Comprehensive analysis of *ADA2* genetic variants and estimation of carrier frequency driven by a function-based approach

Hyuk Jee BS, Zhengping Huang MD, Samantha Baxter MS CGC, Yuelong Huang PhD, Maria Taylor BS, Lauren A. Henderson MD MMsc, Sofia Rosenzweig BS, Aman Sharma MD FRCP, Eugene P. Chambers MD, Michael S. Hershfield MD,
Qing Zhou PhD, Fatma Dedeoglu MD, Ivona Aksentijevich MD, Peter A. Nigrovic MD, Anne O'Donnell-Luria MD PhD, Pui Y. Lee, MD PhD

Online repository materials

- Table E1. DADA2-associated variants grouped by variant type.
- Table E2. Description of in silico prediction algorithms.
- Table E3. Functional analysis of ADA2 variants.
- Table E4. Aggregate minor allelic frequency and most common deleterious ADA2 variants at different cut-offs of ADA2 activity.
- Figure E1. Evaluation of missense variants found in DADA2 patients by silico prediction algorithms.
- Figure E2. Evaluation of 100 ADA2 variants in gnomAD by in silico prediction algorithms.

References for Online Repository

Table E1. DADA2-associated variants grouped by variant type. ¹⁻³⁷

Missense	variants					
M1T	A109D	L188V	L311R	F355L	V414M	V458D
R9W	P106S	P193L	G321A	A357T	N423K	Y482C
G25C	H112Q	F207S	G321E	G358R	M445K	W501R
R34W	H112Y	M232T	G326V	T360A	F446S	
R45W	N127I	D238N	E328D	N370I	G450C	
G47A	T129P	M243R	E328K	N370K	L451F	
G47R	Y130C	L249P	H335P	G383D	L451W	
G47V	R169Q	P251L	P344L	G383S	Y453C	
G47W	F178S	W264S	L351Q	C408Y	D454H	
193T	L188P	S291L	Y353H	P409S	Y456C	
Single AA	deletions	Frameshift va	ariants		Nonsense	variants
K55Del		R49Gfs4*	T317Rfs*25		Y220X	
F212Del		R49A fs*13	M465fsX		S265X	
Y236Del		R131Sfs*52	K466Tfs*2		R306X	
		I143Sfs*41	S483Pfs*5		312X	
		l210Tfs*57	K449N fs *2		W399X	
		Y227C fs*27	V325Tfs*7		M465X	
		D261P fs*2			W501X	

 Table E2. Description of in silico prediction algorithms.

Algorithm (Ref)	Description
mCSM ³⁸	mCSM (mutation Cutoff Scanning Matrix) utilizes a graph-based approach in characterizing geometric patterns of the wild-type protein and predicting a given variants's impact on the protein's structural and functional stability.
SDM ³⁹	SDM (Site Directed Mutator) calculates the difference in free energy between wild-type and mutant proteins based on environment-specific amino-acid substitution frequencies within homologous protein families.
DUET 40	DUET integrates mCSM and SDM to provide consensus predictions.
PoPMuSiC-2.1 41	PoPMuSiC-2.1 predicts the thermodynamic stability and solvent accessibility changes caused by amino acid substitutions.
SIFT ⁴²	SIFT (Sorting Intolerant from Tolerant) analyzes the evolutionary relationships of a target sequence to determines whether a given variant will likely impact protein functionality.
Polyphen2 ⁴³	Polyphen2 utilizes multiple sequence-based and structure-based features to predict the impact of amino acid substitutions. The HumDiv dataset was derived from all damaging alleles with known effects on the molecular function causing human Mendelian diseases, present in the UniProtKB database, together with differences between human proteins and their closely related mammalian homologs, assumed to be non-damaging. The HumVar dataset was comprised of all human disease-causing variants from UniProtKB, together with common human nsSNPs (MAF>1%) without annotated involvement in disease, which were treated as non-damaging.
REVEL 44	REVEL (rare exome variant ensemble learner) is an ensemble method for evaluation of missense variants using data from 13 other algorithms.
MutationTaster ⁴⁵	Mutation Taster utilizes integrated data from GeneDistiller, Ensembl, SwissProt, UniProt2, and HapMap4 and determines variant deleteriousness using a naïve Bayes classifier.
Mutation Assessor ⁴⁶	Mutation Assessor predicts the functional impact of amino-acid substitutions by comparing protein family sequence alignments and effects of residue placement in known or homology-based 3D protein structures.
PROVEAN 47	PROVEAN (Protein Variation Effect Analyzer) evaluates protein sequence homology, substitution frequency and the biochemical impact of amino acid substitution as well as insertions / deletions.
VEST 3.0 ⁴⁸	VEST (Variant Effect Scoring Tool) uses a supervised machine learning algorithm to identify likely functional missense variants based on training dataset of missense variants from the Human Gene Mutation Database and Exome Sequencing Project.
MetaSVM ⁴⁹	MetaSVM is an ensemble predictor that utilizes support vector machine (SVM) methodology to integrate data from 18 other prediction algorithms.
MetaLR ⁴⁹	MetaLR is an ensemble predictor that utilizes logistic regression (LR) methodology to integrate data from 18 other prediction algorithms.
M-CAP ⁵⁰	M-CAP (Mendelian Clinically Applicable Pathogenicity) in an ensemble predictor that incorporates 9 established pathogenicity likelihood scores; 7 seven established measures of base-pair, amino acid, genomic region, and gene conservation; and additional new features to facilitate machine learning.

