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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

Piray and Daw develop a particle filter-based approximate inference model for learning in 
environments with unknown “volatility” and “unpredictability”. They apply the model to explain 
seemingly incongruent results from conditioning in rodents, human behavior across multiple tasks, 

changes in behavior that emerge after amygdala lesions, and individual differences in learning that 
occur with anxiety. 

This paper is impressive in that its scope. It attempts to capture data from three species in a wide 

range of task designs. In my opinion, a primary advantage of models is that they provide a way to 
generalize across the task specifics – and I think this paper makes an impressive contribution in that 
direction. However, I have a large number of concerns about the paper, many of which are probably 

consequences of the strategy taken by the authors to model many things, but not model anything in 
detail. My hope is that the authors are able to address these concerns, as I think if adequately revised 

the paper could provide a very nice contribution to the field. 

Major concerns: 

The authors motivate the novelty of their work based on a new model where volatility and 

unpredictability are learned simultaneously from experience. I would argue that they are not the first to 
do this – for example, Wilson 2010 provides an algorithm for optimal inference in environments with 
changepoints and unknown variance – that maps qualitatively onto the constructs explored here. Nor 

are the authors the first to explore the implications for the interaction between volatility and 
unpredictability estimation either theoretically (Yu & Dayan 2005) or in relation to individual 

differences in behavior (eg. noise estimation model from Nassar 2010). The implications for 
conditioning have also been described previously to some extent (Courvile & Daw 2006) – and the 

implications for anxiety have also been discussed (Pulco & Browning 2019). What has never been 
done previously, that is done in this manuscript, is to systematically apply one model to such a broad 
array of task findings across experimental designs and species. I think that is really valuable, and in 

my opinion it is what makes this work appropriate for a broad readership. But I think reframing could 
be necessary to clarify exactly what this work provides beyond the work listed above. 

My second major concern is that while the breadth of modeling applied here is commendable, the 
depth of explanation for each condition leaves something to be desired. Most of the major concerns 

below are different specific cases of this issue. 

For example, figure 3 models a task with rich behavioral dynamics that have been extremely well 
characterized… but the only thing that is modeled is the difference in average learning rate under high 
and low noise conditions. While this is a feature of human behavior in that task, it is a minor one, with 

the more impressive features being the scaling of learning rate as a function of error magnitude and 
noise, and the scaling of learning rate with the number of trials since the last change. If the authors 

wish to make the claim that the discrete transitions in that task can be well modeled by the drifting 
process in their model it seems imperative to show that the model captures these core features of 

behavior. 

For all simulations, but particularly the conditioning simulations, I found it very difficult to understand 

exactly what is being shown to the model (ie. how many trials per phase, how were values assigned 
to each condition). This makes interpretation of the model “behavior” difficult. But from what I can see, 

I suspect that this model diverges pretty systematically from the rodent behavior in that it uses 
learning rates that are extremely high. I know the data from several of the cited conditioning 
experiments quite well, and none that I know of show anything that looks like one shot learning. 

Acquisition and extinction curves are slow -- and based on the learning rates presented I would guess 
that this model vastly underestimates the number of trials that would be necessary to 

acquire/extinguish conditioning behavior. Claims could be strengthened by showing that the model 



predicts some aspects of behavior beyond the binary higher/lower comparison – as I think that there 
are many ways of explaining the bases for the binary differences. 

The authors say that previous work suggests that the amygdala plays a role in selecting a learning 

rate, but aren’t the references claiming that learning actually occurs in the amygdala? This would 
make a slightly different prediction from the claim here – which should make different predictions for 
figure 8 – namely that lesioned animals should fail to learn in the first place (eg. phase 1). Once 

again, for this reason, it would be useful to see model predictions in a richer format, alongside the 
relevant behavioral data if available. Furthermore, the authors should clarify why they believe that 

lesioning an area responsible for selecting volatility should lead the brain to think volatility is always 
zero. In many other domains, lesions can lead to higher reliance on a global prior, which I think would 

yield a different result. 

I have a number of points of confusion regarding figure 9. First, why is the learning rate in control 

condition so high even in the stochastic condition? Optimal learning in this case is the average across 
outcomes... so if the model is providing a good approximation to this, it should be doing something 

similar, right? If the learning rate is 0.7, the model is making most of its errors by being overly switchy 
-- does this match monkey behavior? It strikes me as unlikely to be the case, but if the data are 
available it would certainly be a useful prediction to test, and much more specific than the overall error 

rates. Also, why do initialization of volatility and unpredictability differ so much across experiments (ie. 
figure 8 and figure 9)? 

The anxiety predictions from the model suggest that “anxious” individuals should have higher learning 
rates across conditions – but this is not what was observed in Browning 2015. As I recall, anxious 

individuals in the empirical study used average learning rates similar to less anxious ones, and only 
differed in the degree to which they modulated learning across conditions. It would be useful if the 

authors could clarify, and if it exists, address this discrepancy. Once again, as with the other studies 
above, rich data exist for the empirical study that really nail down the dynamics of the learning 

behavior in anxious and non-anxious individuals – distilling this data to a single greater than or less 
than seems to throw out a lot of potentially useful information. As a minor point – the text for this 
section says: 

“model shows insensitivity to volatility manipulation, but that is actually because 
volatility is misestimated nearer ceiling due to underestimation of volatility.” presumably the last 

volatility is a typo. 

Finally, the modeling methods could be better elaborated. In particular I was unclear on how exactly 

particle filtering was implemented. 

Minor concerns: 

The authors say: “Note that while considered together, these two lines of studies separately 

demonstrate the two types of effects on learning rates we stress, neither of these lines of work has 
manipulated unpredictability alongside volatility” – but I think that Lee, Gold and Kable, 2020, does 

just this. 

I have not seen “unpredictability” used before to mean measurement noise… but it does not seem 
very specific – as volatility also decreases outcome predictability. I would advocate usage of one of 
the existing terms, as there is already no shortage of such terms in the literature (observation noise, 

measurement noise, irreducible uncertainty). 

Graphical model should show a second timestep so that it is apparent how autocorrelation emerges 
from volatility but not unpredictability. 

Is figure 2 necessary? Since the model is just an extension of the idea in Behrens 2007 it seems like 
a mention that it can capture these basic effects should be sufficient. If the authors feel it is 

necessary, it would be good for it to match the actual experimental design, which had more 



deterministic reward structure in the volatile task phase. 

Why does the learning rate start out low in figure 4 simulations? A Kalman filter with a single drift and 
observation noise should start out with a learning rate near 1 that decays across trials. I don’t see why 

this model should be different (or why starting with low learning would be useful). 

Page 8: “The amygdala is known to be critical for associative learning” 

The authors should clarify what they mean here – presumably the amygdala is not responsible for all 
forms of associative learning (many of which occur in organisms that don’t have an amygdala). 

Page 19: “though the accompanying models did not address our main question of how subjects 

estimate the noise hyperparameters” 
Nassar 2010 did include models that inferred noise hyperparameters and showed a similar interaction 
to that which is focused on here. 

Reviewer #2 (Remarks to the Author): 

Unpredictability vs. volatility and the control of learning 
Piray and Daw 

In this paper the authors describe an hierarchical model that estimates two causes of outcome 
variability (unpredictability and volatility). They describe the underlying logic of the model and describe 
a series of simulations in which the predictions of the model are broadly compared to previously 

reported results. 
The paper is well written and generally clear. The question of learning in the face of different sources 

of variability is topical with relatively less focus in the literature on what the authors term 
unpredictability. 

The basic concepts explained in the paper are similar to those describe in the recent Pulcu and 
Browning (2019) paper, although the nomenclature is a little different and the current paper focuses 
more on simulations of previous results and provides detail on their particular model. 

I had a couple of thoughts on what might improve the paper: 

1. I think it would be useful to be a little more critical of the predictions generated by the model. The 
authors list quite a broad range of different studies and uncritically describe their model as capturing 
important details of the results. It would be useful to know a bit about the results the model is not able 

to capture. As an example, the authors suggest that their model can explain the results from studies 
of patients with anxiety if they force it to assume a low unpredictability. In their simulated results, the 

model uses a generally high learning rate (as it overestimates volatility). The authors describe this as 
being similar to their own previous results. However, this pattern of generally increased learning rates 
wasn’t found in the Browning et al. 2015 study (Lrs were lower in the volatile condition), or in other 

work (there has not been a general finding that anxious individuals have high LRs). As it stands the 
authors report many different simulations briefly. I would suggest cutting the number of simulations 

down and being a little more critical of the ones they do report. 
2. It would be useful to have a brief section with some concrete predictions of novel results arising 

from their model—for example, what sort of situation might promote the misattribution of volatility and 
unpredictability and what sort of data should we expect in these situations? 

