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Abstract: Cryptosporidium  spp. are protozoan parasites that cause diarrhea in humans and
animals worldwide. Data on the prevalence of  Cryptosporidium  spp. and its subtypes
among calves in the Republic of Korea (KOR) are sparse. Hence, our study aimed to
investigate the prevalence and the association between the age of calf and the
identified  Cryptosporidium  spp. and to determine the genotypes/subtypes of
Cryptosporidium  spp. in pre-weaned calves with diarrhea in the KOR. A total of 460
diarrheic fecal samples were collected from calves aged 1−60 days and screened for
Cryptosporidium  spp. by the 18S rRNA gene. Species identification was determined
by the sequencing analysis of the 18S rRNA gene, and  C. parvum  -positive samples
were subtyped by sequence analysis of the 60-kDa glycoprotein (  gp60  ) gene.
Sequencing analysis based on the 18S rRNA gene revealed the presence of three
Cryptosporidium  spp., namely,  C. parvum  (  n  = 72),  C. ryanae  (  n  = 12), and  C.
bovis  (  n  = 2). Co-infection by these species was not observed. The infection rate
was the highest in calves aged 11−20 days (26.1%, 95% CI 17.1−35.1), whereas the
lowest rate was observed in calves aged 21−30 days (7.7%, 95% CI 0.0−16.1). The
prevalence of  C. parvum  was detected exclusively in calves aged ≤20 days, and the
highest infection rate of  C. ryanae  was seen in calves ≥31 days of age. The
occurrence of  C. parvum  (χ  2  = 25.300,  P  = 0.000) and  C. ryanae  (χ  2  = 18.020,
P  = 0.001) was significantly associated with the age of the calves. Eleven different
subtypes belonging to the family IIa were recognized: IIaA14G1R1, IIaA14G3R1,
IIaA15G1R1, IIaA15G2R1, IIaA16G4R1, IIaA17G3R1, IIaA17G4R1, IIaA18G3R1,
IIaA19G1R1, IIaA19G3R1, and IIaA19G4R1. Except for two (IIaA18G3R1 and
IIaA15G2R1) subtypes, nine subtypes were first identified in calves with diarrhea in the
KOR. IIaA18G3R1 was the most frequently detected subtype (72.2% of calves),
followed by IIaA17G3R1 (5.6%), and IIaA15G2R1 (4.2%) and IIaA19G4R1 (4.2%).
These results suggest that the prevalence of  Cryptosporidium  spp. is significantly
associated with calf age. Furthermore, the findings demonstrate the high genetic
diversity of  C. parvum  and the widespread occurrence of zoonotic  C. parvum  in pre-
weaned calves. Hence, calves are a potential source of zoonotic transmission with
considerable public health implications.
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Abstract 23 

Cryptosporidium spp. are protozoan parasites that cause diarrhea in humans and 24 

animals worldwide. Data on the prevalence of Cryptosporidium spp. and its subtypes among 25 

calves in the Republic of Korea (KOR) are sparse. Hence, our study aimed to investigate the 26 

prevalence and the association between the age of calf and the identified Cryptosporidium spp. 27 

and to determine the genotypes/subtypes of Cryptosporidium spp. in pre-weaned calves with 28 

diarrhea in the KOR. A total of 460 diarrheic fecal samples were collected from calves aged 29 

160 days and screened for Cryptosporidium spp. by the 18S rRNA gene. Species identification 30 

was determined by the sequencing analysis of the 18S rRNA gene, and C. parvum-positive 31 

samples were subtyped by sequence analysis of the 60-kDa glycoprotein (gp60) gene. 32 

Sequencing analysis based on the 18S rRNA gene revealed the presence of three 33 

Cryptosporidium spp., namely, C. parvum (n = 72), C. ryanae (n = 12), and C. bovis (n = 2). 34 

Co-infection by these species was not observed. The infection rate was the highest in calves 35 

aged 1120 days (26.1%, 95% CI 17.135.1), whereas the lowest rate was observed in calves 36 

aged 2130 days (7.7%, 95% CI 0.016.1). The prevalence of C. parvum was detected 37 

exclusively in calves aged 20 days, and the highest infection rate of C. ryanae was seen in 38 

calves 31 days of age. The occurrence of C. parvum (χ2 = 25.300, P = 0.000) and C. ryanae 39 