Algorithm (Ref)	Description
CADD ⁵¹	Combined Annotation Dependent Depletion (CADD) is an ensemble method that integrates diverse genome annotations to evaluate any possible human single nucleotide variant or small insertion/deletion event by machine learning.
DANN 52	DANN is an ensemble method that uses the same feature set and training data as CADD to train a deep neural network (DNN).
FATHMM-MKL 53	FATHMM-MKL integrates functional annotations from ENCODE with nucleotide-based sequence conservation measures based on multiple kernel learning (MKL).
Eigen ⁵⁴	Eigen is an unsupervised approach that integrates functional annotations of human genetic variations into one measure of functional importance without reliance on labeled training data.
GERP++ 55	GERP(Genomic Evolutionary Rate Profiling)++ is a prediction tool based on evolutionary conservation that uses maximum likelihood evolutionary rate estimation for position-specific scoring and a novel dynamic programming approach to subsequently define constrained elements

Rank	Protein	Transcript	Chr 22 Position	RefSNP ID	Allele Frequency⁺	ADA2 activity*
1	p.His335Arg	c.1004A>G	17669306	rs2231495	3.44E-01	99.6
2	p.Val349lle	c.1045G>A	17669265	rs74317375	2.14E-03	100.6
3	p.Met309lle	c.927G>A	17670877	rs146597836	1.67E-03	34.3
4	p.Arg171Trp	c.511C>T	17687992	rs115986203	1.57E-03	78.9
5	p.Thr65Met	c.194C>T	17690374	rs61747288	6.29E-04	87.8
6	p.Pro435Ala	c.1303C>G	17662849	rs186147069	5.66E-04	32.0
7	p.Arg230GIn	c.689G>A	17684517	rs186116639	4.95E-04	89.3
8	p.Arg169GIn	c.506G>A	17687997	rs77563738	4.74E-04	0.5
9	p.Glu489Asp	c.1467G>C	17662442	rs61738625	4.00E-04	59.1
10	p.Phe355Leu	c.1065C>A	17669245	rs116020027	2.34E-04	58.6
11	p.lle462Thr	c.1385T>C	17662767	rs61744537	1.45E-04	39.9
12	p.Met121Thr	c.362T>C	17688141	rs189403607	1.41E-04	57.6
13	p.Met84Val	c.250A>G	17690318	rs143853882	1.41E-04	94.2
14	p.Glu489Gln	c.1465G>C	17662444	rs45497794	1.34E-04	92.9
15	p.Arg49Trp	c.145C>T	17690423	rs199614299	1.10E-04	36.1
16	p.Gly47Arg	c.139G>A	17690429	rs202134424	1.06E-04	7.9
17	p.Val458Gly	c.1373T>G	17662779	rs748893301	1.03E-04	100.0
18	p.Tyr453Cys	c.1358A>G	17662794	rs376785840	8.84E-05	3.3
19	p.Phe211Tyr	c.632T>A	17684574	rs373928007	8.84E-05	18.2
20	p.Arg9GIn	c.26G>A	17690542	rs766367978	8.44E-05	30.2
21	p.Met121Ile	c.363G>A	17688140	rs756689332	8.36E-05	42.1
22	p.Arg154Cys	c.460C>T	17688043	rs200153182	8.35E-05	24.1
23	p.Arg45Gln	c.134G>A	17690434	rs571235882	8.13E-05	75.9
24	p.Asp4Asn	c.10G>A	17690558	rs370257828	7.91E-05	100.5
25	p.Arg34Trp	c.100C>T	17690468	rs750955849	7.78E-05	6.1
26	p.Met445IIe	c.1335G>A	17662817	rs1265300292	6.37E-05	75.4
27	p.Ser7Cys	c.20C>G	17690548	rs1157179878	6.37E-05	95.8
28	p.Thr213lle	c.638C>T	17684568	rs1446203580	6.37E-05	98.4
29	p.Gly47Ala	c.140G>C	17690428	rs200930463	6.01E-05	20.9
30	p.Leu188Val	c.562C>G	17684644	rs765219776	5.98E-05	45.7
31	p.Thr317Met	c.950C>T	17670854	rs146788085	5.66E-05	90.4
32	p.Ala247Val	c.740C>T	17684466	rs750868279	5.31E-05	55.9
33	p.His91Arg	c.272A>G	17690296	rs149466386	5.30E-05	90.5
34	p.Leu311Arg	c.932T>G	17670872	rs780693700	5.17E-05	2.1
35	p.Val508Met	c.1522G>A	17662387	rs767440845	5.17E-05	94.0
36	p.Ala35Val	c.104C>T	17690464	rs151283756	4.95E-05	57.7
37	p.Ala345Thr	c.1033G>A	17669277	rs752798667	4.95E-05	94.3
38	p.Gly48Glu	c.143G>A	17690425	rs140149634	4.60E-05	38.8
39	p.Gly47Val	c.140G>T	17690428	rs200930463	4.60E-05	1.4
40	p.Asp329Asn	c.985G>A	17669325	rs369716341	4.25E-05	67.3
41	p.Gln145His	c.435G>C	17688068	rs752626692	4.24E-05	61.2

