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Section S1. Doping dependence of intralayer excitons in monolayer regions of the device 

The intralayer emission from hBN encapsulated monolayer MoSe2 is monitored from a 

sample region where the MoSe2 does not overlap with WSe2 layer. Figure S1(a) shows this 

intralayer PL emission as a function of the applied voltage Vg. The neutral exciton peak (X0) 

at ~1.645 eV is dominant at 0 V. As the device is doped with electrons (holes), the negatively 

(positively) charged trions X– (X+) appear at 1.617 eV (1.619 eV).  

We also perform reflectance contrast measurements in monolayer regions of the device. 

We define the reflectance contrast as ∆R/R0, where ∆R = Rs − R0 (with Rs the reflected 

intensity from the sample and R0 the reflected intensity from a region of the heterostructure 

with no TMD layers present). Figure S1(b) shows Vg-dependent measurements of ∆R/R0 from 

hBN encapsulated monolayer regions of the device, in which we have labelled the main 

excitonic features. For monolayer MoSe2 at charge neutrality (Vg = 0 V), only the neutral 

intralayer A-exciton is present, which we label XMo
0 . When electrons are injected into the 

monolayer (Vg > 0 V) the attractive polaron, XMo
AP-, is formed at lower energy than XMo

0 . XMo
0  

also blue-shifts and loses oscillator strength in agreement with the description of a repulsive 

polaron XMo
RP-. When the monolayer MoSe2 is hole doped (Vg < 0 V), XMo

RP+ and XMo
AP+ are 

formed. Similarly, when the WSe2 is hole-doped, XW
RP+ and XW

AP+ are also formed. In the 

electron doping regime for monolayer WSe2, the repulsive polaron XW
RP+ is formed and 

attractive polaron formation is allowed in both spin-singlet XW
AP-,S

and spin-triplet (XW
AP-,T) 

configurations. The observed features in both the photoluminescence and broadband 

reflectance agree very well with theoretical and experimental literature reports and confirm the 

device is of high quality and works as expected1-5. 

 

 



 

Figure S1. (a) PL of MoSe2 intralayer excitons as a function of Vg. (b) Reflection contrast 

∆R/R0 as a function of Vg in hBN encapsulated monolayer MoSe2 and WSe2 regions of the 

device. 

  



Section S2. Observation of strongly correlated electron and hole states in our sample 

The interpretation of our experimental results critically rests on the assumptions that 

the moiré superlattice exists in our sample and the device functions properly. In this section, 

we therefore perform differential reflection spectroscopy to provide additional experimental 

results that confirm the following: 

1) The existence of the moiré superlattice in our sample, via the observation of strongly 

correlated states in both the conduction and valence bands.  

2) The twist angle of our sample is 56.7 +/- 0.2 degrees, measured at 7 positions in the 

sample via application of the capacitor plate model to extract the moiré density at a 

filling factor of  ν = –1. This confirms the estimate from optical microscope images 

(see section S3). 

We believe that these results provide confidence in the assumptions and interpretations we 

make in the main manuscript. However, an in-depth presentation of these results is beyond the 

scope of the current manuscript, so a small summary is provided in this section of the 

Supplementary Information.  

We perform a doping sweep of the differential contrast ∆R/R0 in the 1L MoSe2/1L 

WSe2 (heterobilayer) region of the sample, as shown in Figure S2. At charge neutrality (Vg = 

0 V), we clearly see the MoSe2 and WSe2 intralayer excitons (X
Mo,1

0
 and XW

0 ). When the 

sample is hole doped (Vg < 0 V), XW
0  loses oscillator strength. When electrons are injected 

into the sample (Vg > 0 V), XMo,1
0  quickly loses oscillator strength. These observations are 

consistent with Type-II band alignment6-8. In contrast to the monolayer MoSe2 only region of 

the device (see section S1), a peak at higher energy than XMo,1
0  gains oscillator strength which 

we label XMo,2
0 . We suggest the double excitonic feature arises from the formation of 

conduction moiré mini-bands which has been theoretically predicted for angle aligned 

WSe2/MoSe2 moiré heterostructures9,10. 



In both the electron and hole doping regimes, all species of intralayer excitons exhibit 

modulations in intensity, peak position, and linewidth not present in the monolayer regions. 