(χ2 = 18.020, P = 0.001) was significantly associated with the age of the calves. Eleven different 40 

subtypes belonging to the family IIa were recognized: IIaA14G1R1, IIaA14G3R1, 41 

IIaA15G1R1, IIaA15G2R1, IIaA16G4R1, IIaA17G3R1, IIaA17G4R1, IIaA18G3R1, 42 

IIaA19G1R1, IIaA19G3R1, and IIaA19G4R1. Except for two (IIaA18G3R1 and IIaA15G2R1) 43 

subtypes, nine subtypes were first identified in calves with diarrhea in the KOR. IIaA18G3R1 44 

was the most frequently detected subtype (72.2% of calves), followed by IIaA17G3R1 (5.6%), 45 



3 

 

and IIaA15G2R1 (4.2%) and IIaA19G4R1 (4.2%). These results suggest that the prevalence of 46 

Cryptosporidium spp. is significantly associated with calf age. Furthermore, the findings 47 

demonstrate the high genetic diversity of C. parvum and the widespread occurrence of zoonotic 48 

C. parvum in pre-weaned calves. Hence, calves are a potential source of zoonotic transmission 49 

with considerable public health implications. 50 

 51 

Keywords: Cryptosporidium, pre-weaned calves, diarrhea, C. parvum, gp60 subtypes 52 

  53 
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Introduction 54 

 Cryptosporidium spp. are protozoan parasites that cause mild-to-severe diarrhea in 55 

humans and a wide range of animals [1]. Infections with these parasites occur via the fecal-oral 56 

route either by direct contact with infected animals or by the ingestion of infective oocysts from 57 

contaminated water or food [2-5]. To date, 40 Cryptosporidium spp. have been described [6], 58 

and among them, four species, namely, C. andersoni, C. bovis, C. parvum, and C. ryanae, have 59 

been identified in cattle. The distribution of these species is known to vary according to age [4, 60 

7]. In particular, C. parvum is one of the most important pathogens causing diarrhea in neonatal 61 

calves worldwide and leads to severe economic losses owing to poor growth, decreased 62 

productivity, and even death [8]. Moreover, C. parvum is the major pathogenic species that 63 

affects humans [9, 10]. Unlike C. parvum, C. bovis and C. ryanae usually infect post-weaned 64 

calves and yearlings without causing illness, and C. andersoni is mainly found in adult cattle 65 

[11-13]. The pathogenicity of C. bovis, and C. ryanae in post-weaned calves has not been 66 

established [9]. The oocysts of C. parvum, C. bovis, and C. ryanae are similar in size and shape. 67 

While C. ryanae is smaller than the others and requires molecular methods for its determination 68 

[14, 15], C. andersoni is larger in size and infects the abomasum [16]. 69 

According to the subtyping of C. parvum based on sequence analysis of the 60-kDa 70 

glycoprotein (gp60) gene, Ⅱa and Ⅱd subtypes have been detected in both humans and calves 71 

and can cause zoonotic cryptosporidiosis [17]. The Ⅱa subtype is mostly identified in calves, 72 

and IIaA15G2R1 is the predominant subtype [7] globally, including the Republic of Korea 73 

(KOR) [18]. The IId subtype is usually found in lambs and goat kids [4, 19] and has been 74 

described in calves in some countries such as Sweden, Turkey, Egypt, and China [20-23]. To 75 

date, most investigations of cryptosporidiosis in calves caused by C. parvum have focused on 76 
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the IIa subtype in most countries. However, there are a few studies on C. parvum subtypes in 77 

calves in the KOR [18, 24].  78 

Cryptosporidium parvum infects the intestinal mucosa and accounts for over 90% of 79 

Cryptosporidium infections in neonatal calves [23]. In contrast, in pre-weaned calves, the 80 

prevalence of C. bovis and C. ryanae and their effects on causing diarrhea remain unclear. 81 

Several studies have reported that C. bovis and C. ryanae are present in pre-weaned calves [23, 82 

25, 26] and that C. ryanae infections are particularly associated with moderate diarrhea in pre-83 

weaned calves [23]. However, little is known about the association between C. bovis and 84 

diarrhea. In addition, a previous study has indicated that the high prevalence of C. bovis and C. 85 

ryanae in hemorrhagic diarrhea was found in the KOR [24]. Nevertheless, the pathogenicity of 86 

these organisms is still unclear. Therefore, this study aimed to investigate the prevalence of 87 