Table E3. Functional analysis of ADA2 variants.*

Rank	Protein	Transcript	Chr 22 Position	RefSNP ID	Allele Frequencv ⁺	ADA2 activitv*
42	p.Ser205Leu	c.614C>T	17684592	rs369306297	3.58E-05	18.2
43	p.Gly383Ser	c.1147G>A	17663586	rs770689762	3.58E-05	1.9
44	p.Val418Leu	c.1252G>T	17662900	rs142726959	3.55E-05	30.4
45	p.Pro251Leu	c.752C>T	17684454	rs148936893	3.54E-05	4.0
46	p.Arg45Trp	c.133C>T	17690435	rs777683953	3.54E-05	55.5
47	p.Arg312Gln	c.935G>A	17670869	rs746970158	3.54E-05	65.3
48	p.Gly25Ser	c.73G>A	17690495	rs373732727	3.19E-05	71.1
49	p.lle367Leu	c.1099A>C	17663634	rs780583418	3.18E-05	62.6
50	p.Asp167Gly	c.500A>G	17688003	rs745559968	3.18E-05	30.7
51	p.Met64Val	c.190A>G	17690378	rs771930342	3.18E-05	45.2
52	p.Arg154His	c.461G>A	17688042	rs545602214	3.18E-05	90.7
53	p.Met445Thr	c.1334T>C	17662818	rs776544525	3.18E-05	27.3
54	p.His391Arg	c.1172A>G	17663561	rs749413678	3.18E-05	84.4
55	p.Thr379Ala	c.1135A>G	17663598	rs561591791	3.18E-05	91.8
56	p.Ala357Thr	c.1069G>A	17669241	rs374974565	2.83E-05	35.5
57	p.Lys338Arg	c.1013A>G	17669297	rs573337330	2.83E-05	85.6
58	p.Arg369Gly	c.1105A>G	17663628	rs750824133	2.83E-05	87.4
59	p.Gly326Arg	c.976G>A	17669334	rs770635459	2.79E-05	0.4
60	p.Ala221Thr	c.661G>A	17684545	rs1417290846	2.78E-05	24.0
61	p.Gly358Arg	c.1072G>A	17669238	rs45511697	2.48E-05	1.7
62	p.Arg126Lys	c.377G>A	17688126	rs765071162	2.48E-05	90.2
63	p.Ala69Thr	c.205G>A	17690363	rs374965869	2.47E-05	81.9
64	p.Met460lle	c.1380G>C	17662772	rs779529433	2.47E-05	33.8
65	p.Arg9Trp	c.25C>T	17690543	rs753994372	2.42E-05	9.5
66	p.His293Arg	c.878A>G	17672576	rs767494439	2.39E-05	61.1
67	p.Gly48Val	c.143G>T	17690425	rs140149634	2.39E-05	25.7
68	p.Gly47Arg	c.139G>C	17690429	rs202134424	2.39E-05	7.9
69	p.Met121Val	c.361A>G	17688142	rs750075105	2.39E-05	48.6
70	p.lle93Thr	c.278T>C	17690290	rs767399919	2.39E-05	1.0
71	p.Tyr236Cys	c.707A>G	17684499	rs145966045	2.39E-05	18.8