Reviewer #3 (Remarks to the Author): 

Piray P and Daw ND, Unpredictability vs. volatility and the control of learning 

The authors present a learning model in which they distinguish two types of stochasticity, 

unpredictability and volatility. They point out that volatility has been considered in several studies, but 



unpredictability has received less attention. This distinction is important because the two forms of 
stochasticity push learning rates in opposite directions. Volatility should lead to an increase in learning 

rates, and unpredictability should lead to a decrease. They develop the model using a Kalman filter 
framework. 

This paper presents an important idea. The paper is clearly written. The figures illustrate the concepts 
well. And the example datasets to which they fit their data are also appropriate and clear. I found Fig. 

7 to be particularly important. Perhaps it would be worth moving Fig. 7 closer to the front of the 
results? The authors mention this result several times before the figure which shows it. 

I have only minor comments. 

Comments. 

1. I was curious about the use of multiplicative noise models for the temporal evolution of volatility and 
unpredictability. Why not additive? I may have missed this, but perhaps a comment in the methods to 

clarify this choice. Does this help with the dissociation? 

2. Reference to Figures 4 and 5 here should, I think be to Figures 5 and 6. 

“Note the subtle difference between the experiments of Figures 4 and 5.” 

3. In Fig. 7, it would be worth showing the healthy unpredictability and volatility, or referencing Fig. 4 
for comparison. 

4. I believe the volatility at the end of this sentence should say unpredictability, “…because volatility is 

misestimated nearer ceiling due to underestimation of volatility.” 

5. These sentences have typos: 

Notably, this type of finding cannot be explained by models like which learn only about volatility. 

For both lesion models, lesioning does not merely abolish the corresponding effects on learning rate, 

but reverses it. 

In particular, these of effects and a number of others are well explained by the unpredictability lesion 

model… 
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Reviewer #1 (Remarks to the Author): 
Piray and Daw develop a particle filter-based approximate inference model for learning in environments 
with unknown “volatility” and “unpredictability”. They apply the model to explain seemingly incongruent 
results from conditioning in rodents, human behavior across multiple tasks, changes in behavior that 
emerge after amygdala lesions, and individual differences in learning that occur with anxiety. 

This paper is impressive in that its scope. It attempts to capture data from three species in a wide range 
of task designs. In my opinion, a primary advantage of models is that they provide a way to generalize 
across the task specifics – and I think this paper makes an impressive contribution in that direction. 
However, I have a large number of concerns about the paper, many of which are probably consequences 
of the strategy taken by the authors to model many things, but not model anything in detail. My hope is 
that the authors are able to address these concerns, as I think if adequately revised the paper could 
provide a very nice contribution to the field. 

Major concerns: 
The authors motivate the novelty of their work based on a new model where volatility and unpredictability 
are learned simultaneously from experience. I would argue that they are not the first to do this – for 
example, Wilson 2010 provides an algorithm for optimal inference in environments with changepoints 
and unknown variance – that maps qualitatively onto the constructs explored here. Nor are the authors 
the first to explore the implications for the interaction between volatility and unpredictability estimation 
either theoretically (Yu & Dayan 2005) or in relation to individual differences in behavior (eg. noise 
estimation model from Nassar 2010). The implications for conditioning have also been described 
previously to some extent (Courvile & Daw 2006) – and the implications for anxiety have also been 
discussed (Pulcu & Browning 2019). What has never been done previously, that is done in this manuscript, 
is to systematically apply one model to such a broad array of task findings across experimental designs 
and species. I think that is really valuable, and in my opinion it is what makes this work appropriate for a 
broad readership. But I think reframing could be necessary to clarify exactly what this work provides 
beyond the work listed above. 

We thank the reviewer for their positive assessment of our work and for helpful 
suggestions, which helped us improve the manuscript substantially. 

First, we have reworked different parts of the manuscript so as to make contributions of 
this work clearer. We agree with the reviewer that our main contribution is not the 
mechanics of simultaneously tracking both volatility/hazard and unpredictability/ 
observation noise per se. This is, in practice, a challenging computational problem (and 
one where we are still hard-pressed to find quantitative testing and demonstration of 
successful solution in the literature), but it is in any case conceptually straightforward and 
not our main focus. 

While we are thankful to the reviewer for appreciation of the broad scope of our paper, 
we also don’t think that our contribution is limited to that. In the revision, we have tried 
to expose and focus on a single, novel theme that connects our contributions. Most of our 
varied applications to neuroscience, psychology, and psychiatry are consequences of a 
simple but widely applicable new insight, which we identify by raising unpredictability to 
the same status as volatility and focusing attention on their joint inference. In particular, 
we show that estimating both types of hyperparameter simultaneously leads to issues of 
explaining away between them, with implications that are evident in healthy human and 
animal behavior, neurological and psychiatric disorders, and complicate the interpretation 
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of much previous research. These issues only become clear when we put all the pieces 
together in one place and consider both aspects of hyperparameter inference 
simultaneously, and are not raised in the prior work. 

With this in mind, we can revisit some of the previous work mentioned. 

1) Obviously our work is most directly descended from the line on hierarchical Gaussian 
filters (from Behrens through Mathys and our VKF), which has pretty much universally 
focused on volatility estimation alone. For this reason, we motivate our direct 
contribution as building on this work by extending tracking to the second 
hyperparameter. But we try to make clear at several points that in so doing we are 
bringing these studies into contact with the research on changepoint tasks (from 
Nassar, Wilson and others), which we see as important to our argument because it 
demonstrates the contribution of tracking changing levels of unpredictability, 
balanced against volatility (i.e. hazard). 

However – in contrast to the Behrens/Mathys research which is focused on volatility 
estimation – our overall read is that the changepoint studies have mostly not 
emphasized hyperparameter learning per se, vs. the within-block dynamics of first-
level learning rates in this type of problem, with at least some hyperparameters taken 
as given or fit blockwise. Even where it has considered hyperparameters, this work has 
not to our knowledge considered the issues arising from simultaneous 
estimation/tracking of both.  

Wilson et al. 2010 (Neural Computation) focus on estimating an unknown and 
changing hazard rate, which we take as conceptually related to volatility. We 
appreciate the reviewer’s calling our attention to the fact that this algorithm, while 
tracking a changing hazard, can also marginalize an unknown (but fixed) observation 
noise. We now cite this point. We could find no comment in that paper as to whether 
this is actually exercised in the example simulations, nor any overt exploration of this 
capability, but we agree this is a technical solution to a problem related to the one we 
address, of jointly estimating both parameters when both are potentially also 
changing.  

However, when the implications of this model are taken into the empirical domain (in 
the line of studies starting with Nassar et al., 2010) the model is referenced but then 
replaced with a set of simplified algorithms in which only the noise is now inferred (eg 
Eq 22 of Nassar et al., 2010) conditioned upon a hazard that is taken as a fit free 
parameter (eg text following Eqs 14 and 25) – i.e. fixed and known from the 
perspective of the model’s inference. This simplification again skirts the main issue we 
pursue in the current study. As the reviewer points out, the fit hazard is viewed as 
characterizing an individual difference, and the study considers issues that arise from 
how this parameter (again, viewed inside the model as fixed and given) affects the 
model’s internal, dynamic noise estimation. We agree (and now mention) that this 
dependence has some resonance with the issues we explore, but we also think it’s fair 
to say that this literature just hasn’t addressed the points we make about the 
consequences of interdependent joint inference of hyperparameters and the 
phenomenon of explaining away. 
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2) We also do not think that Yu and Dayan (2005) solve, or even raise, the problems that 
we expose here. There are a few different variants of this model, but as we discuss, in 
the most general one (NIPS 2003), they are focused on distinguishing two types of 
change dynamics from one another (discrete changepoints from the combination of 
both Gaussian diffusion and observation noise in the baseline Kalman filter). It seems 
to us a misreading that later authors have sometimes identified their “expected and 
unexpected uncertainty” terminology with volatility and unpredictability in 
hierarchical Kalman filters. The models also do not address hyperparameter estimation 
at all (except insofar as, when a binomial observation model is used, the mean and 
unpredictability are the same quantity) – the emphasis, as with Nassar, is on 
changepoint detection. 

3) Regarding some of the applications, while there have been applications of this type of 
model to Pavlovian conditioning, we think that the example of Courville, Daw and 
Tourtetzky (2006) illustrates precisely what they lacked, because it presages our 
current account only with respect to Pearce/Hall, volatility, and surprise enhancement 
and latent inhibition of learning rates. However, at that time, we had missed the 
connection between unpredictability, Mackintosh, and effects like the partial 
reinforcement extinction effect (PREE). The model simply neglected unpredictability, 
in part because it used a binomial observation model. This had a specific impact on the 
attempt to account for the PREE (where we conceded we could not explain the results 
of Haselgrove et al. 2004 showing the effect is not driven by just outcome probability; 
we now model this experiment in Supplementary Fig 5) – but the broader and more 
important point is that this paper was typical of the literature attempting to connect 
Pavlovian associability models to statistical inference, in that it was not at the time 
conceptually clear which types of uncertainty and noise were at issue. Our current 
account of the mapping between the two hyperparameters, the two classes of effects 
in these types of studies, and the earlier psychological models is, to our knowledge, 
novel to the current paper, and again grows directly out of our consideration of the 
joint problem in light of the later modeling and experimental literature. 