This agrees with experimental observations of the formation of moiré conduction and valence 

minibands11,12. Following the method demonstrated by Tang et al.11, we identify –1.75 V as 1 

hole per moiré lattice site using the integrated intensity peak of the XW
0  in the hole doping 

regime (side panel of Fig. S2). Using the parallel plate capacitance model, the carrier 

concentration in the heterostructure can then be calculated using n =
𝜀𝜀0Δ𝑉𝑔

𝑑1
 + 

𝜀𝜀0Δ𝑉𝑔

𝑑2
  where 

𝜀 is the permittivity of hBN, Δ𝑉𝑔 is the voltage offset between both the top and bottom gate 

and the heterostructure, and 𝑑1 (𝑑2) is the thickness of the top (bottom) hBN layer (measured 

to be 17.4 ± 0.2 nm and 18.2 ± 0.3 nm respectively using nulling ellipsometry). For a small 

twist angle between two stacked layers, the moiré periodicity can be estimated using 𝜆𝑀  =

 
𝑎𝑆𝑒

√𝛿2+𝜃2
, where 𝑎𝑆𝑒 is the lattice constant of WSe2, 𝛿  is the fractional lattice mismatch 

between the two layers and 𝜃 is the twist angle in radians.  

For a triangular moiré pattern, the number of carriers required for one hole per site is 

given by 𝑛0 = 2√3𝜆𝑀
2 . Using the lattice constants of 3.280 Å  and 3.288 Å  for WSe2 and 

MoSe2, respectively13, the twist angle is calculated to be 3.1 degrees, which agrees well with 

the angle estimated from the optical images (see section S3). Across the sample, we measure 7 

spatial positions, and obtain 3.3 +/- 0.2 degrees, which corresponds to an average moiré period 

of 5.7+/- 0.4 nm. 

Following the work by Jin et al.14, we can use an empirical theoretical model to 

approximate the effect of this twist angle on the exitonic spectrum. Due to the moiré 

superlattice, the wavefunction from normally forbidden excitonic features mix with the bright 

exciton, gaining part of its oscillator strength. The splitting between the two excitonic features 

with highest oscillator strength can be estimated using 4𝐸𝑀, where 𝐸𝑀 is the exciton kinetic 

energy in the first mini Brillouin zone, and is approximated by 𝐸𝑀 =
ℏ𝑏𝑖

2

𝑀
, where 𝑏𝑗 is the 

moiré reciprocal lattice vector and 𝑀 is the exciton mass. The relative oscillator strength of 

the higher energy peak can then be estimated using |
𝑉𝑗

4𝐸𝑀
|

2

, where 𝑉𝑗 is the magnitude of the 



moiré potential. From our measured twist angle, we use the model to estimate the splitting 

between the MoSe2 excitons to be 40 meV. 

Figure S3(a) shows the ∆R/R0 measured at charge neutrality (Vg = 0 V). For the fitting 

we model each excitonic feature using the real part of the Lorentzian oscillator function 

𝑓(𝐸) =
𝐴(𝐸𝑝

2−𝐸2)

(𝐸𝑝
2−𝐸2)

2
+𝐸2𝛾2

 , where 𝐴 is the amplitude, 𝐸𝑝 is the central energy of the resonance 

and 𝛾 is the linewidth. From the fit we estimate the splitting between XMo,1
0  and XMo,2

0  to be 

36 meV which is consistent with the theoretical prediction of 40 meV. Figure S3(b) shows a 

calculated ∆R/R0 spectrum using the predicted splitting, and a relative oscillator strength ratio 

of 5:1 between XMo,1
0  and XMo,2

0  which is set for good agreement between theory and 

experimental observations.  

In order to better resolve the fractional filling modulations in intensity, position and 

linewidth of the excitonic features, we plot the doping dependence of the derivative of the 

reflection contrast with respect to applied gate voltage d(∆R/R0)/dV, as shown in Figure S4. 

We observe abrupt changes in d( ∆R/R0)/dV at every 1/3 fractional filling of the moiré 

superlattice for both electron and hole filling. This suggests that ordered correlated electron 

and hole states are formed at these values, similar to observations in WS2/WSe2 moiré 

heterostructures.12,15 

 

 



 

Figure S2. Doping sweep of ∆R/R0 in a representative 1L MoSe2 /1L WSe2 heterostructure 

region of the device. The side panel shows the integrated intensity of XW
0  in the range 1.67-

1.72 eV while the dashed line at –1.75 V indicates 1 hole per moiré lattice site (𝜈ℎ = 1). 