Cryptosporidium spp. in pre-weaned calves with diarrhea and to evaluate the association 88 

between the age of calf and the identified Cryptosporidium spp. Furthermore, we intended to 89 

determine genotype of Cryptosporidium spp. and subtyping of C. parvum in calves in the KOR 90 

and to assess the significance of calves as a source of human infections. 91 

  92 
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Materials and methods 93 

Ethics statement 94 

 All animal procedures were conducted according to ethical guidelines for the use of 95 

animal samples, and were approved by the Jeonbuk National University (Institutional Animal 96 

Care and Use Committee Decision No. CBNU 2020-052). All procedures and possible 97 

consequences were explained to the managers of the surveyed farm, and written consent was 98 

obtained. 99 

 100 

Sample collection 101 

Between August 2019 and August 2020, fresh fecal samples were collected directly 102 

from the rectum of 460 diarrheic pre-weaned calves (up to 60 days of age) by an experienced 103 

veterinarian using sterile plastic gloves in 11 different farms located in the KOR. The samples 104 

were placed in labeled sterile plastic tubes and transported to the Animal Immunology 105 

Laboratory of Kyungpook National University in a cooler with ice packs. Upon arrival, 106 

sampling date, age, animal identification number, and fecal consistency (pasty, loose, watery, 107 

or hemorrhagic) were recorded for each animal. The collected feces were mostly pasty or loose. 108 

Prior to DNA extraction, all feces were stored at 4C for no more than 2 days. The fecal samples 109 

were divided according to age as follows; 110 days (n = 271), 1120 days (n = 92), 2130 110 

days (n = 39), and 31 days (n = 58). No microscopic examination was performed. 111 

 112 

DNA extraction, molecular analysis, and sequencing 113 

DNA was extracted from 200 mg of each fecal sample using the QIAamp Fast DNA 114 

Stool Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions and 115 

Vurgu

Yapışkan Not
Specify what pretreatment was done to break up the oocyst wall

Vurgu

Yapışkan Not
How did you know for sure that the stools could be infective? was it a coincidence?
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frozen at 20℃ until use. The Cryptosporidium spp. were first tested using the 18S rRNA gene 116 

[27]. Samples that yielded positive results for Cryptosporidium spp. were further tested using 117 

species-specific primers [24]. After that, C. parvum was again subtyped using a nested PCR 118 

targeting the 60-kDa glycoprotein (gp60) gene [4, 28]. All positive PCR products were purified 119 

using the AccuPower PCR Purification Kit (Bioneer, Daejeon, KOR) and employed for direct 120 

sequencing (Macrogen, Daejeon, KOR). The nucleotide sequences obtained in this study were 121 

analyzed using BioEdit (version 7.2.5) and compared with the reference sequences using the 122 

Basic Local Alignment Search Tool available at the National Center for Biotechnology 123 

Information database. To determine the subtype of C. parvum, nucleotide sequences were 124 

aligned using ClustalX and then analyzed via direct comparison with reference sequences from 125 

GenBank. Since the base sequences of C. bovis and C. ryanae are similar, all positive samples 126 

of the18S rRNA gene were separated by comparing the sequences. In this study, only samples 127 

showing a good sequencing result were considered positive for each Cryptosporidium spp. All 128 

nucleotide sequences generated in this study were deposited in the GenBank database with 129 

appropriate accession numbers (18S rRNA: MZ736386MZ736399; gp60: 130 

MZ736314MZ736385).  131 

 132 

Statistical analysis 133 

Statistical analysis was performed using SPSS Statistics 26 software package for 134 

Windows (SPSS Inc, Chicago, IL, USA). Chi-square test was used to determine the association 135 

between the prevalence of each species and age. A p-value of less than 0.05 was considered 136 

statistically significant. 137 

  138 
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Results 139 

Prevalence of Cryptosporidium spp. 140 

 Among the 460 diarrheic fecal samples examined, 86 (18.7%) were positive for 141 

Cryptosporidium spp. on PCR analysis and sequencing based on the 18S rRNA gene. Three 142 

Cryptosporidium spp. were identified in pre-weaned Korean native calves (Table 1). Of these, 143 

C. parvum (15.7%, 72/460) was the most detected, followed by C. ryanae (2.6%, 12/460) and 144 

C. bovis (0.4%, 2/460). Co-infection of these species was not observed. The prevalence of the 145 

three Cryptosporidium spp. was compared according to the age groups. As shown in Table 1, 146 

the infection rate of Cryptosporidium spp. was highest in calves aged 1120 days (26.1%, 95% 147 