4) And finally, the short review by Pulcu and Browning (2019) presages our model in that 
they stress the importance of both types of uncertainty in the HGF models. We now 
mention this precedent sooner, more often, and more explicitly. However, our current 
paper presents a great deal of formal development, simulation and analysis to develop 
these ideas in much more detail – and especially, again, those about the interaction 
between the inference of the two variables and its implications, which they barely 
broach. Thus, while they mention the possibility that people might in principle confuse 
volatility and unpredictability, they identify none of the many implications of this 
possibility that our paper discusses, including in their discussion of anxiety.  

On anxiety, they advocate the general view – which we share – that “misestimation of 
uncertainty is involved in the development of anxiety and depression.” However, 
neither of the two possible mechanisms they briefly sketch for this is the same as our 
proposals. The closer one is their recapitulation of the account from Browning et al. 
(2015), arguing that anxiety affects processes related to volatility estimation. This 
indeed is the starting point for our own discussion of anxiety. But our whole argument 
is that the apparent volatility effects they identify are secondary to more fundamental 
effects on unpredictability, and that the broader pattern of effects is deeply tied up 
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with this interrelationship. We develop this idea (and many more nuances and details, 
moreso in the current revision) connecting those results also to our own empirical 
work (Piray et al., 2019) and that of Huang et al. (2017) among others (note that an 
explanation that only considers volatility cannot explain and even contradicts with 
Huang et al. (2017), Harle et al (2017) and Aylward et al. (2019).)  

They also present a second idea about anxiety that has little relationship with our 
work. Following their recent empirical work (Pulcu and Browning, 2017, elife), Pulcu 
and Browning stress that misestimation of uncertainty might be particularly related to 
its impact on symptoms of anxiety and depression “by skewing the processing of 
affective stimuli in a manner that favours negative over positive events” (Pulcu and 
Browning, 2019). We believe that this is a very promising hypothesis, but it is 
orthogonal to what we propose here. 

My second major concern is that while the breadth of modeling applied here is commendable, the depth 
of explanation for each condition leaves something to be desired. Most of the major concerns below are 
different specific cases of this issue. 

We are grateful to the reviewer for helpful suggestions. In light of the reviewer’s 
comments, we have done several new simulation analyses (Figs 5-6) and extended our 
previous ones (Supplementary Figs 2-8; Supplementary Table 1), which we believe 
deepens each problem that we consider substantially. 

For example, figure 3 models a task with rich behavioral dynamics that have been extremely well 
characterized… but the only thing that is modeled is the difference in average learning rate under high 
and low noise conditions. While this is a feature of human behavior in that task, it is a minor one, with the 
more impressive features being the scaling of learning rate as a function of error magnitude and noise, 
and the scaling of learning rate with the number of trials since the last change. If the authors wish to make 
the claim that the discrete transitions in that task can be well modeled by the drifting process in their 
model it seems imperative to show that the model captures these core features of behavior. 

Thanks for the comment. We have addressed these issues with additional simulations 
(discussed below). However, in light of both reviewers’ advice regarding focus and your 
suggestion to omit or downplay Figure 2 (the Behrens simulation which was the companion 
to this one), we have also moved this figure and the simulation of the Behrens task to 
supplement. We hope this helps to make the revised manuscript clearer about the role 
these data and their simulation play in our argument, because the aspects of it we 
emphasize and downplay again reflect what are the novel aspects of our work.  

First, as we now say explicitly, we are not advocating our model as a superior overall 
account of the changepoint experiments, compared to models specialized for that task. To 
the contrary, we fully expect that a model, such as Nassar’s, which incorporates the 
underlying generative process of the task as it was instructed to subjects, should be able 
to outperform our model for this specific task.  

We instead bring up these data because they are the best available demonstration of the 
sensitivity of human choice behavior to the outcome noise – importantly with the opposite 
effect on learning rate as has been emphasized for hazard/volatility. This is precisely the 
feature that we argue the HGF line of studies has neglected both experimentally and 
theoretically, and which our model incorporates. We agree that this blockwise adjustment 
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was not emphasized in Nassar’s original papers, even though it is prominent (e.g Nassar et 
al., 2010, Figure 2B). But we do not agree it is “minor,” particularly in the context of its 
relevance to the novel issues in our current study and to the adjacent literature on 
volatility. 

Conversely, the pattern of learning rates around changepoints, while clearly of great 
interest and importance, is pretty well studied in both the HGF and changepoint lines of 
models, and we aren’t intending to add anything new about that. We don’t intend a strong 
commitment to the distributional form of the change (diffusion vs jump), since our issues 
of focus (the evidence that people must infer both change and noise hyperparameters, 
and the consequences of this) play out analogously in either formulation. Similarly, 
although again this is not a new insight and not our focus, we think the basic point about 
learning rate increasing at a changepoint due to inferred change (whether mediated by a 
local change in inferred volatility or an inferred jump) is also pretty similar, in that there 
are parametric regimes (i.e., fast volatility learning, appropriate to a situation when 
subjects are instructed about or experience jumps) in which the volatility model mimics 
the changepoint models in this respect. Indeed (as we now say in the paper) we 
understand the Wilson/Nassar approximate inference models (which approximate exact 
changepoint identification with a delta rule, i.e. the same form as the Kalman filter and its 
relatives) as a clear demonstration that seemingly different generative assumptions 
ultimately give rise to similar learning dynamics here. Overall, in modeling (empirical) 
discrete changepoints with inference derived from a Gaussian diffusion process, we aren’t 
trying to make a new or provocative claim here, just being faithful to a consistent feature 
of the preceding line of HGF models (back to Behrens 2007), which was arguably 
infelicitous but seems inconsequential for our current purposes.  

With all that said, we have conducted further simulation analyses and have revised the 
related figure (now Supplementary Fig 2) to show that the model captures additional 
aspects of behavior in the Nassar’s task, as suggested by the reviewer. In particular, we 
have shown that the model can reproduce two aspects of empirical data in that task: 1) 
the learning rate increases following jumps and reduces over time; 2) the learning rate 
scales positively with the magnitude of error.  

In the preceding line of studies, unpredictability was not manipulated. (Indeed, it was not 
even independently manipulable because rewards were binary, and the variance of 
binomial outcomes is determined only by the mean.) However, analogous effects of 
unpredictability have been seen in another line of studies (McGuire et al., 2014; Nassar et 
al., 2010, 2012, 2016). In these studies, Nassar and colleagues studied learning rates in task 
in which subjects had to predict a value, from observations in which the true value was 
corrupted, blockwise, by different levels of additive Gaussian noise (i.e., unpredictability) 
and occasionally “jumping” with a constant hazard rate, analogous to volatility. The main 
feature of these results relevant to the current model is that these studies have shown 
that participants’ learning rate decreases with increases in the noise level (see also (Lee et 
al., 2020)). This effect cannot be explained by models that only consider volatility, and in 
fact, those models make opposite predictions because they take increased noise as 
evidence of volatility increase. The current model, however, produces the same blockwise 
effect as humans: because it correctly infers the change in unpredictability, its learning 
rate is lower, on average, for higher levels of noise (Supplementary Figure 2). Although we 
do not intend the current model as a detailed account of how people solve this class of 
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tasks (which is based on a somewhat different generative dynamics), the model can also 
reproduce other more fine-grained aspects of human behavior in this task, particularly 
increases in learning rate following switches and scaling of learning rate with the 
magnitude of error (Supplementary Figure 2). 

 

Supplementary Fig 2. The model reduces the learning rate in unpredictable 
environments. a) The prediction task by Nassar and colleagues, in which the participant 
makes a new prediction of outcome on every trial. Outcomes are generated based on a 
true reward rate, which undergoes occasional jumps, plus small or large amount of noise 
(i.e. true unpredictability). b) Behavior of the model in this task: Increases in the noise 
level is analogous to increases in unpredictability, which decreases the learning rate. 
The model also explains aspects of empirical data (Nassar et al., 2010) that are quite 
independent of unpredictability and are more closely related to jumps (c-d). c) Learning 
rate increases following switches in the task for both types of noise, although this effect 
is stronger for smaller noise level. d) The model learning rate also increases by increase 
in absolute error magnitude (divided by the value of true noise). Errorbars reflect 
standard error of the mean over 100 simulations. 