 

 

 

 

 



 

Figure S3. (a) Linecut of the differential contrast ∆R/R0 in the heterobilayer at charge 

neutrality. The solid line shows the fit to the experimental data, from which we extract a 

splitting of 36 meV between XMo,1
0  and XMo,2

0 . (b) Theoretical curve of the differential 

contrast, based on the theoretically calculated splitting of 40 meV between XMo,1
0  and XMo,2

0 . 

The relative oscillator strength of the two excitonic resonances was set to 5:1 for good 

agreement with the experimental data.  

 

 

 

 

 

 

 

 



 

Figure S4. Doping dependence of the derivative of the reflection contrast with respect to the 

applied voltage (d(∆R/R0)/dV). The dashed lines indicate fractional fillings of the moiré 

superlattice with electrons (𝜈𝑒) or holes (𝜈ℎ). There are abrupt changes in d(∆R/R0)/dV at all 

labelled fractional fillings, indicating the presence of correlated electron and hole states. 

 

 



Section S3. Determination of twist angle from optical images 

Figure S5 shows an optical microscope image of the MoSe2/WSe2 heterostructure on 

PDMS. Cleaved edges of MoSe2 and WSe2 flakes are indicated by red and blue lines, 

respectively. From the relative angle between these edges, the twist angle for the 

heterostructure is estimated as 56.4°. 

 

 

Figure S5. Optical microscope image of the MoSe2/WSe2 heterostructure on PDMS.   

  



Section S4. PL spectra at 0.3 < Vg < 0.4 for electron doping  

As shown in Fig. S6(a), the total integrated PL intensity of trapped IXs are several times 

brighter in the Vg range of 0.3–0.4 V than for Vg = 0 V or Vg > 0.4 V. This behaviour is not 

particular of the trapped IXs but can also be observed in the PL of the delocalised intralayer 

excitons of the individual TMD monolayers as shown in Fig. S6(b). The brighter PL emission 

of the excitons for Vg ~ 0.3–0.4 V allows us to observe additional PL peaks in this voltage 

range which otherwise are buried in the background of the PL spectra measured at Vg = 0 V 

and Vg > 0.4 V. This hypothesis is supported by the fact that the PL intensity of the ‘additional’ 

PL peaks decreases under further electron doping until it eventually vanishes into the PL 

spectrum background. Meanwhile, the PL emission energy of each trapped IX trion under 

electron doping depends on the particular charge configuration and filling order of its 

neighbouring sites (i.e., the local potential landscape of each emitter), which gives rise to 

different spectral behaviours. We believe that the combination of additional PL peaks and the 

different spectral behaviour of each PL peak result in more complex PL spectrum in the Vg 

range ~ 0.3–0.4 V. 

 

 

Figure S6. Plots of the integrated PL intensity versus Vg for moiré IXs shown in Fig. 2a in the 

main text (a) and for delocalised intralayer excitons in MoSe2 shown in Fig. S1 (b). 

  



Section S5. IX PL spectra at different doping conditions  

Figure S7 shows further representative IX PL spectra measured at different spatial 

positions with n-doped, undoped, and p-doped conditions. As stated and shown in the main 

text, the PL profiles at each doping condition are very similar. The relative energies and 

intensities between peaks in each PL spectra are preserved at different doping conditions. These 

results provide further evidence that the red-shifted peaks in doped regions originate from the 

same emitters in the neutral region. 

 

 

Figure S7. (a)-(c) PL spectra of moiré-trapped IXs measured at different spatial positions of 

the heterobilayer with n-doped (top panels), undoped (middle panels), and p-doped (bottom 

panels) conditions. PL spectra with n- and p-doped conditions are shifted 6.5 and 7.0 meV in 

(a), 5.0 and 4.1 meV in (b), and 5.8 and 5.4 meV in (c), respectively, to align them with the 

corresponding PL spectra with charge neutral conditions. 

  



Section S6. Discrete spectral jumps with doping 

Figures S8-S12 show PL maps as a function of electron density measured at different 

positions along the device. Zoomed images for regions indicated by rectangular boxes are 

added to display the trends of the peak shifts more clearly. The data shown in Fig. S8 is 

measured from position P1, where the data for main text was obtained. Here, most of the peaks 

show a blue-shift with discrete steps as the electron density increases. 