CI 17.135.1), whereas the lowest infection rate was observed in calves aged 2130 days (7.7%, 148 

95% CI 0.016.1). All three Cryptosporidium spp. were detected only in calves aged 110 days 149 

(Table 1). The association between Cryptosporidium spp. and age-distribution was investigated. 150 

Interestingly, the identified Cryptosporidium spp. varied according to the age of the calves. C. 151 

parvum infection was detected exclusively in calves 20 days of age (Table 2). The prevalence 152 

peaked at the age of 1120 days and decreased rapidly thereafter (Table 2). C. parvum infection 153 

was significantly associated with the age of the calves (χ2 = 25.300, P = 0.000). Unlike C. 154 

parvum, C. ryanae was found in all age groups, and the highest infection rate was observed at 155 

31 days of age (Table 2). C. ryanae infection also had a significant age-related distribution 156 

(χ2 = 18.020, P = 0.001). In contrast, C. bovis was detected only in two calves aged 10 days 157 

and 35 days, and there was no statistical significance in the age-related distribution (P = 0.590). 158 

 159 

Distribution of Cryptosporidium spp. and C. parvum subtypes 160 

 All 72 C. parvum-positive samples were successfully amplified and subtyped by 161 

Vurgu

Yapışkan Not
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sequence analysis of the gp60 gene. A total of 11 different subtypes belonging to the family IIa 162 

were identified (Table 3). Subtype family IId was not detected. The distinction of each subtype 163 

within the IIa was in the number of trinucleotide region of TCA and TGA repeats (i.e., had one 164 

copy of sequence ACATCA immediately after the trinucleotide repeats). As shown in Table 3, 165 

in pre-weaned Korean native calves, the most frequently detected subtype was IIaA18G3R1 166 

(72.2%), followed by IIaA17G3R1 (5.6%), and then IIaA15G2R1 (4.2%) and IIaA19G4R1 167 

(4.2%). Other subtypes, namely, IIaA14G1R1 (1.4%), IIaA14G3R1 (1.4%), IIaA15G1R1 168 

(1.4%), IIaA16G4R1 (2.8%), IIaA17G4R1 (2.8%), IIaA19G1R1 (1.4%), and IIaA19G3R1 169 

(2.8%) were also identified. There was not much of a correlation between calf age and a specific 170 

subtype. IIaA19G4R1 was observed only in calves aged 110 days, whereas IIaA17G3R1 was 171 

found exclusively in calves aged 1120 days. There were more various subtypes found in 172 

calves aged 110 days (Table 3). The most predominant subtype, IIaA18G3R1, was seen in all 173 

ages. This is the first report on the various zoonotic subtypes circulating in the KOR. 174 

  Based on the 18S rRNA gene, 14 (12 C. ryanae and 2 C. bovis) sequences were 175 

obtained and compared with the published literature. Twelve sequences of C. ryanae showed 176 

95.1%100% similarity with each other. The C. ryanae sequences shared 95.7%100% 177 

identity with those found in Austria, China, India, Thailand, and Japan. Two sequences of C. 178 

bovis shared 94.1% similarity. These sequences demonstrated 95.5%96.2% identity with 179 

those identified previously in the KOR and had 91.9%96.2% homology with those from 180 

Austria, USA, Japan, and China. Interestingly, differences in nucleotides between C. ryanae 181 

and C. bovis were observed. As shown in Fig. 1, the nucleotides in the six positions, i.e., 440, 182 

460, 464466, and 470 were different between the two species. 183 

  184 



10 

 

Discussion 185 

 Cryptosporidium, along with rotavirus, has been well recognized as the main pathogen 186 

causing diarrhea in neonatal calves worldwide [29]. Our findings established the prevalence of 187 

Cryptosporidium spp. in pre-weaned diarrheic calves according to age, and the presence of 188 

various zoonotic subtypes of C. parvum in the KOR were identified. In the present study, the 189 

overall prevalence of Cryptosporidium spp. was found to be 18.7%, which is higher than that 190 

reported previously in the KOR [18, 24, 30]. These variations could be explained by the age of 191 

the animals, time of sample collection, and the differences in geographical location. However, 192 

the percentage of Cryptosporidium spp.-positive samples found in our study was lower than 193 

that reported in other countries such as Germany (88.9%), Japan (83.8%), China (38.4%), Italy 194 