For all simulations, but particularly the conditioning simulations, I found it very difficult to understand 
exactly what is being shown to the model (ie. how many trials per phase, how were values assigned to 
each condition). This makes interpretation of the model “behavior” difficult. But from what I can see, I 
suspect that this model diverges pretty systematically from the rodent behavior in that it uses learning 
rates that are extremely high. I know the data from several of the cited conditioning experiments quite 
well, and none that I know of show anything that looks like one shot learning. Acquisition and extinction 
curves are slow -- and based on the learning rates presented I would guess that this model vastly 
underestimates the number of trials that would be necessary to acquire/extinguish conditioning behavior. 
Claims could be strengthened by showing that the model predicts some aspects of behavior beyond the 
binary higher/lower comparison – as I think that there are many ways of explaining the bases for the 
binary differences. 
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Thanks for these comments. Before the specifics on the conditioning experiments, a few 
general comments on the intention of the simulations, and how we have adjusted them in 
light of the reviewer’s comments. In general, given the broad scope (and length) of the 
paper, our primary goal has been to expose a range of examples of how our main issue of 
interest (the interplay between volatility and unpredictability inference) plays out in 
different settings. We have, in turn, endeavored to extract and summarize evidence 
relevant to this main focus in each case, and unpack it in terms of the underlying volatility 
and unpredictability estimates, in a way that facilitates comparing across the different 
studies and appreciating the connecting theme.  

However, we take seriously the reviewer’s point that this strategy may stylize the results a 
bit too much, and obscure the way the issues play out in (real or simulated) data. In light 
of this, we have attempted to preserve the basic flow and approach of the manuscript, but 
accompanied each of these summary simulations with more disaggregated figures (usually 
learning curves or timeseries) in supplement. We hope this also helps to clarify the details 
of the simulations, which we have also tried to address with more detailed Methods 
simulation details throughout. Also, we take the point that each of these individual 
domains has many details, and our goal is more to trace our theme’s applications through 
them; we now acknowledge that there may be other ways of explaining individual effects. 

As for conditioning, we are grateful to the reviewer for pointing out that learning in rodent 
(appetitive) conditioning is usually slow. Of course, the net learning rate is parameter-
dependent, but the overall pattern of effects we stress is relatively invariant. We have 
revised the simulations related to conditioning tasks to better capture this aspect of the 
data. For example, the current results entail lower learning rates across both conditions of 
Hall and Pearce experiment as well as those of partial reinforcement effect (Figure 6). 
Furthermore, we have also plotted the empirical data for both conditioning experiments 
(Supplementary Fig 4 and 5) along with model simulations in the current revision.  
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Figure 4. The model explains puzzling 
issues in Pavlovian learning. a-d) Pearce 
and Hall’s conditioned suppression 
experiment. The design of experiment (Hall 
and Pearce, 1982), in which they found that 
the omission group show higher speed of 
learning than the control group (a). b) 
Median learning rate over the first trial of 
the retraining. The learning rate is larger 
for the omission group due to increases of 
volatility (c), while unpredictability is 
similar for both groups (d). The model 
explains partial reinforcement extinction 
effects (e-h). e) The partial reinforcement 
experiment consists of a partial condition 
in which a light cue if followed by reward 
on 50% of trials and a full condition in 
which the cue is always followed by the 
reward. f) Learning rate over the first trial 
of retraining has been plotted. Similar to 
empirical data, the model predicts that the 
learning rate is larger in the full condition, 
because partial reinforcements have 
relatively small effects on volatility (g), but 
it considerably increases unpredictability 
(h). Errorbars reflect standard error of the 
mean over 100 simulations and are, for 
some parameters, too small to be visible. 
See Supplementary Figures 4 and 5 for 
empirical data and corresponding response 
probability by the model. 

And in the supplementary: 

 

Supplementary Fig 4. Suppression ratio reported by Hall and Pearce (a) and the median 
response probability by the model in the retraining phase (b). The omission group shows 
faster decrease, consistent with empirical data. Suppression ratio has been defined as 
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the ratio of response in the 90 seconds window following presentation of the cue 
divided by its sum with the response rate in the preceding window of 90 seconds. Data 
in a adapted from Hall and Pearce (1982). 

 

 

Supplementary Fig 5. Empirical data for the partial reinforcement effect experiment (a) 
and the median response probability by the model in the retraining phase (b). Empirical 
data of the retraining phase were reported by Haselgrove et al. (2004), in which the 
relative score has been calculated by subtracting the duration of magazine activity 
during the pre-CS period from duration of the magazine activity during the CS period. 
The average relative score across two sessions of extinction has been plotted.  

The authors say that previous work suggests that the amygdala plays a role in selecting a learning rate, 
but aren’t the references claiming that learning actually occurs in the amygdala? This would make a 
slightly different prediction from the claim here – which should make different predictions for figure 8 – 
namely that lesioned animals should fail to learn in the first place (eg. phase 1). Once again, for this reason, 
it would be useful to see model predictions in a richer format, alongside the relevant behavioral data if 
available. Furthermore, the authors should clarify why they believe that lesioning an area responsible for 
selecting volatility should lead the brain to think volatility is always zero. In many other domains, lesions 
can lead to higher reliance on a global prior, which I think would yield a different result. 

Thank you for this comment. We have carefully considered this comment but we believe 
that our original understanding of previous work regarding the role of amygdala in learning 
rate is consistent with the position of the references, some of which we have indeed co-
authored. It is true that some authors (e.g. LeDoux) have envisioned amygdala as a 
plasticity site for CS-US association per se, but here we are addressing a distinct line of 
work (especially due to Holland and Gallagher) arguing that it plays a more modulatory 
role as part of a circuit for controlling learning rate in conditioning. We would like to make 
it clear that the hypothesis that amygdala plays a critical role in adjusting the learning rate 
is not original here, and has been suggested by different authors: 1) Holland and Gallagher, 
in a series of lesion studies, suggest that rodents’ (central nucleus of) amygdala is critical 
for upwards adjustments of associability in the Pearce-Hall sense; 2) Roesch et al. suggest 
a similar role for amygdala in learning based on their recording data (see for example 
Roesch et al., 2012); 3) We published a human fMRI study (Li et al., 2011) demonstrating 
that BOLD activity in amygdala covaries with learning rate or associability – as opposed to 
associative strength –  in a conditioning task, and this study has engendered several 
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followups; 4) Costa and Averbeck (Costa et al., 2016; Averbeck and Costa, 2017) propose 
a similar role for amygdala based on their lesion studies in monkeys.  

Regarding the specific suggestion that primary acquisition might be affected, we have now 
reported data from initial training from Holland and Gallagher (1993, our Supplementary 
Table 1) along with the same data from our model simulations. Unfortunately, these are 
present only as summary measures in the original study, but the bottom line is that 
lesioned animals were able to learn as well as control animals (Holland and Gallagher, 
1993, 1999) in phase 1, and our simulations show similar behavior. Note that error bars 
have not been reported by Holland and Gallagher for the first phase, but they report no 
significant differences between groups. 

Group Data Model 
Control-consistent 53.9 56.22 

Control-shift 55.6 55.96 
Lesioned-consistent 59.9 56.21 

Lesioned-shift 52.2 56.22 
Supplementary Table 1. Reported data (time spent in the food cup%) of phase 1 of the 
experiment by Holland and Gallagher (Figure 7) following presentation of the second cue. 
No significant difference was found between control and lesioned animals suggesting that 
lesioned animals were able to learn efficiently. The model shows the same behavior 
(percentage of food response is reported, which is calculated based on a softmax with the 
decision noise of 0.5). 

Finally, regarding the point about the prior, the reviewer is correct in pointing out that a 
lesion disabling adaptive inference of some parameter could be modeled by replacing it 
with a fixed, global prior. What we have done is indeed equivalent to this, assuming that 
prior has a very small value. We think this is a reasonable choice – emphasizing the 
explaining-away nature of the inference where different types of inferred noise compete 
to account for the observed variance. A hypothetical variant, which perhaps the reviewer 
has in mind, could assume a more moderate (but still fixed) volatility level in this situation, 
such that the volatility level under lesion is too high for some tasks but too low for others. 
Specifically for amygdala lesion, we think this less likely in light of the larger pattern of 
Holland and Gallagher’s studies (which show specific impairment with volatility-driven 
increases but not stability-driven decreases in learning rate). But in any case our results do 
not depend on assuming that volatility is literally 0 in the lesioned case, but simply on 
having it fixed at a level lower than what is required by the experiments we model.  

I have a number of points of confusion regarding figure 9. First, why is the learning rate in control condition 
so high even in the stochastic condition? Optimal learning in this case is the average across outcomes... 
so if the model is providing a good approximation to this, it should be doing something similar, right? If 
the learning rate is 0.7, the model is making most of its errors by being overly switchy -- does this match 
monkey behavior? It strikes me as unlikely to be the case, but if the data are available it would certainly 
be a useful prediction to test, and much more specific than the overall error rates. Also, why do 
initialization of volatility and unpredictability differ so much across experiments (ie. figure 8 and figure 9)? 

