account for multiple comparisons) are 
indicated with a hollow bar. The metric with the highest correlation with deviation from 
matching is indicated with a star. (b) Similar to (a) but for monkeys. Overall, the new entropy-
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based metrics show stronger correlation with deviation from matching than previous metrics 
[R2.2]. 

“3) In the Discussion, the authors address how negative choice weights can explain various 

phenomena in the decision making literature. I want to raise two issues here. First, there is more 

probability mass on positive choice weights in Fig S7i. Second, I think it's somewhat problematic 

to assume that some phenomena are explained by positive choice weights and some by negative 

choice weights, consistent with many other past studies. Presumably this is not an idiosyncratic 

property of the subjects in these studies; possibly it could be a property of the tasks. However, 

this parameter is not task-dependent in the model. So the model doesn't really offer a coherent 

explanation of why choice weights might be negative vs. positive. They are simply free 

parameters. I'm not arguing that the authors have to fill this gap in the current paper, just that 

they need to be somewhat careful in how they talk about what their model can or cannot 

explain.” 

Response: We thank the reviewer for detailing these valid concerns. We agree with the 

reviewer that negative choice weights may not explain other decision-making 

phenomena as this could be task-dependent and moreover, the model does not explain 

why choice weights are positive or negative. We now have revised the corresponding 

section to reflect these two points and their relationship with previous literature (see 

[R2.3]). 

Specifically, to address the first issue, we now state that we observe positive choice-

memory effects in mice (more probability mass on positive choice weights) and the 

reverse in monkeys, and discuss the relationship of this finding to previous studies as 

follows: 

(page 25) “We also observed weak, positive choice memory effects in mice such that mice tended 

to choose options that they had recently chosen. A previous study using a nearly identical task 

(reversal learning with same reward schedules (40/10) and baited rewards, but longer blocks) 

observed a much stronger, negative choice memory effect in mice (Fonseca et al., 2015). The 

reason for this difference is unclear given the similarity of the two tasks. Consistent with prior 

studies of choice history effects in monkeys (Lau and Glimcher, 2005), we identified strong, 

negative choice memory effects in monkeys such that the choice memory component encouraged 

switching from recently chosen options. Thus, the incorporation of the negative weights was only 

important for capturing behavior in the monkey task and therefore could be task dependent 

[R1.2] [R2.3].” 
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To address the second issue, we now have modified how we discuss the implications of 

our model for other decision-making phenomena in the literature to focus only on a 

similar task (Costa et. al 2015) and to clarify that the model can only replicate behavior, 

not explain it:  

(pages 25-26) “This negative weighting mechanism may be able to facilitate quick adaptation to 

reversals in monkeys, a behavior that has previously been suggested using a Bayesian approach 

(Costa et al., 2015), because negative weights in either the choice-memory or the loss-memory 

component encourage faster response to reversals. Future studies are needed to test whether this 

is the case [R2.3].”

Finally, we also have included below text to the Discussion to point out the limitation of 

our approach: 

(page 24) “Although aforementioned differences in results for these two datasets may be 

partially explained by differences in task structure and species, they also highlight the limitations 

of using entropy-based metrics to guide model development. Entropy-based metrics describe 

properties of choice behavior that are helpful for making educated guesses about model structure, 

but alone, cannot provide a generative account of behavior [R1.5] [R2.3].”

“4) This is very minor, but I don't see why you need to define the conditional entropy in terms of 

the mutual information in Eq. 7. You can just define it directly.”

Response: We thank the reviewer for pointing this out. We have modified equation 7 

and removed equation 8 in the text to define conditional entropy directly (see [R2.4]). 

The more streamlined definition of conditional entropy now reads as follows:  

(page 30) “More specifically, ERDS is defined as the conditional entropy of using stay or switch 

strategy depending on win or lose in the preceding trial: 

���� = �(���|���) = − ��(����,���) × ���� �
�(����,���)

�(���)
� +

�(�����ℎ,���) × ���� �
�(������,���)

�(���)
� +  �(����, ����) × ���� �

�(����,����)

�(����)
�+

�(�����ℎ, ����) × ���� �
�(������,����)

�(����)
��     (Eq. 7)  [R2.4]”



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have responded to all my concerns and comments. Indeed, the response was 
refreshingly clear and straightforward, and I appreciate the amount of work that went into the revision. 
I have no further concerns and recommend publication in Nature Communications. 

Reviewer #2 (Remarks to the Author): 

I am satisfied with the response to my comments.