72	p.Asp373Val	c.1118A>T	17663615	rs375443506	2.39E-05	99.6
73	p.Met243IIe	c.729G>A	17684477	rs151014930	2.12E-05	56.7
74	p.Thr492Ala	c.1474A>G	17662435	rs780459163	2.12E-05	93.9
75	p.Ala11Val	c.32C>T	17690536	rs147655483	2.01E-05	93.1
76	p.Pro106Ser	c.316C>T	17690252	rs747107966	1.99E-05	4.0
77	p.Pro193Leu	c.578C>T	17684628	rs199567025	1.99E-05	17.7
78	p.Leu28Pro	c.83T>C	17690485	rs777404100	1.99E-05	18.0
79	p.Gln97Glu	c.289C>G	17690279	rs370709874	1.99E-05	95.7
80	p.lle196Thr	c.587T>C	17684619	rs538708563	1.99E-05	99.7
81	p.Met71lle	c.213G>A	17690355	rs770042365	1.99E-05	0.4
82	p.His391Gln	c.1173C>G	17663560	rs780182069	1.99E-05	97.2
83	p.Arg306Gln	c.917G>A	17670887	rs768927379	1.77E-05	76.4
84	p.Arg230Trp	c.688C>T	17684518	rs777662147	1.77E-05	12.1

Rank	Protein	Transcript	Chr 22 Position	RefSNP ID	Allele Frequency ⁺	ADA2 activity*
85	p.Gly25Cys	c.73G>T	17690495	rs373732727	1.59E-05	64.0
86	p.Lys481Asn	c.1443G>T	17662466	rs774795047	1.59E-05	51.8
87	p.His112GIn	c.336C>G	17688167	rs587777241	1.59E-05	1.1
88	p.lle30Thr	c.89T>C	17690479	rs1350001862	1.59E-05	100.6
89	p.Thr120lle	c.359C>T	17688144	rs755786336	1.59E-05	12.8
90	p.Glu94Asp	c.282G>C	17690286	rs761776202	1.59E-05	85.3
91	p.Asp297Tyr	c.889G>T	17670915	rs766661729	1.59E-05	23.7
92	p.Ala302Thr	c.904G>A	17670900	rs1333898789	1.59E-05	70.5
93	p.Ser452Cys	c.1355C>G	17662797	rs747458336	1.59E-05	10.5
94	p.Gly450Ala	c.1349G>C	17662803	rs771622323	1.59E-05	49.4
95	p.Ala393Thr	c.1177G>A	17663556	rs746332176	1.59E-05	94.4
96	p.His335Pro	c.1004A>C	17669306	rs2231495	1.42E-05	86.4
97	p.Phe354Leu	c.1060T>C	17669250	rs373498904	1.42E-05	34.1
98	p.Arg126Gly	c.376A>G	17688127	rs762848398	1.20E-05	9.8
99	p.Thr33Ala	c.97A>G	17690471	rs558427920	1.19E-05	91.3
100	p.Leu52Val	c.154C>G	17690414	rs776351526	1.19E-05	26.3
101	p.Met1?	c.1A>C	17690441	rs771035807	1.19E-05	2.5

⁺ Data are ranked by allelic frequency in all populations from the Genome Aggregation Database (gnomAD).