Thanks for this comment.  
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There are several questions here. First, as with the other parts of the paper, we now 
unpack the summary performance measure not just with timeseries of the models’ 
internal parameters, but with full learning curves in supplement (Supplementary Fig 7), 
which corresponds to this figure of Costa et al (part of their Figure 2B). (We have also 
simulated the more detailed probabilistic schedules that Costa et al. tested; 
supplementary Figure 8.) As you see, there is an overall match between simulations and 
empirical data.  

 

And simulations by the model: 

 

Second, regarding learning rates, what constitutes optimal learning depends on the 
agent’s belief/knowledge about the process parameters. Of course, if the observer is fully 
informed that process noise is zero, then a running average is optimal. This is not the case 
for the agent given our generative model and the prior parameters we have simulated, 
though as can be seen in the figure, it is gradually figuring that out. We chose these 
parameters (which net out to a median learning rate in the stochastic condition for 
controls of 0.48, not 0.7), in part because this seemingly fast learning (and correspondingly 
slow hyperparameter adjustment) is in fact relatively well matched with net learning rates 
estimated from the fit of an RL model by Costa et al. They estimate separate learning rates 
for positive and negative feedback (a detail we omit); but in this figure (Figure 4B 
reproduced from Costa et al.), the values of learning rate for controls (black) from positive 
and negative feedback are about 0.68 and 0.3, respectively, bracketing our net LR. 
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Finally, regarding initialization of volatility and unpredictability, we have endeavored to 
choose initial values that reproduce empirical behavior relatively well, and didn't expect 
or attempt to enforce that these should necessarily be consistent between species and 
tasks. Having said this, in the current revision we have revised simulations related to 
amygdala lesion studies (Figure 7 related to Holland), so as the initial hyperparameters are 
the same for both Figure 7 and 8.  

Finally, as a broader point, a number of the reviewer’s comments point to the observation 
that these parameters (as in this case) imply that animals’ prior beliefs are pretty far from 
informed ideal observers in some particular laboratory task. We think this is an interesting 
point, but not in our view an objection to our argument and not really related to the novel 
issues we are trying to emphasize here – indeed, it has been a longstanding point of study 
on its own in the application of statistical models to animal conditioning.  For instance, it 
is the central puzzle motivating Kakade and Dayan’s, 2002, introduction of Kalman filter 
models to critique Gallistel and Gibbon’s “optimal” rate estimation model.  

The anxiety predictions from the model suggest that “anxious” individuals should have higher learning 
rates across conditions – but this is not what was observed in Browning 2015. As I recall, anxious 
individuals in the empirical study used average learning rates similar to less anxious ones, and only 
differed in the degree to which they modulated learning across conditions. It would be useful if the 
authors could clarify, and if it exists, address this discrepancy. Once again, as with the other studies above, 
rich data exist for the empirical study that really nail down the dynamics of the learning behavior in 
anxious and non-anxious individuals – distilling this data to a single greater than or less than seems to 
throw out a lot of potentially useful information. As a minor point – the text for this section says: 
“model shows insensitivity to volatility manipulation, but that is actually because volatility is misestimated 
nearer ceiling due to underestimation of volatility.” presumably the last volatility is a typo. 

We are grateful for this point, which has helped us to clarify the way in which our 
interpretation of anxiety effects on learning is different from the account put forward by 
Browning et al. (2015) and Pulcu and Browning (2019).  

We now clearly state that, unlike a purely volatility-based account, we do predict overall 
higher learning rates, but that these should be most visible in more stable conditions 
(where control participants exhibit lower learning rates and the comparison is better 
powered). As we discuss, we think this is reasonably consistent with Browning et al.’s 
statistical results (they estimate that learning rate in the stable block has a positive, though 
not significant, relationship with anxiety; r(28)=0.26; P=0.16). It is of course inappropriate 
to conclude that an effect is either present or absent given a nonsignificant result, but if 



 13 

anything, this is more consistent with our hypothesis than the opposite (i.e. the learning 
rate in the stable block is not modulated by anxiety.) 

More importantly, we now discuss that our view is also supported by positive evidence 
from additional studies (about which we have added more simulation and discussion) that 
are better suited than Browning’s to investigate this matter, and which are consistent with 
the view that anxiety increases learning rate regardless of volatility manipulation. Notably, 
compared with Browning et al (2015), these studies have tested more subjects and have 
recruited them based on trait anxiety (therefore they compare two groups of low- and 
high- anxious individuals, with more substantial difference in trait anxiety). In the current 
version, we have conducted new simulations and have shown that our model simulates 
the main result of Huang et al (2017), who report that anxiety does modulate average 
learning rate, as well as win-stay/lose-shift behavior in a more powerful study (n=122) and 
with rigorous criteria for defining low- and high- anxiety groups. 

One key prediction of our model, which differs from a volatility-specific account, is that the 
learning rate is generally higher in anxious people regardless of volatility manipulation or 
even in tasks that do not manipulate volatility. In fact, Browning et al. (2015) do not find 
evidence to support this prediction: they do not find a significant overall effect of anxiety 
on learning rate. Of course, it is important not to interpret null results as evidence in favor 
of the null hypothesis, since a failure to reject the null hypothesis may reflect insufficient 
power to detect a true effect. Indeed, in Browning’s (2015) data, while the effect of anxiety 
on learning rate was not significant overall or in either volatility condition, the point 
estimate was largest (r(28)=0.26, p=0.16) in the stable condition, which is also the block in 
which the model predicts the effect should be statistically strongest (because baseline 
learning rates, absent any effect of anxiety, are lower).  

Importantly, other, larger studies provide positive statistical support for the prediction of 
elevated learning rate with anxiety (Aylward et al., 2019; Harlé et al., 2017; Huang et al., 
2017). Note that in delta-rule models, behavior under higher learning rates is closer to win-
stay/lose-shift (since higher learning rates weight the most recent outcome more heavily, 
with full WSLS – dependence only on the most recent outcome – equivalent to a learning 
rate of 1). Such a strategy has itself been linked to anxiety (Harlé et al., 2017; Huang et al., 
2017). A notable observation was made in a large (n=122) study by Huang et al. (2017), 
who found anxious people show higher win-stay/lose-shift and this effect is driven by 
higher lose-shift. Figure 5gh shows results of simulating the proposed model in a task 
similar to Huang et al. (2017) (Supplementary Figure 6). The model shows the same pattern 
of behavior, with the additional modulation by win vs loss captured because any loss is 
seen as an evidence for volatility and that results in higher learning rate and a contingency 
switch. The effect is much less salient for win trials because prediction errors are relatively 
small in those trials, which substantially dampen any effect of learning rate. Across all 
trials, the anxious model shows higher learning rate, similar to what Huang et al (2017) 
found by fitting reinforcement learning models to choice data. 
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Figure 5. The unpredictability lesion model shows a pattern of learning deficits 
associated with anxiety. Behavior of the lesioned model as the model of anxiety, in 
which unpredictability is assumed to be small and constant, is shows along the control 
model. a-d) Behavior of the models in the switching task of Figure 2 is shown. An 
example of estimated reward by the models shows that the anxious model is more 
sensitive to noisy outcomes (a), which dramatically reduces sensitivity of the learning 
rate to volatility manipulation in this task (b). This is, however, is primarily related to 
inability to make inference about unpredictability, which leads to misestimation of 
volatility (c-d). e-f) The model explains the data reported by Piray et al. (2019), in which 
the high (social) anxiety group did not benefit from stability as much as the low anxiety 
group (e). The model shows the same behavior (f). g-h) The model explains the data by 
Huang et al. (2017), in which the anxious group showed higher lose-shift behavior 
compared to the control group (g). The model shows the same behavior (g), which is 
due to higher learning rate in the anxious group (inset). Errorbars reflect standard error 
of the mean. 

Finally, as for the other points about the details of behavior, please also note that, 
unfortunately, there is not much available about the dynamics of learning behavior in 
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Browning et al. study, beyond what we already cover, as the main focus of that study was 
on pupil dilatory data. However, there is an additional between-subjects correlational 
finding, and in an attempt to address the reviewer’s comment here we have now also 
conducted further simulation analysis and reproduced it (Figure 6). 

Finally, the lesion model is an extreme case in which a hypothetical unpredictability 
module is completely eliminated. But this general approach can be extended to less 
extreme cases in which one module of the model (e.g. unpredictability) has some relative 
disadvantage in explaining noise. In terms of our model, this can be achieved by having 
higher update rate parameters for volatility relative to that of unpredictability. These are 
two main parameters of the model that one can use to explain individual differences across 
people. For example, the ratio of volatility to unpredictability update rate can be used to 
capture continuous individual variation in trait anxiety. In this case, the unpredictability 
lesion model of Figure 3b is an extreme case of this approach in which the unpredictability 
update rate is zero (thus the ratio of volatility to unpredictability is infinitely large). We 
have exploited this approach to simulate a result from Browning et al. (2015) concerning 
graded individual differences in anxiety’s effect on learning rate adjustment. In particular, 
they report (and the model captures; Figure 6) negative correlation between relative 
learning rate (stable minus volatility) and trait anxiety in the probabilistic switching task of 
Figure 5a. 