  



 

 

 

Figure S8. PL spectra of negatively charged localised IXs as a function of electron density 

measured at position P1. Zoomed images for regions indicated by rectangular boxes are 

displayed. 

  



 

 

Figure S9. PL spectra of negatively charged localised IXs as a function of electron density 

measured at position P2. Zoomed images for regions indicated by rectangular boxes are 

displayed. 

 

  



 

 

Figure S10. PL spectra of negatively charged localised IXs as a function of electron density 

measured at position P3. Zoomed images for regions indicated by rectangular boxes are 

displayed. 

 

  



 

 

Figure S11. PL spectra of negatively charged localised IXs as a function of electron density 

measured at position P4. Zoomed images for regions indicated by rectangular boxes are 

displayed. 

 

 

  



 

 

Figure S12. PL spectra of negatively charged localised IXs as a function of electron density 

measured at position P5. Zoomed images for regions indicated by rectangular boxes are 

displayed. 

 

 

 

 



Section S7. Monte Carlo simulation for discrete spectral jumps (short-range charge 

ordering)  

As presented in Fig. 3b in the main text, 𝑈 decreases rapidly as the lattice spacing 

increases (~1/𝑠2), and thus the interaction with electrons in the nearest neighbour (NN) sites 

dominates over sites farther away. Therefore, we first consider only interactions with electrons 

in NN sites for simplicity, and the effects of outer sites will be discussed later. Figure S13(a) 

shows a simulated PL spectrum of a moiré-trapped IX as a function of 𝑝 with 𝑤𝑖 set to 1 for 

all 6 NN sites and 𝑠 = 6.4 nm. As 𝑝 increases, a series of spectral jumps are observed, similar 

to the experimentally measured data. Furthermore, the effects of varying parameters 𝑤𝑖 and 

𝑈𝑖 (or 𝑠𝑖) of the NN sites are examined. Figure S13(b) shows the result when 𝑈𝑖 of one of 

the sites is increased by 1.5 times compared to the other sites which might be caused by 

inhomogeneities in the moiré period and/or trap potential. Additional spectral peaks appear 

between the originally equidistant steps, leading to broader spectra for intermediate 𝑝 values. 

Since the energy shifts are determined by the combinations of 𝑈𝑖 of resulting from the sites 

filled with electrons, increasing 𝑈𝑖  by 1.5x for one particular site leads to new possible 

interaction energy combinations, resulting in additional peaks. Figure S13(c) shows the 

simulation result when 𝑤𝑖 for one NN site is increased from 1 to 2. The 𝑝 range (plateau 

length) for peaks in the initial steps is reduced compared to the homogeneous case. The site 

with 𝑤𝑖 = 2 has a higher probability of occupation, and thus it can be occupied at lower 𝑝, 

resulting in a shorter plateau length.   

The simulated results in Figs. S13(a-c), however, show some discrepancies with the 

experimental results. First, in these simulation results, the intensities of the peaks at 

intermediate p values are weaker than the initial and final peaks. Due to the large overlap with 

adjacent peaks in the intermediate 𝑝 range, PL intensities are distributed among the different 

peaks, lowering the maximum intensity. Secondly, it is hard to simulate variations between 

spectral jumps because a variation in 𝑈𝑖 just results in energy broadening rather than giving 

different energy gaps between peaks. These discrepancies arise because the mutual interaction 



between electrons in NN sites is neglected. Since the occupation probability of each site is 

determined independently, the overlap between the different plateaux can be enlarged without 

affecting the other sites in the simulation. In reality (experiment), however, the occupation 

probability of one site is affected by the distribution of other electrons at other sites in the moiré 

lattice due to the Coulomb interactions.     