* Enzymatic activity of each variant is expressed as % activity relative to wild-type ADA2.

Red text indicates DADA2-associated variant.

Abbreviations: RefSNP: reference single nucleotide polymorphism ID number

Table E4. Analysis of aggregate minor allelic frequency and most common deleterious ADA2

 variants at different cut-offs of residual ADA2 activity.

	<u>Cut-off = 10%</u>		<u>Cut-off = 25%</u>		<u>Cut-off = 35%</u>	
All populations	1.637E-03	R169Q	2.122E-03	R169Q	4.618E-03	M309I
African	9.158E-04	R126G	1.098E-03	R126G	1.418E-03	M309I
Latino	1.483E-03	R34W	2.199E-03	R34W	7.901E-03	P435A
Ashkenazi Jewish	9.664E-05	R49Afs*13	9.664E-05	R49Afs*13	5.695E-03	M309I
East Asian	3.806E-04	193T	8.657E-04	R154C	1.326E-03	M460I
Finnish European	2.652E-03	R169Q	3.112E-03	R169Q	3.152E-03	R169Q
Non-Finnish European	1.760E-03	R169Q	2.227E-03	R169Q	4.487E-03	M309I
South Asian	1.797E-03	G47R	2.483E-03	G47R	5.684E-03	M309I

Figure E2.

References for Online Repository

- 1. Alabbas F, Elyamany G, Alsharif O, Hershfield M, Meyts I. Childhood Hodgkin Lymphoma: Think DADA2. J Clin Immunol 2019; 39:26-9.
- 2. Barzaghi F, Minniti F, Mauro M, Bortoli M, Balter R, Bonetti E, et al. ALPS-Like Phenotype Caused by ADA2 Deficiency Rescued by Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2018; 9:2767.
- 3. Belot A, Wassmer E, Twilt M, Lega JC, Zeef LA, Oojageer A, et al. Mutations in CECR1 associated with a neutrophil signature in peripheral blood. Pediatr Rheumatol Online J 2014; 12:44.
- 4. Ben-Ami T, Revel-Vilk S, Brooks R, Shaag A, Hershfield MS, Kelly SJ, et al. Extending the Clinical Phenotype of Adenosine Deaminase 2 Deficiency. J Pediatr 2016; 177:316-20.
- 5. Caorsi R, Penco F, Grossi A, Insalaco A, Omenetti A, Alessio M, et al. ADA2 deficiency (DADA2) as an unrecognised cause of early onset polyarteritis nodosa and stroke: a multicentre national study. Ann Rheum Dis 2017; 76:1648-56.
- 6. Cipe FE, Aydogmus C, Serwas NK, Keskindemirci G, Boztug K. Novel Mutation in CECR1 Leads to Deficiency of ADA2 with Associated Neutropenia. J Clin Immunol 2018; 38:273-7.
- Ekinci RMK, Balci S, Bisgin A, Sasmaz I, Leblebisatan G, Incecik F, et al. A homozygote novel L451W mutation in CECR1 gene causes deficiency of adenosine deaminase 2 in a pediatric patient representing with chronic lymphoproliferation and cytopenia. Pediatr Hematol Oncol 2019; 36:376-81.
- 8. Garg N, Kasapcopur O, Foster J, 2nd, Barut K, Tekin A, Kizilkilic O, et al. Novel adenosine deaminase 2 mutations in a child with a fatal vasculopathy. Eur J Pediatr 2014; 173:827-30.
- 9. Ghurye RR, Sundaram K, Smith F, Clark B, Simpson MA, Fairbanks L, et al. Novel ADA2 mutation presenting with neutropenia, lymphopenia and bone marrow failure in patients with deficiency in adenosine deaminase 2 (DADA2). Br J Haematol 2019; 186:e60-e4.
- 10. Gibson KM, Morishita KA, Dancey P, Moorehead P, Drogemoller B, Han X, et al. Identification of Novel Adenosine Deaminase 2 Gene Variants and Varied Clinical Phenotype in Pediatric Vasculitis. Arthritis Rheumatol 2019; 71:1747-55.
- 11. Gonzalez Santiago TM, Zavialov A, Saarela J, Seppanen M, Reed AM, Abraham RS, et al. Dermatologic Features of ADA2 Deficiency in Cutaneous Polyarteritis Nodosa. JAMA Dermatol 2015; 151:1230-4.
- 12. Hashem H, Kumar AR, Muller I, Babor F, Bredius R, Dalal J, et al. Hematopoietic stem cell transplantation rescues the hematological, immunological, and vascular phenotype in DADA2. Blood 2017; 130:2682-8.
- Insalaco A, Moneta GM, Pardeo M, Caiello I, Messia V, Bracaglia C, et al. Variable Clinical Phenotypes and Relation of Interferon Signature with Disease Activity in ADA2 Deficiency. J Rheumatol 2019; 46:523-6.
- 14. Kaljas Y, Liu C, Skaldin M, Wu C, Zhou Q, Lu Y, et al. Human adenosine deaminases ADA1 and ADA2 bind to different subsets of immune cells. Cell Mol Life Sci 2017; 74:555-70.
- 15. Keer N, Hershfield M, Caskey T, Unizony S. Novel compound heterozygous variants in CECR1 gene associated with childhood onset polyarteritis nodosa and deficiency of ADA2. Rheumatology (Oxford) 2016; 55:1145-7.
- 16. Kisla Ekinci RM, Balci S, Hershfield M, Bisgin A, Dogruel D, Altintas DU, et al. Deficiency of adenosine deaminase 2: a case series revealing clinical manifestations, genotypes and treatment outcomes from Turkey. Rheumatology (Oxford) 2020; 59:254-6.
- 17. Lamprecht P, Humrich JY, Diebold I, Riemekasten G. Diagnosis of deficiency of adenosine deaminase 2 with early onset polyarteritis nodosa in an adult patient with a novel compound heterozygous CECR1 mutation. Clin Exp Rheumatol 2018; 36 Suppl 111:177.