 

Figure 6. The model explains effects of trait anxiety as a continuous index on learning. 
a) Data by Browning et al. (2015) show a significant negative correlation between 
relative log learning rate (stable minus volatile block.) b) The model shows a similar 
pattern. The inset shows the median rank correlation between trait anxiety and the 
relative learning rate over 100 simulations. Model trait anxiety is defined as the ratio of 
volatility to unpredictability update rates. The lesion model of anxiety (Figure 5) is a 
special case in which the unpredictability update rate is zero. Errorbars reflect standard 
error of the median. 

Finally, the modeling methods could be better elaborated. In particular I was unclear on how exactly 
particle filtering was implemented. 
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Thank you for this final point. We agree and have endeavored to make methods, including 
details of implementation of the particle filter, clearer. We also endeavored to make the 
code (which was publicly available and cited in the manuscript) clearer.  

For inference, we employed a Rao-Blackwellised Particle Filtering approach (Doucet et al., 
2000), in which the inference about 𝑧"  and 𝑢"  were made by a particle filter (Doucet and 
Johansen, 2011) and, conditional on these, the inference over 𝑥" was given by the Kalman 
filter (Eqs 1-4). The particle filter is a Monte Carlo sequential importance sampling method, 
which keeps track of a set of particles (i.e. samples). The algorithm performs three steps 
on each trial. First, in a prediction step, each particle is transitioned to the next step based 
on the generative process. Second, weights of each particle are updated based on the 
probability of observed outcome: 

𝑏"& ∝ 𝑁(𝑜"|𝑚"-.
& , 𝑤"-.& + 𝑣"& + 𝑢"& ) 

where 𝑏"&  is the weight of particle 𝑙 on trial 𝑡, 𝑚"-.
&  and 𝑤"-.&  are estimated mean and 

variance by the Kalman filter on the previous trial (Eqs. 1-4), and 𝑣"&  and 𝑢"&  are volatility 
and unpredictability samples (i.e. the inverse of 𝑧"&  and 𝑦"&). In this step, particles were also 
resampled using the systematic resampling procedure if the ratio of effective to total 
particles fall below 0.5. In the third step, the Kalman filter (Eqs. 1-4) was used to update 
the mean and variance. In particular, for every particle, Eqs 1-4 were used to calculate 𝛼"&  
and update 𝑚"

&  and 𝑤"&. Learning rate and estimated reward rate on trial 𝑡 was then defined 
as the weighted average of all particles, in which the weights were given by 𝑏"&. We have 
used particle filter routines implemented in MATLAB. 

Minor concerns: 
The authors say: “Note that while considered together, these two lines of studies separately demonstrate 
the two types of effects on learning rates we stress, neither of these lines of work has manipulated 
unpredictability alongside volatility” – but I think that Lee, Gold and Kable, 2020, does just this. 

Thanks for this point. We have noted this paper more than once in the current version. 

I have not seen “unpredictability” used before to mean measurement noise… but it does not seem very 
specific – as volatility also decreases outcome predictability. I would advocate usage of one of the existing 
terms, as there is already no shortage of such terms in the literature (observation noise, measurement 
noise, irreducible uncertainty). 

Thanks for this suggestion. We have considered it carefully and are not sure how to 
proceed. We agree that “unpredictability” is less specific than would be ideal, and also that 
“process noise” vs “observation (or measurement) noise” is standard, and more precise 
terminology. Unfortunately, we are building directly on a literature in which the term 
“volatility” is already in use, so we feel we need a term that goes with it. The lack of 
parallelism between “volatility” and “observation noise” seems to imply incorrectly that 
one is a type of noise, but not the other. We also think that variations on “uncertainty” are 
incorrect, because in our view “uncertainty” should properly be reserved for the subjective 
posterior rather than (the true value of, or beliefs about the true value of) objective, 
generative stochasticity. For now, we have introduced our terminology with explicit 
connection to process and measurement noise, but have stuck with “unpredictability” 
thereafter. However, in light of this comment, we have also considered switching to 
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“stochasticity” – which is perhaps a little more specific. We’re open to further advice here 
– is stochasticity better? Are we missing another term? 

Graphical model should show a second timestep so that it is apparent how autocorrelation emerges from 
volatility but not unpredictability. 

Done! 

Is figure 2 necessary? Since the model is just an extension of the idea in Behrens 2007 it seems like a 
mention that it can capture these basic effects should be sufficient. If the authors feel it is necessary, it 
would be good for it to match the actual experimental design, which had more deterministic reward 
structure in the volatile task phase. 

Thanks for this suggestion. In the light of this comment, and also suggestions by other 
reviewers, we have decided to move this figure, along with its parallel figure regarding 
unpredictability (i.e. Nassar’s simulation), to supplementary.  

Why does the learning rate start out low in figure 4 simulations? A Kalman filter with a single drift and 
observation noise should start out with a learning rate near 1 that decays across trials. I don’t see why 
this model should be different (or why starting with low learning would be useful). 

Thanks for this point. We agree and have revised that simulation to have learning rates 
started from near 1. To be clear, in general, it is not the case that the Kalman filter always 
shows a declining learning rate – this depends on how much prior uncertainty it has about 
the state at time zero, relative to the levels of known process and observation noise that 
ensue thereafter. (A classic example where this would be useful is a rocket which blasts off 
from a fully known position, after which volatility contributes to state uncertainty and the 
resulting gain grows, rather than falls, to asymptote.) Previously, our model was in a similar 
situation to this because we had chosen a priori state variance to be 1 for simplicity, a 
choice which (given the scale of the other parameters) led to the situation of initially 
increasing gain in that figure. Although this does not affect the qualitative results with 
respect to the points being emphasized here (the blockwise inference), we agree it is a 
slightly odd choice in this type of experiment, and have changed the prior accordingly.  

Page 8: “The amygdala is known to be critical for associative learning” 

The authors should clarify what they mean here – presumably the amygdala is not responsible for all forms 
of associative learning (many of which occur in organisms that don’t have an amygdala). 

Thanks for the comment. We have changed the wording of that sentence in the revision: 

The amygdala plays an important role in associative learning (Averbeck and Costa, 2017; 
Phelps et al., 2014). 

Page 19: “though the accompanying models did not address our main question of how subjects estimate 
the noise hyperparameters” 

Nassar 2010 did include models that inferred noise hyperparameters and showed a similar interaction to 
that which is focused on here. 

Thanks for the comment. We have revised the text accordingly.  
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Reviewer #2 (Remarks to the Author): 
In this paper the authors describe an hierarchical model that estimates two causes of outcome variability 
(unpredictability and volatility). They describe the underlying logic of the model and describe a series of 
simulations in which the predictions of the model are broadly compared to previously reported results. 

The paper is well written and generally clear. The question of learning in the face of different sources of 
variability is topical with relatively less focus in the literature on what the authors term unpredictability. 
The basic concepts explained in the paper are similar to those describe in the recent Pulcu and Browning 
(2019) paper, although the nomenclature is a little different and the current paper focuses more on 
simulations of previous results and provides detail on their particular model.  

We are grateful for the reviewer’s positive evaluation of our manuscript and for their 
helpful suggestions.  

Regarding Pulcu and Browning (2019), we discuss the relationship between this important 
prior work and ours earlier and more clearly in the revision (and also in our response to 
the first reviewer, above). We very much accord with and now more expressly build upon 
their general perspective, but we would like to make it clear that we do not see that this 
review comprises the novelty of our work. That paper is a short review/opinion paper 
about possible associations between misestimation of uncertainty and anxiety. It contains 
no formal equations or systematic simulation of any data, and one figure of some type of 
model run but without any methods or code. As we now say, their review does emphasize 
some important themes that we develop in our more formal modeling study, especially 
the importance of inferring both of what we call volatility and unpredictability to healthy 
and disordered behavior. 

As the current revision hopefully makes clearer, our most important novel claims in the 
current study all center around the observation that jointly inferring these two parameters 
leads (due to explaining away) to rich patterns of interaction between them, which have 
implications across several domains of healthy and disordered behavior, and also invite 
revisiting the interpretation of numerous previous results. Pulcu and Browning (2019) do 
mention, briefly, that people might misattribute or confuse these types of uncertainty, but 
do not develop the implications of this point. In particular, their suggestions about how 
these processes are actually implicated in anxiety do not develop or reflect this idea; as 
discussed at greater length below, this leads us to a novel and quite distinct interpretation 
of Browning et al.’s (2015) results compared to the one they recapitulate there. (They also 
include a second idea, about valence-specific processing, which is quite promising but 
orthogonal to the points in our current review, and not mutually exclusive.) The scope of 
the current work is also much wider than anxiety, including applications to neurological 
damage and to conditioning. 