To address this inconsistency with experiment, another simulation is performed with 

different conditions. Now, it is assumed that there are preferences between neighbouring sites 

in the charge filling process. As recently reported, Coulomb interactions between electrons can 

lead to a different probability of occupation from site to site, giving rise to charge-ordered 

insulating states in moiré superlattices.12,16 We also observe charge-ordered states in our sample, 

justifying this approach (see section S2). Furthermore, real trapping sites are not uniform, as 

reflected in the inhomogeneous PL spectra of moiré IXs. We therefore perform a simulation 

with the assumption that there is a preferential filling order between the different moiré 

trapping sites. To apply this assumption, the random number range used to determine the site 

occupancy is modified. Different ranges of random numbers, 𝑟𝑖 (𝑖 = 1, 2, … , 6), are set for 

each NN trapping sites as 0 ≤ 𝑟1 ≤ 0.08 , 0.17 ≤ 𝑟2 ≤ 0.25 , 0.34 ≤ 𝑟3 ≤ 0.42 , 0.51 ≤

𝑟4 ≤ 0.59 , 0.68 ≤ 𝑟5 ≤ 0.76 , and 0.85 ≤ 𝑟6 ≤ 1 , so that trapping sites are filled with 

electrons in an ordered fashion.     

Figure S13(d) shows the results with the ranges of 𝑟𝑖 described above. Compared to 

Fig. S13(a), the overlaps between peaks are reduced, and hence, the PL intensity of each of 

peak becomes similar, as expected. With these simulation conditions, each spectral jump is 

correlated with the occupation of a specific site. In other words, the first discrete jump 

originates from the charge occupation at one specific site, the second one is related to the 

occupation at a second specific site, and so on. On the other hand, in simulations with identical 

𝑟𝑖  (Figs. S13(a)), each spectral jump arises from an equal contribution from all sites. This 

difference is more evident in simulations where 𝑤𝑖 or 𝑈𝑖 of one of the NN sites is changed. 

Figure S13(e) displays results when one site (site 1) has 1.5 times higher 𝑈𝑖. As indicated by 



an arrow, only the first step is changed in contrast to the overall profile change in Fig. S13(c). 

Figure S13(f) shows the result when one site (site 1) has a doubled weighting factor (i.e. 𝑤1 =

2 while 𝑤𝑖 = 1 for 𝑖 = 2– 6). Likewise, only the first plateau step (which is related to site 1) 

is elongated.  

  



 

Figure S13. (a) Simulated PL maps as a function of 𝑝 using the same range of random number, 

0 ≤ 𝑟 ≤ 1 for each site. The NN sites are assumed to be homogeneous, e.g. identical 𝑤𝑖 and 

𝑈𝑖. (b) Same as (a), but 𝑈𝑖 for one of sites is set to be 1.5 times higher than other sites. (c) 

Same as (a), but 𝑤𝑖 for one site is set to be 2 times higher than the other sites. (d) Simulated 

PL maps as a function of 𝑝 with an ordered filling process, achieved using distinctly different 

ranges of random numbers for each site. The NN sites are assumed to be homogenous in terms 

of 𝑈𝑖 and 𝑤𝑖. (e) Same as (d), but 𝑈𝑖 for one of sites is set to be 1.5 times higher than for 

other sites. (f) Same as (d), but 𝑤𝑖 for one of the sites is set to be 2 times higher than for other 

sites. The blue arrows in (e) and (f) indicate changes in energy shift by the effect of varied 𝑈𝑖 

and 𝑤𝑖 for one site. 

  



In addition to NN site interaction (𝑈𝑁𝑁), the long-range Coulomb interactions induced 

by more distant sites, which we call outer sites 𝑈𝐿𝑅 (= ∑ 𝑈𝑖𝑖=𝑎𝑙𝑙 𝑠𝑖𝑡𝑒𝑠 − ∑ 𝑈𝑖𝑖=𝑁𝑁 𝑠𝑖𝑡𝑒𝑠 ), are 

considered. Figure S14(a) shows a plot of 𝑈𝐿𝑅 as a function of lattice size 𝑁 for a 𝑁 by 𝑁 

hexagonal lattice. It shows a decreasing slope as 𝑁 increases. Since 𝑈 is proportional to 

~1/𝑠2, 𝑈𝐿𝑅 can be approximated to be proportional to ~𝑙𝑛 𝑠, resulting in a decreasing slope 

with respect to 𝑠. For 𝑁 = 41, the value of 𝑈𝐿𝑅 represents ~80% of 𝑈𝑁𝑁. Even with a huge 

number of interacting sites, the increase of 𝑈𝐿𝑅 is smaller than 𝑈𝑁𝑁. This suggests that details 

of the occupation process in outer sites does not alter the PL spectra substantially. Therefore, 

we make the assumption that the non-nearest neighbour sites are occupied without any 

preference (similar to the simulation shown in Fig. S13(a)), just to make the problem simpler. 