- Lee PY, Huang Y, Zhou Q, Schnappauf O, Hershfield MS, Li Y, et al. Disrupted N-linked glycosylation as a disease mechanism in deficiency of ADA2. J Allergy Clin Immunol 2018; 142:1363-5 e8.
- 19. Lee PY, Kellner ES, Huang Y, Furutani E, Huang Z, Bainter W, et al. Genotype and functional correlates of disease phenotype in deficiency of adenosine deaminase 2 (DADA2). J Allergy Clin Immunol 2020; 145:1664-72 e10.
- 20. Liu L, Wang W, Wang Y, Hou J, Ying W, Hui X, et al. A Chinese DADA2 patient: report of two novel mutations and successful HSCT. Immunogenetics 2019; 71:299-305.
- Michniacki TF, Hannibal M, Ross CW, Frame DG, DuVall AS, Khoriaty R, et al. Hematologic Manifestations of Deficiency of Adenosine Deaminase 2 (DADA2) and Response to Tumor Necrosis Factor Inhibition in DADA2-Associated Bone Marrow Failure. J Clin Immunol 2018; 38:166-73.
- 22. Navon Elkan P, Pierce SB, Segel R, Walsh T, Barash J, Padeh S, et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 2014; 370:921-31.
- 23. Nihira H, Nakagawa K, Izawa K, Kawai T, Yasumi T, Nishikomori R, et al. Fever of unknown origin with rashes in early infancy is indicative of adenosine deaminase type 2 deficiency. Scand J Rheumatol 2018; 47:170-2.
- 24. Ozen S, Batu ED, Taskiran EZ, Ozkara HA, Unal S, Guleray N, et al. A Monogenic Disease with a Variety of Phenotypes: Deficiency of Adenosine Deaminase 2. J Rheumatol 2020; 47:117-25.
- 25. Rama M, Duflos C, Melki I, Bessis D, Bonhomme A, Martin H, et al. A decision tree for the genetic diagnosis of deficiency of adenosine deaminase 2 (DADA2): a French reference centres experience. Eur J Hum Genet 2018; 26:960-71.
- 26. Saettini F, Fazio G, Corti P, Quadri M, Bugarin C, Gaipa G, et al. Two siblings presenting with novel ADA2 variants, lymphoproliferation, persistence of large granular lymphocytes, and T-cell perturbations. Clin Immunol 2020; 218:108525.
- 27. Schepp J, Bulashevska A, Mannhardt-Laakmann W, Cao H, Yang F, Seidl M, et al. Deficiency of Adenosine Deaminase 2 Causes Antibody Deficiency. J Clin Immunol 2016; 36:179-86.
- 28. Schnappauf O, Sampaio Moura N, Aksentijevich I, Stoffels M, Ombrello AK, Hoffmann P, et al. Sequence-Based Screening of Patients With Idiopathic Polyarteritis Nodosa, Granulomatosis With Polyangiitis, and Microscopic Polyangiitis for Deleterious Genetic Variants in ADA2. Arthritis Rheumatol 2021; 73:512-9.
- 29. Sharma A, Naidu G, Sharma V, Jha S, Dhooria A, Dhir V, et al. Deficiency of Adenosine Deaminase 2 in Adults and Children: Experience From India. Arthritis Rheumatol 2021; 73:276-85.
- 30. Skrabl-Baumgartner A, Plecko B, Schmidt WM, Konig N, Hershfield M, Gruber-Sedlmayr U, et al. Autoimmune phenotype with type I interferon signature in two brothers with ADA2 deficiency carrying a novel CECR1 mutation. Pediatr Rheumatol Online J 2017; 15:67.
- 31. Springer JM, Gierer SA, Jiang H, Kleiner D, Deuitch N, Ombrello AK, et al. Deficiency of Adenosine Deaminase 2 in Adult Siblings: Many Years of a Misdiagnosed Disease With Severe Consequences. Front Immunol 2018; 9:1361.
- 32. Trotta L, Martelius T, Siitonen T, Hautala T, Hamalainen S, Juntti H, et al. ADA2 deficiency: Clonal lymphoproliferation in a subset of patients. J Allergy Clin Immunol 2018; 141:1534-7 e8.
- 33. Tull TJ, Martin B, Spencer J, Sangle S, Chua S, McGrath JA, et al. Sneddon syndrome associated with two novel ADA2 gene mutations. Rheumatology (Oxford) 2020; 59:1448-50.
- 34. Ulirsch JC, Verboon JM, Kazerounian S, Guo MH, Yuan D, Ludwig LS, et al. The Genetic Landscape of Diamond-Blackfan Anemia. Am J Hum Genet 2018; 103:930-47.
- 35. Wang W, Yu Z, Gou L, Zhong L, Li J, Ma M, et al. Single-Center Overview of Pediatric Monogenic Autoinflammatory Diseases in the Past Decade: A Summary and Beyond. Front Immunol 2020; 11:565099.