1. I think it would be useful to be a little more critical of the predictions generated by the model. The 
authors list quite a broad range of different studies and uncritically describe their model as capturing 
important details of the results. It would be useful to know a bit about the results the model is not able 
to capture. As an example, the authors suggest that their model can explain the results from studies of 
patients with anxiety if they force it to assume a low unpredictability. In their simulated results, the model 
uses a generally high learning rate (as it overestimates volatility). The authors describe this as being similar 
to their own previous results. However, this pattern of generally increased learning rates wasn’t found in 
the Browning et al. 2015 study (Lrs were lower in the volatile condition), or in other work (there has not 
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been a general finding that anxious individuals have high LRs). As it stands the authors report many 
different simulations briefly. I would suggest cutting the number of simulations down and being a little 
more critical of the ones they do report. 

Thanks for the comment, which we have addressed in a number of ways. First, we have 
emphasized a number of aspects in which the modeling is abstracted or simplified relative 
to details of the original studies (e.g., changepoints vs diffusion; asymmetric learning rates 
in the monkey studies; various limitations in anxiety). We have also, more generally, stated 
more clearly our strategy of exposing the common theme (explaining away between 
volatility and unpredictability) as it may arise or have implications in many different 
situations and settings, while conceding that these individual situations all involve many 
more details and may individually admit of different interpretations. But we have also 
deepened our account of these areas by adding several more simulations, elaborating 
previous ones in many different directions (Supplementary Figs 2-8; Supplementary Table 
1). We have included several new simulations regarding the anxiety part, including of the 
Huang et al. (2017) study and also an additional result from the Browning et al. (2015) 
study. 

With respect to the points about anxiety specifically, we are grateful to the reviewer (and 
see also related comments from Reviewer 1 and our response above) for pointing out this 
issue. We have addressed it much more systematically with more simulation and 
discussion. We believe this is a case which helps us to explain how our model offers a 
different interpretation of the Browning results, which we would defend as a better 
explanation, overall, of those results in the broader pattern of results in the literature.  

It is true that Browning et al. (2015), conclude there is no relationship between overall 
learning rates and anxiety on the basis of statistically null results. Our account indeed 
predicts a positive relationship here, but also that it will be most easily detectable in the 
stable regime (where learning rates are otherwise lower) and not in the volatile block 
(where they more compressed toward high values even without anxiety). On our view, this 
is reasonably consistent with the underlying (nonsignificant) cell-wise estimates in 
Browning’s data: they estimate a nonsignificant but distinctly positive association in the 
stable block (r=0.26, p=0.16) and one much nearer to zero (r=-0.1, p=0.6) in the volatile 
block. (Perhaps it is this latter estimate to which the reviewer is referring when he or she 
says that “LRs were lower in the volatile condition”? Clearly, LRs were significantly higher 
in the volatile condition compared with the stable one across all subjects.)  

Clearly it is inappropriate to draw firm conclusions either way from null results, a point we 
make more clearly in the present revision. But we also include new discussion and 
simulations of other studies (which we would argue are better designed and powered for 
addressing this specific question) that we think support our view, and are pertinent to the 
reviewer’s point about a more general finding. Indeed, there are multiple other studies 
from various other labs that report higher learning rates in anxious individuals, which we 
enumerate here: 1) In a large sample study (n=122), Huang et al (2017) have found anxious 
individuals show higher base learning rate (their Fig 4A; reproduced here for convenience) 
and higher win-stay/lose-shift. In the current revision, we have simulated these results too. 
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2) Aylward et al. (2019) have reported higher learning rate for learning from punishment 
in anxious individuals in a bandit task that did not modulate volatility at al. (Relatedly, we 
have now discussed the possibility that there might be a distinct, but not mutually 
exclusive, direction about the role of positive and negative valence on learning rate in 
anxious individuals.) 

3) Harle et al (2017) have found that anxiety is positively correlated with the ability (i.e. 
model evidence) of a win-stay/lose-shift model to explain choice data in a bandit task, 
which is clearly consistent with our hypothesis that the anxiety increases learning rate 
substantially. Again, volatility has not been manipulated in this study. 

We have added new simulations and revised the text to address these points: 

These results have been interpreted in relation to the more general idea that intolerance 
of uncertainty is a key foundation of anxiety; accordingly, fully understanding them any 
require taking account of multiple sources of uncertainty (Pulcu and Browning, 2019), 
including both volatility and unpredictability. Nevertheless, the primary interpretation of 
these types of results has been that observed abnormalities are rooted in volatility 
estimation per se (Browning et al., 2015; Piray et al., 2019; Pulcu and Browning, 2019). Our 
current model suggests an alternative explanation: that the core underlying deficit is 
actually with unpredictability, and apparent disturbances in volatility processing are 
secondary to this, due to their interrelationship. 

In particular, these effects and a number of others are well explained by the 
unpredictability lesion model of Figure 3b, i.e., by assuming that anxious people have a 
core deficit in estimating unpredictability, and instead treat it as small and constant. As 
shown in Figure 5b, this model shows insensitivity to volatility manipulation, but in the 
model that is actually because volatility is misestimated nearer ceiling due to 
underestimation of unpredictability. This, in turn, substantially dampens further 
adaptation of learning rate in blocks when volatility actually increases. The elevated 
learning rate across all blocks leads to hypersensitivity to noise, which prevents anxious 
individuals from benefitting from stability, as has been observed empirically (Piray et al., 
2019). In particular, Piray et al. have studied learning in individuals with low- or high- in 
trait social anxiety using a switching probabilistic task (Supplementary Figure 6) in which 
each trial started with a social threatening cue (angry face image). It was found that 
anxious individuals perform particularly worse than controls in stable trials, whereas their 
performance is generally matched with controls in volatile trials (Figure 5e). The model 
shows similar behavior (Figure 5f).  
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One key prediction of our model, which differs from a volatility-specific account, is that the 
learning rate is generally higher in anxious people regardless of volatility manipulation or 
even in tasks that do not manipulate volatility. In fact, Browning et al. (2015) do not find 
evidence to support this prediction: they do not find a significant overall effect of anxiety 
on learning rate. Of course, it is important not to interpret null results as evidence in favor 
of the null hypothesis, since a failure to reject the null hypothesis may reflect insufficient 
power to detect a true effect. Indeed, in Browning’s (2015) data, while the effect of anxiety 
on learning rate was not significant overall or in either volatility condition, the point 
estimate was largest (r(28)=0.26, p=0.16) in the stable condition, which is also the block in 
which the model predicts the effect should be statistically strongest (because baseline 
learning rates, absent any effect of anxiety, are lower).  

Importantly, other, larger studies provide positive statistical support for the prediction of 
elevated learning rate with anxiety (Aylward et al., 2019; Harlé et al., 2017; Huang et al., 
2017). Note that in delta-rule models, behavior under higher learning rates is closer to win-
stay/lose-shift (since higher learning rates weight the most recent outcome more heavily, 
with full WSLS – dependence only on the most recent outcome – equivalent to a learning 
rate of 1). Such a strategy has itself been linked to anxiety (Harlé et al., 2017; Huang et al., 
2017). A notable observation was made in a large (n=122) study by Huang et al. (2017), 
who found anxious people show higher win-stay/lose-shift and this effect is driven by 
higher lose-shift. Figure 5gh shows results of simulating the proposed model in a task 
similar to Huang et al. (2017) (Supplementary Figure 6). The model shows the same pattern 
of behavior, with the additional modulation by win vs loss captured because any loss is 
seen as an evidence for volatility and that results in higher learning rate and a contingency 
switch. The effect is much less salient for win trials because prediction errors are relatively 
small in those trials, which substantially dampen any effect of learning rate. Across all 
trials, the anxious model shows higher learning rate, similar to what Huang et al (2017) 
found by fitting reinforcement learning models to choice data. 
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Figure 5. The unpredictability lesion model shows a pattern of learning deficits 
associated with anxiety. Behavior of the lesioned model as the model of anxiety, in 
which unpredictability is assumed to be small and constant, is shows along the control 
model. a-d) Behavior of the models in the switching task of Figure 2 is shown. An 
example of estimated reward by the models shows that the anxious model is more 
sensitive to noisy outcomes (a), which dramatically reduces sensitivity of the learning 
rate to volatility manipulation in this task (b). This is, however, is primarily related to 
inability to make inference about unpredictability, which leads to misestimation of 
volatility (c-d). e-f) The model explains the data reported by Piray et al. (2019), in which 
the high (social) anxiety group did not benefit from stability as much as the low anxiety 
group (e). The model shows the same behavior (f). g-h) The model explains the data by 
Huang et al. (2017), in which the anxious group showed higher lose-shift behavior 
compared to the control group (g). The model shows the same behavior (g), which is 
due to higher learning rate in the anxious group (inset). Errorbars reflect standard error 
of the mean. 
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2. It would be useful to have a brief section with some concrete predictions of novel results arising from 
their model—for example, what sort of situation might promote the misattribution of volatility and 
unpredictability and what sort of data should we expect in these situations? 