This assumption is added to the simulation shown in Fig. S13(d), in which NN sites were filled 

with an order. The result of this combination is shown in Fig. 14(b). Compared to the 

simulations with only NN interactions, each step shows a continuous and linear shift as 𝑝 

increases. 

 

 

Figure S14. (a) Plot of 𝑈𝐿𝑅 versus lattice size 𝑁. (b) Simulated PL map with consideration 

of both NN and outer site interactions in a 21 by 21 hexagonal lattice. The NN sites are assumed 

to be occupied with an order and the non-nearest neighbour sites are set to be filled 

homogenously without mutual interaction.   

 



With these simulation results, the experimentally measured PL maps can be interpreted 

more profoundly. First, it can be said that the discrete spectral jumps originate mainly from the 

filling of NN sites with a given preferential order. In addition, variations between these sites 

can lead to variations between spectral jumps. Second, the effect of the long-range interactions 

is a gradual linear blue-shift of the PL spectrum as the electron density is increased. Most 

commonly, the PL peaks show mostly smooth changes versus Vg, as presented in Fig. S8, S10-

S12, which might result from a combination of NN and outer sites interactions. PL spectra 

showing unambiguous energy jumps and flat steps like the ones in Fig. 3c of the main text and 

in Fig. S9 are less regularly observed, and only seem to appear at special spatial positions where 

the NN sites trapping is exceptionally stronger than in the outer sites. Finally, in many 

measured PL spectra, the number of steps is less than 6, which might be related to 

inhomogeneity between NN sites. Some sites can have much higher or lower probability of 

occupation than others, so they can be pre-filled before the steps start or not filled until other 

sites are filled.  

  



Section S8. Monte Carlo simulation of long-range charge-ordered states 

To consider charge-ordered states, we employ a simulated annealing algorithm for 

classical charges on a triangular lattice.12 The classical Monte Carlo algorithm can be thought 

as performing a Hartree theory calculation for the 𝑡 − 𝑈 − 𝑉 Hubbard model in the limit 𝑡 =

0, 𝑈 → ∞. In this limit the Hamiltonian reduces to 

𝐻 =
1

2
∑ 𝑉|𝑖−𝑗|𝑛𝑖𝜎𝑛𝑗𝜎′𝜎, 𝜎′;𝑖≠𝑗 ,               

where 𝑛𝑖𝜎  is the density operator for holes on site 𝑖 with spin 𝜎. We use a Yukawa-like 

potential 𝑉|𝑗| =
𝑒2

|𝑗|𝑎𝑚𝜀
𝑒−|𝑗|𝑎𝑚/𝜌  for the interaction, where 𝜀  is the background dielectric 

constant and 𝜌 is the characteristic length scale of the interaction. In the classical limit or in 

the 𝑇 = 0 limit, 𝑛𝑖𝜎 = {0, 1}. In all our simulations we use 𝜀 = 5 and 𝜌 =
2

𝐿
, where 𝐿 is 

the length of the supercell we consider. In particular, for each value of the filling factor, we 

construct a supercell such as 𝜈𝐿 is an integer number. We carry out simulations for several 

filling factors, with 𝐿 ranging from 7 to 10. We also checked that using bigger supercells, e.g. 

𝐿 = 15 , does not affect the lowest energy ordered state. We start our algorithm at high 

temperatures, such that 
∆𝐸(1)

𝑘𝐵𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙
= 0.1, where ∆𝐸(1)  is the energy difference between the 

initial state (𝐸(0)) and the first accepted state (𝐸(1)) (with the acceptance rule 𝐸1 < 𝐸0) and 

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial temperature. The temperature is then decreased linearly 𝑇(𝑖+1) = 𝛼𝑇(𝑖), 

with 𝛼 = 0.95 . Between each iteration we perform 𝑁𝑀𝐶 = 103 × 𝑛𝑐ℎ𝑎𝑟𝑔𝑒𝑠  Monte Carlo 

steps at constant temperature, where 𝑛𝑐ℎ𝑎𝑟𝑔𝑒𝑠  is the number of charges in the simulation. 

Figure S15 shows the charge-ordered states for a variety of filling factors ν (number of holes 

per moiré cell) that result from this procedure. We note that our results agree with those of Xu 

et al.12.  