(38.8%), Colombia (26.6%), Argentina (22.5%), and Estonia (22.6%) [25, 31-36]. 195 

In this study, the presence of three Cryptosporidium spp. in pre-weaned Korean native 196 

calves was ascertained: C. bovis, C. parvum, and C. ryanae. Of them, C. parvum was the most 197 

predominant species in the KOR. This finding agrees with the results observed in several other 198 

countries [7, 25, 32, 35, 37, 38]. Most studies have proven that C. parvum mainly infects calves 199 

up to 1 month of age [32, 39-42]. The results of the present study demonstrated that C. parvum 200 

was detected only in calves aged 20 days, and the infection rate was the highest in calves aged 201 

1120 days. This observation is consistent with a previous study performed by our group [18]. 202 

According to our findings, C. parvum was not detected in calves over 21 days of age. It is 203 

speculated that calves in this age group are less susceptible to C. parvum infection owing to 204 

the partial development of the immune system with increasing age, which reduces the effects 205 

compared to the neonatal calves. Moreover, C. parvum is known to cause watery diarrhea [23, 206 

29]. In this study, the number of animals with watery feces was small; hence, the association 207 
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with diarrhea was not evaluated. Although we were not able to compare the occurrence of C. 208 

parvum with the diarrhea status, C. parvum was found to be the causative agent of diarrhea in 209 

young calves. Our results suggest that C. parvum infection is attributed to the significant age-210 

related distribution (P = 0.000). Consequently, C. parvum was strongly associated with diarrhea 211 

in calves aged 20 days. 212 

Cryptosporidium ryanae was the second most frequently detected species in pre-213 

weaned Korean native calves. In general, C. ryanae is often found in post-weaned calves [15]. 214 

The results revealed that C. ryanae was detected in all age groups with a low prevalence and 215 

that its occurrence increased with age. Especially, the infection rate of C. ryanae was the 216 

highest in calves aged 31 days. The prevalence of C. ryanae found in this study was similar 217 

to that of a previous study performed in the KOR [24]. Our observation confirmed that C. 218 

ryanae has an age-associated distribution, similar to C. parvum. A recent study has reported 219 

that C. ryanae was common in pre-weaned as well as post-weaned calves and that the infection 220 

was associated with the occurrence of moderate diarrhea in pre-weaned calves [23]. In contrast, 221 

other studies have shown that C. ryanae was not associated with diarrhea [26, 38, 43]. So far, 222 

the pathogenicity of C. ryanae is controversial. A previous study conducted in the KOR 223 

demonstrated that although it is not a single infection, the prevalence of C. ryanae was 224 

significantly high in hemorrhagic diarrhea [24]. We could not arrive at a conclusion regarding 225 

the correlation with diarrhea since the number of C. ryanae-positive samples from diarrheic 226 

calves was small. Hence, C. ryanae infection may cause diarrhea in calves 21 days of age and 227 

should be considered as a causative agent of diarrhea in this age group. Further studies are 228 

necessary to clarify the pathogenicity of C. ryanae in pre-weaned calves.  229 

We found that the prevalence of C. bovis was the lowest in pre-weaned Korean native 230 
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calves. This observation is contradictory to the results reported by several studies in which C. 231 

bovis was the dominant species in pre-weaned calves [20, 44-47]. In this study, C. bovis was 232 

detected only in two calves aged 10 and 35 days. Several studies have stated that C. bovis is 233 

common in 23-week-old calves [41, 43]. However, our result signified that C. bovis was not 234 

detected in this age (Table 1). Cai et al. mentioned that C. bovis usually appears after weaning 235 

and that the infection can last weeks or months and contribute to the small increase in 236 

Cryptosporidium infection rates soon after weaning [26]. This observation may also explain 237 

the low prevalence of C. bovis in the present study. To date, information on the prevalence and 238 

clinical signs of C. bovis infection in both pre-weaned and post-weaned calves is very limited 239 

in the KOR. C. bovis could have probably been considered to be less important than C. parvum 240 

and therefore overlooked as an etiological agent of diarrhea in calves. Moreover, the results 241 

revealed that infection by C. bovis, unlike the two other species, was not age-related. Most 242 

importantly, the involvement of C. bovis in diarrhea remains unclear. Unlike C. ryanae, many 243 

studies have suggested that C. bovis was associated with diarrhea [23, 26, 38, 48]. However, 244 

infection by C. bovis/C. ryanae may lead to clinical signs owing to the presence of C. parvum 245 

