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Supplementary Fig 1. The model elevates its learning rate in volatile environments. a) Simulations of our model 
in the volatility learning paradigm, in which subjects undergo stable (bluish) and volatile blocks (orangish) of 
learning. Dashed and solid line show true reward and estimated reward by the model, respectively. b) learning 
rate is larger in the volatile block compared with the stable one, similar to those reported in humans. This is 
because the volatility term (c) increases more than the stochasticity term (d) in the volatile condition. Errorbars 
reflect standard error of the mean over 1000 simulations and are too small to be visible. Source data are provided 
as Source Data file. 
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Supplementary Fig 2. The model reduces the learning rate in stochastic environments. a) The prediction task by 
Nassar and colleagues1, in which the participant makes a new prediction of outcome on every trial. Outcomes are 
generated based on a true reward rate, which undergoes occasional jumps, plus small or large amount of noise 
(i.e. true stochasticity). b) Behavior of the model in this task: Increases in the noise level is analogous to increases 
in stochasticity, which decreases the learning rate. The model also explains aspects of empirical data (Nassar et 
al.1) that are quite independent of stochasticity and are more closely related to jumps (c-d). c) Learning rate 
increases following switches in the task for both types of noise, although this effect is stronger for smaller noise 
level. d) The model learning rate also increases by increase in absolute error magnitude (divided by the value of 
true noise). Errorbars reflect standard error of the mean over 1000 simulations and are too small to be visible. 
Source data are provided as Source Data file. 
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Supplementary Fig 3. Simulations in the same setting of Fig. 2 for an alternative model in which the generative 
process for volatility and stochasticity is assumed to be Gaussian (see Methods). The same particle filter has been 
used for inference. These results are very similar to the original results reported in Fig. 2 indicating that the model 
is not sensitive to the generative process as long as the same inference algorithm has been employed. a) Learning 
rate in the model varies by changes in both the true volatility and stochasticity. Furthermore, these parameters 
have opposite effects on learning rate. In contrast to volatility, higher stochasticity reduces the learning rate. b) 
Estimated volatility captures variations in true volatility. c) Estimated stochasticity captures variations in the true 
stochasticity. In (a-c), average learning rate, estimated volatility and stochasticity in the last 20 trials were plotted 
over all simulations. d-f) Learning rate, volatility and stochasticity estimates by the model for small true volatility. 
g-i) The three signals are plotted for the larger true volatility. Estimated volatility and stochasticity by the model 
capture their corresponding true values. Model parameters were assumed to be 𝜎"# = 𝜎%# = 0.1. Errorbars are 
standard error of the mean computed over 10000 simulations and are too small to be visible. Source data are 
provided as Source Data file.  
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Supplementary Fig 4. Suppression ratio reported by Hall and Pearce (a) and the median response probability by 
the model in the retraining phase (b). The omission group shows faster decrease, consistent with empirical data. 
Suppression ratio has been defined as the ratio of response in the 90 seconds window following presentation of 
the cue divided by its sum with the response rate in the preceding window of 90 seconds. Data in a were reported 
by Hall and Pearce2. Source data are provided as Source Data file. 
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Supplementary Fig 5. Empirical data for the partial reinforcement effect experiment (a) and the median response 
probability by the model in the retraining phase (b). Empirical data of the retraining phase were reported by 
Haselgrove et al.3, in which the relative score has been calculated by subtracting the duration of magazine activity 
during the pre-CS period from duration of the magazine activity during the CS period. The average relative score 
across two sessions of extinction has been plotted. Source data are provided as Source Data file. 
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Supplementary Fig 6. Probability sequences used for simulations presented in Fig. 5f (a) and 5h (b). For simulating 
the second task (b), the actual change-points were chosen based on a normal distribution with the mean 30 (from 
the previous change point) and variance 1, similar to the original experiment. 
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Supplementary Fig. 7. Probability of correct choice for simulation results reported in Fig. 8, for the deterministic 
(a) and stochastic (b) tasks. These are well matched with empirical data reported by Costa et al4. Source data are 
provided as Source Data file. 
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Supplementary Fig. 8. Simulation of the model for all probabilistic schedules tested by Costa et al.4. a-b) empirical 
data and model simulations are plotted, respectively. Errorbars reflect standard error of the mean (over 1000 
simulations in (b)). Source data are provided as Source Data file. 
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Group Data Model 
Control-consistent 53.9 56.18 

Control-shift 55.6 56.22 
Lesioned-consistent 59.9 56.21 

Lesioned-shift 52.2 56.21 
 
Supplementary Table 1. Reported data (time spent in the food cup%) of phase 1 of the experiment by Holland and 
Gallagher5 (Fig. 7) following presentation of the second cue. No significant difference was found between control 
and lesioned animals suggesting that lesioned animals were able to learn efficiently. The model shows the same 
behavior (percentage of food response is reported, which is calculated based on a softmax with the decision noise 
of 0.5). 
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