- 36. Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Zavialov AV, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 2014; 370:911-20.
- 37. Sundin M, Marits P, Nierkens S, Kolios AGA, Nilsson J. "Immune" Thrombocytopenia as Key Feature of a Novel ADA2 Deficiency Variant: Implication on Differential Diagnostics of ITP in Children. J Pediatr Hematol Oncol 2018.
- 38. Pires DE, Ascher DB, Blundell TL. mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 2014; 30:335-42.
- 39. Worth CL, Preissner R, Blundell TL. SDM--a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 2011; 39:W215-22.
- 40. Pires DE, Ascher DB, Blundell TL. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 2014; 42:W314-9.
- 41. Dehouck Y, Kwasigroch JM, Gilis D, Rooman M. PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics 2011; 12:151.
- 42. Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 2012; 40:W452-7.
- 43. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7:248-9.
- 44. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am J Hum Genet 2016; 99:877-85.
- 45. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 2010; 7:575-6.
- 46. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 2011; 39:e118.
- 47. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One 2012; 7:e46688.
- 48. Carter H, Douville C, Stenson PD, Cooper DN, Karchin R. Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genomics 2013; 14 Suppl 3:S3.
- 49. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet 2015; 24:2125-37.
- 50. Jagadeesh KA, Wenger AM, Berger MJ, Guturu H, Stenson PD, Cooper DN, et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat Genet 2016; 48:1581-6.
- 51. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014; 46:310-5.
- 52. Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 2015; 31:761-3.
- 53. Shihab HA, Rogers MF, Gough J, Mort M, Cooper DN, Day IN, et al. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 2015; 31:1536-43.
- 54. Ionita-Laza I, McCallum K, Xu B, Buxbaum JD. A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat Genet 2016; 48:214-20.
- 55. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol 2010; 6:e1001025.