[32]. Therefore, the prevalence and pathogenicity of C. bovis in pre-weaned and post-weaned 246 

calves must be investigated through large-scale epidemiological surveys. 247 

C. parvum IIa family is common in humans as well as calves and is considered 248 

potentially zoonotic. To date, three C. parvum subtypes have been detected in calves in the 249 

KOR [18, 24], whereas one subtype (IIaA16G3R1) was not found in this study. In addition to 250 

the two subtypes (IIaA15G2R1 and IIaA18G3R1) described above, nine other subtypes 251 

(IIaA14G1R1, IIaA14G3R1, IIaA15G1R1, IIaA16G4R1, IIaA17G3R1, IIaA17G4R1, 252 

IIaA19G1R1, IIaA19G3R1, and IIaA19G4R1) that have not previously been detected in the 253 



13 

 

KOR were identified for the first time, showing the presence of high genetic diversity. Among 254 

them, IIaA18G3R1 was most commonly found in pre-weaned Korean native calves with 255 

diarrhea. This result is inconsistent with that of a previous study in which IIaA15G2R1 was 256 

shown as the predominant subtype [18]. This difference could be attributed to the fact that in 257 

the previous study, both normal and diarrheic feces were used and that IIaA15G2R1 was 258 

detected regardless of diarrhea [18]. Other variations are due to the differences in the season of 259 

sampling, regions, the number of samples, and herd management. IIaA15G2R1 has been 260 

known as the most prevalent C. parvum subtype infecting humans and cattle in many countries 261 

[7, 33, 49-53] and has also been detected in calves without diarrhea [18, 32, 54]. There seems 262 

to be no relationship between the subtype and diarrhea. In the present study, IIaA15G2R1 was 263 

detected only in three calves with diarrhea and the third frequent subtype along with 264 

IIaA19G4R1. 265 

Here, IIaA18G3R1 was the dominant subtype that accounted for 72.2% of C. parvum-266 

infected pre-weaned Korean native calves and was the frequent cause of human 267 

cryptosporidiosis, besides being reported in calves and foals [55-60]. The second common 268 

subtype in the KOR, IIaA17G3R1, has been found in calves and humans in several countries 269 

[61-65]. IIaA19G4R1 was the third frequent subtype identified in the pre-weaned Korean 270 

native calves and was also detected in small ruminants and fish as well as humans and calves 271 

[55, 64, 66-68]. Interestingly, all sequences belonging to the IIaA19G4R1 subtype were 272 

identical to those reported from other countries previously. These subtypes are considered to 273 

be the most common ones in calves in the KOR. 274 

The other seven subtypes were also identified in pre-weaned Korean native calves with 275 

diarrhea, but their prevalence was relatively low. Subtypes IIaA14G1R1, IIaA14G3R1, and 276 
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IIaA15G1R1 were each detected in one calf. IIaA14G1R1 was identified in calves, goat kids, 277 

and humans [7, 12, 17, 19, 25, 33, 51, 52]. IIaA14G3R1 was found in humans, calf, lambs, and 278 

fresh molluscan shellfish [19, 25, 69, 70]. IIaA15G1R1 has been reported in humans [28, 51, 279 

52, 71, 72] as well as in cattle and goat kids [22, 73-75]. Subtypes IIaA16G4R1 and 280 

IIaA17G4R1 were each found in two calves in the current study. Unlike the other subtypes, 281 

IIaA16G4R1 has so far been noted only in neonatal calf with diarrhea [76], which is  282 

consistent with our findings. Subtype IIaA16G4R1 has not yet been detected in humans; 283 

however, it cannot be excluded the possibility that this may represent a significant health risk. 284 

IIaA17G4R1 subtype has been identified in humans, cattle, and goats [31, 33, 59, 70, 76, 77] 285 

and has further been detected in diarrheic calves [31]. Finally, subtypes IIaA19G1R1 and 286 

IIaA19G3R1 have each been identified in one calf. IIaA19G1R1 has been reported in humans, 287 

cattle, and sheep [35, 52, 63, 78-80]. IIaA19G3R1 has been identified in humans, cattle, and 288 

deer [60, 81-84]. This study is the first to report the presence of various subtypes in pre-weaned 289 

calves in the KOR. 290 

To detect C. bovis and C. ryanae, 18S rRNA and heat-shock protein 70 genes are 291 

generally used [15]. According to sequence analysis of the 18S rRNA gene, C. bovis and C. 292 

ryanae showed 99% identity, and it is not always possible to differentiate between them by 293 