 

Figure S15. Charge-ordered states from classical Monte Carlo calculations for four filling 

factors. (a) 𝜈 = 1/4, (b) 𝜈 = 1/3, (c) 𝜈 = 1/2, (d) 𝜈 = 2/3. 

 

  



For these long-range ordered charges in a moiré lattice, we consider the energy shift of 

the trapped IX trion. For simplicity, a random number is not introduced this time, and 𝑝 is 

treated as the filling factor ν. Additionally, the occupation configuration is assumed to change 

from one ordered state to the other abruptly as 𝑝 changes. Moreover, for a given long-range 

charge-ordered state, a trapped IX can experience up to three different immediate charge 

environments depending on the moiré site occupied by the IX. Interaction energies are 

calculated at each representative site (S1, S2, and S3) as indicated in Fig. S16(a) for the case of 

ν = 2/3. In this specific example, one can see that S1 has 6 NN filled, while S2 and S3 only 

have 3 NN sites occupied. Figure S16(b) shows a plot of the number of filled first NN sites 

versus ν for each site. Figs. S16(c-e) show the calculated energy shift of the trapped IX at each 

site as a function of ν. Although the overall trend of a blue-shift is similar at all 3 sites, the 

detailed behaviour of the energy shifts varies at each site. Additionally, it is noticeable that 

jumps to lower energy can be observed with the long-range charge ordered states. In contrast 

to our prior simulations (Section S7) which included no-order or only short-range order, the 

mutual interaction between charges in all moiré sites considered here can result in a red-shift 

of the trapped IX sensor at several fractional fillings. To further refine the simulation, we also 

take into account the interaction of the trapped IX with charges up to the second NN sites (see 

Fig. S17). Although the overall trends are similar to the cases considering only the first NN 

sites, the inclusion of interactions with the second NN sites adds additional complexity to the 

energy shifts, with additional steps and energy scales.  

Our results reveal red- and blue-shifted moiré-site-dependent energy shifts for different charge-

ordered states when interactions with only NN and both NN and second nearest neighbours are taken 

into account. Additional complexity arises from the existence of three inequivalent sites in a perfect 

moiré lattice which yield different immediate charge environments at the same filling factor. While we 

see signatures of such features in the experimental data (e.g. Fig. S10), unambiguous identification of 

the charge-correlated states is beyond our current capabilities. In the future, this could be achieved with 

correlated optical reflectivity data, structural information, and perhaps the aid of machine learning 

techniques to identify the specific charge-correlated signatures.      



    

Figure S16. (a) Charge-ordered states in moiré superlattice with filling factor of 2/3. Three 

representative sites (S1, S2, and S3) and their first NN sites, in which interaction of IX and 

charges are considered, are indicated as black, red, and blue lines. (b) Plot of number of filled 

first NN sites versus filling factor. (c-e) Calculated energy shift of IX versus filling factor at 

S1, S2, and S3. 

  



Figure S17. (a) Charge-ordered states in moiré superlattice with filling factor of 2/3. Three 

representative sites (S1, S2, and S3) and their second NN sites, in which the interaction of IX 

and charges are considered, are indicated as red, orange, and green lines. (b) Plot of the number 

of filled second NN sites versus filling factor. (c-e) Calculated energy shift of IX versus filling 

factor at S1, S2, and S3.  

 

  



Section S9. Excitation energy dependence of moiré IX emission 

Figure S18 shows PL maps as a function of Vg with resonant excitation for either the 

intralayer A-exciton of WSe2 (1.705 eV) or the A-exciton of MoSe2 (1.632 eV) at position P1. 

The same data measured at position P3 is shown in Fig. S19. First, we note some important 

observations: every spectral feature is reproducible, no hysteresis in the doping sweeps is 

present, and there are no effects of random charge noise. Further, the Vg dependence of the PL 

spectra is similar overall between the two different excitation energies (i.e. the trapped IX 

emission energies and spectral jumps are consistent), but the Vg values for each transition 

region from IX0 to IX+/IX– are different. For MoSe2 excitation, the Vg range for neutral region 

is shifted negative and the electron doped region is expanded compared to the WSe2 excitation. 