PCR [85, 86]. However, in this study, we used only the 18S rRNA gene. Even without 294 

phylogenetic analysis, the difference between the two species could be confirmed by 295 

sequencing analysis. At the six nucleotide positions of 440, 460, 464466, and 470, C. bovis 296 

had C, T, A, T, C, and A, while C. ryanae had T, C, G, C, T, and G. These positions are 297 

representative markers that distinguish C. ryanae from C. bovis. Our results suggest that these 298 

two species can be discerned using the 18S rRNA gene. 299 
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 300 

Conclusion 301 

Our results confirm the presence of three Cryptosporidium spp. in pre-weaned calves 302 

with diarrhea: C. bovis, C. parvum, and C. ryanae. C. parvum was found to be the dominant 303 

species in young calves in the KOR. The occurrence of C. ryanae and C. parvum, but not C. 304 

bovis, in pre-weaned Korean native calves was significantly related to age; the prevalence of 305 

C. parvum decreased with age, whereas that of C. ryanae increased with age. The most 306 

frequently detected subtype in calves with diarrhea was IIaA18G3R1, which was responsible 307 

for zoonotic transmission. This is the first report to identify nine potentially zoonotic subtypes 308 

belonging to the family IIa, which have not previously been reported in cattle in the KOR. This 309 

study establishes the high genetic diversity of C. parvum in diarrheic calves and the widespread 310 

distribution of zoonotic C. parvum in the KOR. Therefore, the results emphasize that young 311 

calves may be a potential source of infection and may serve as an important zoonotic reservoir 312 

for human cryptosporidiosis. 313 
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Figure legend 652 

Figure 1. Sequence comparisons between C. bovis and C. ryanae for the partial18S rRNA gene 653 

from Korean sequences obtained in this study and reference strains. Six nucleotide differences 654 

at 440, 460, 464466, and 470 are shown. An asterisk indicates sequences obtained in this 655 

study. 656 
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Table 1. Prevalence and distribution of Cryptosporidium species according to age group in pre-weaned calves 

Age (days) Sample size 
No. of  

positive (%) 
95% CI 

Cryptosporidium species (No.) 

C. parvum C. ryanae C. bovis 

 110 271 53 (19.6%) 14.8–24.3 49 3 1 

1120 92 24 (26.1%) 17.1–35.1 23 1 0 

2130 39  3 (7.7%) 0.0–16.1 0 3 0 

3160 58  6 (10.3%)  2.5–18.2 0 5 1 

Total 460 86 (18.7%) 15.122.3 72 12 2 
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Table 2. Distribution of Cryptosporidium species in pre-weaned Korean native calves according to age group 

Age (days) 
Frequency of C. 

parvum positivity (%) 
χ2 (P–value) 

Frequency of C. 

ryanae positivity (%) 
χ2 (P–value) 

Frequency of C. 

bovis positivity (%) 
χ2 (P–value) 

110  49/271 (18.1%) 

25.300 (0.000) 

3/271 (1.1%) 

16.020 (0.001) 

1/271 (0.4%) 

2.824 (0.419) 
1120 23/92 (25.0%) 1/92 (1.1%) 0 

2130 0 3/39 (7.7%) 0 

3160 (Ref.) 0 5/58 (8.6%) 1/58 (1.7%) 
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Table 3. Distribution of Cryptosporidium parvum subtype according to age group 1 

gp60 subtypes 
Age groups (days) No. of  

positive calves 110 1120 

IIaA14G1R1 1 0 1 (1.4%) 

IIaA14G3R1 1 0  1 (1.4%) 

IIaA15G1R1 1 0 1 (1.4%) 

IIaA15G2R1 3 0 3 (4.2%) 

IIaA16G4R1 1 1  2 (2.8%) 

IIaA17G3R1 1 3 4 (5.6%) 

IIaA17G4R1 1 1 2 (2.8%) 

IIaA18G3R1 36 16 52 (72.2%) 

IIaA19G1R1 1 0 1 (1.4%) 

IIaA19G3R1 0 2 2 (2.8%) 

IIaA19G4R1 3 0 3 (4.2%) 

Total 46 26 72 

 2 
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