This result indicates that excess electrons are formed via a photodoping effect when the MoSe2 

intralayer is resonantly excited, shifting the charge neutral region to negative Vg. Additionally, 

the expanded electron doped region in the PL maps for MoSe2 excitation suggests that the 

photodoping effect is dependent on Vg. If the photodoping effect is constant, PL maps 

measured under different excitation energy would just show an offset of Vg, which is in contrast 

to the observed data. The experimental results indicate the photodoping effect decreases a Vg 

increases in the positive direction.  

  



 

Figure S18. Co- and cross-polarised PL maps as a function of Vg with resonant excitation to 

the intralayer A-exciton of WSe2 (1.705 eV) and MoSe2 (1.632 eV) measured at position P1. 

 

  



 

Figure S19. Co- and cross-polarised PL maps as a function of Vg with resonant excitation to 

intralayer A-excitons of WSe2 (1.705 eV) and MoSe2 (1.632 eV) measured at position P3. 

  



Section S10. DOCP map with resonant excitation to the intralayer A-exciton of MoSe2 

(1.632 eV) 

Figures S20(a) and (c) show DOCP maps as a function of Vg measured with resonant 

excitation to the intralayer A-exciton of WSe2 and MoSe2, respectively. The data in Fig. S20(a) 

is the same one shown in Fig. 4a in the main text. The excitation laser is 𝜎−  polarised. 

Representative PL spectra collected with 𝜎± polarisation at different doping conditions are 

presented in Figs. S20(b) and (d). The overall dependence is similar for the two different 

excitation energies, though the exact DOCP values are not the same. In both excitation cases, 

IX0 and IX– show strongly co-polarised emission and the DOCP abruptly reduces to nearly 0 

with hole doping as explained in main text. The abrupt decrease of DOCP in the hole doped 

region even under resonant excitation to MoSe2 indicates that the excitation valley polarisation 

is predominantly maintained through a hole in WSe2. In addition, the DOCP for IX0 and IX– 

are lower under MoSe2 resonant excitation compared to WSe2 resonant excitation. With the 

MoSe2 excitation, holes generated in MoSe2 layer transfer rapidly to the WSe2 layer due to the 

band alignment. Since valley polarisation is predominantly maintained through a hole in WSe2, 

the lower value of DOCP for MoSe2 excitation reveals that valley scattering processes occur 

during this charge transfer process. 

  



 

 

Figure S20. (a,c) DOCP maps as a function of Vg with resonant excitation for WSe2 and MoSe2 

respectively. (b,d) Polarisation-resolved PL spectra at different doping conditions. The spectra 

for the red and blue lines represent co- and cross-polarised excitation/emission, respectively.  

 

  



Section S11. Energy band diagrams for IX for an applied B-field 

Figure S21 shows electron energy band diagrams for the H-stacked MoSe2/WSe2 

heterobilayer for an applied B-field. The shift of the conduction and valence band edge energy 

(∆𝐸𝑐 and ∆𝐸𝑣) with B-field can be expressed as 

∆𝐸𝑐 = (2𝑆𝑧 +  𝜏𝛼𝑐)𝜇𝐵𝐵 

∆𝐸𝑣 = (2𝑆𝑧 +  𝑚𝑙 +  𝜏𝛼𝑣)𝜇𝐵𝐵 

where 𝜇𝐵 is the Bohr magneton, 𝑆𝑧 =  ±1/2 is the electron spin value, 𝜏 =  ±1 is the valley 

index, 𝑚𝑙 =  ±2 is the magnetic quantum number for the atomic orbital at the valence band 

edge and 𝛼𝑐,𝑣 is the valley magnetic moment for the conduction/valence band.17 According to 

a 𝑘 ∙ 𝑝  theory, 𝛼𝑐,𝑣 =  𝑚0/𝑚𝑐,𝑣
∗   where 𝑚0 is the free electron mass and 𝑚𝑐,𝑣

∗  is the 

electron/hole effective mass at the conduction/valence band edges.18 As a result, the magnitude 

of the energy difference in the conduction and valence bands between valleys (∆𝑐 and ∆𝑣) are 

∆𝑐= (2 +  2𝛼𝑐)𝜇𝐵𝐵 

∆𝑣= (2 + 4 +  2𝛼𝑣)𝜇𝐵𝐵. 

 

 

Figure S21. Electron energy band diagrams for the H-type stacked MoSe2/WSe2 heterobilayer 

for different B-field conditions.   
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