Thanks for this suggestion. We actually suggest that the most pressing experimental issue 
raised by the model is primarily about simply generating the basic data needed to constrain 
such an account, i.e. manipulating both types of noise factorially as in the hypothetical 
experiment of Figure 2. With such data in hand, it might be possible to refine and compare 
different, detailed trial-wise accounts of the dynamics of attribution. Although it is likely 
possible to “fool” the model and cause healthy subjects to misattribute (and perhaps this 
is what the reviewer has in mind), our ideas about misattribution at the current time 
mainly focus on the hypothetical patterns of pathological or individual differences. Our key 
novel prediction (Figure 3) is that in cases of manipulations or pathology where effects 
have been seen on volatility or learning rate, more careful examination will reveal a 
reciprocal pattern. This is the extreme case of misattribution. In light of this comment, we 
also considered and simulated less extreme cases of misattribution, and patterns of more 
graded individual differences that might arise. We have now discussed this issue more 
extensively, particularly in the context of anxiety. Furthermore, we have done further 
simulation analyses and showed that our framework is able to model trait anxiety (as a 
continuous measure) and reproduce the main behavioral result of Browning et al. (2015):  

Finally, the lesion model is an extreme case in which a hypothetical unpredictability 
module is completely eliminated. But this general approach can be extended to less 
extreme cases in which one module of the model (e.g. unpredictability) has some relative 
disadvantage in explaining noise. In terms of our model, this can be achieved by having 
higher update rate parameters for volatility relative to that of unpredictability. These are 
two main parameters of the model that one can use to explain individual differences across 
people. For example, the ratio of volatility to unpredictability update rate can be used to 
capture continuous individual variation in trait anxiety. In this case, the unpredictability 
lesion model of Figure 3b is an extreme case of this approach in which the unpredictability 
update rate is zero (thus the ratio of volatility to unpredictability is infinitely large). We 
have exploited this approach to simulate a result from Browning et al. (2015) concerning 
graded individual differences in anxiety’s effect on learning rate adjustment. In particular, 
they report (and the model captures; Figure 6) negative correlation between relative 
learning rate (stable minus volatility) and trait anxiety in the probabilistic switching task of 
Figure 5a. 
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Figure 6. The model explains effects of trait anxiety as a continuous index on learning. 
a) Data by Browning et al. (2015) show a significant negative correlation between 
relative log learning rate (stable minus volatile block.) b) The model shows a similar 
pattern. The inset shows the median rank correlation between trait anxiety and the 
relative learning rate over 100 simulations. Model trait anxiety is defined as the ratio of 
volatility to unpredictability update rates. The lesion model of anxiety (Figure 5) is a 
special case in which the unpredictability update rate is zero. Errorbars reflect standard 
error of the median. 

Reviewer #3 (Remarks to the Author): 
The authors present a learning model in which they distinguish two types of stochasticity, unpredictability 
and volatility. They point out that volatility has been considered in several studies, but unpredictability 
has received less attention. This distinction is important because the two forms of stochasticity push 
learning rates in opposite directions. Volatility should lead to an increase in learning rates, and 
unpredictability should lead to a decrease. They develop the model using a Kalman filter framework. 

This paper presents an important idea. The paper is clearly written. The figures illustrate the concepts 
well. And the example datasets to which they fit their data are also appropriate and clear. I found Fig. 7 
to be particularly important. Perhaps it would be worth moving Fig. 7 closer to the front of the results? 
The authors mention this result several times before the figure which shows it. 

I have only minor comments. 

We are very grateful for the reviewer’s positive evaluation of our manuscript, recognition 
of its novelty and for the insightful and helpful suggestions. We agree with the reviewer 
that it is helpful to present the lesioned figure earlier in the results. We have moved it and 
present it as Figure 3 of the current version, which is right after the simulation results of 
the healthy model.  

1. I was curious about the use of multiplicative noise models for the temporal evolution of volatility and 
unpredictability. Why not additive? I may have missed this, but perhaps a comment in the methods to 
clarify this choice. Does this help with the dissociation? 
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Thanks for this great point. We are not really committed to a specific generative process 
(e.g. a multiplicative one). The reason for choosing that generative process was that it is 
the same process that we used in our recent work (Piray and Daw, 2020). In turn, we had 
adopted it there because it eliminates a nonlinearity (if variances follow an additive 
Gaussian walk, they can go negative) and also because it facilitates exact solution of one 
of the maximizations in a variational approximation, which is not used in the current 
particle filter implementation. We have now revised Figure 1 and Methods to make this 
clear. We have also conducted further simulation analyses to show that the model also 
works well with an alternative generative process (Gaussian) as long as the same particle 
filter has been used (Supplementary Fig 3). 

2. Reference to Figures 4 and 5 here should, I think be to Figures 5 and 6. 

 “Note the subtle difference between the experiments of Figures 4 and 5.” 

Done! 

3. In Fig. 7, it would be worth showing the healthy unpredictability and volatility, or referencing Fig. 4 for 
comparison. 

Done! 

4. I believe the volatility at the end of this sentence should say unpredictability, “…because volatility is 
misestimated nearer ceiling due to underestimation of volatility.” 

Thanks for pointing this typo out.  

5. These sentences have typos: 

Notably, this type of finding cannot be explained by models like which learn only about volatility. 

For both lesion models, lesioning does not merely abolish the corresponding effects on learning rate, but 
reverses it. 

In particular, these of effects and a number of others are well explained by the unpredictability lesion 
model… 

Thanks for pointing these typos out. And thanks again for helpful suggestions. 



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

The manuscript is considerably improved and to me it is clear that it makes an important contribution. 
I have just one remaining concern, related to the terminology (unpredictability)” 

Personally, I don’t see any issue with the term observation noise. Avoiding problematic 
misconceptions by introducing new terminology obscures relationships to existing literature and sets a 

bad precedent. It seems that a more useful approach would be to use the established terminology 
and to provide clear definitions that correct these misconceptions – thereby making life easier for the 

next person who publishes a paper in this field 

Reviewer #2 (Remarks to the Author): 

The authors have provided a detailed response to my initial review. They do include some caveats to 
their analyses in the discussion now, which are welcome. 

The new section on anxiety is interesting, the proposal that there is a generally raised lr in response 
to misestimated unpredictability is specific enought to be new I think. This would seem consistent with 

the previous finding that anxious indivduals accquire fear conditioning more rapidly, although it seems 
difficult to square this with the more consistent finding that anxiety is associated with reduced 
extinction of fear. 

If the authors think this isn't a problem for their proposal, it might be useful to add a line explaining 

this. If it doesn't fit, then this is worth acknowledging (as it is probably the most commonly reported 
finding in anxiety conditioning studies). 

Reviewer #3 (Remarks to the Author): 

The authors have addressed my concerns. I have no fourth comments. 
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Reviewer #1 (Remarks to the Author):

The manuscript is considerably improved and to me it is clear that it makes an important contribution. I 
have just one remaining concern, related to the terminology (unpredictability)” 

Personally, I don’t see any issue with the term observation noise. Avoiding problematic misconceptions 
by introducing new terminology obscures relationships to existing literature and sets a bad precedent. It 
seems that a more useful approach would be to use the established terminology and to provide clear 
definitions that correct these misconceptions – thereby making life easier for the next person who 
publishes a paper in this field. 

We are thankful to the reviewer for recognizing the contributions of our work. Regarding 
the terminology, we take the reviewer’s’ points on this issue seriously and have considered 
them carefully, but we still feel that we need a term for unpredictability that goes in 
parallel with the already established term volatility, and it is misleading here to call only 
one of them “noise”. More particularly, if anything, the correct technical term for what we 
called “unpredictability” is the “variance of the observation noise” and not the 
“observation noise” itself (or, as we originally called this, the observation noise parameter, 
simply because the observation noise has only one parameter). This is similar to volatility, 
where the term is used primarily to refer to the variance governing the process noise (akin 
to the hazard rate), not the process noise itself. Given the importance of this term in the 
current work, we feel that we also need a one-word term here. In the light of this 
comment, however, we feel that a slightly better term for the latent variable that we called 
unpredictability would be stochasticity, which we have used in this final version.  

Reviewer #2 (Remarks to the Author): 

The authors have provided a detailed response to my initial review. They do include some caveats to their 
analyses in the discussion now, which are welcome. 

The new section on anxiety is interesting, the proposal that there is a generally raised lr in response to 
misestimated unpredictability is specific enought to be new I think. This would seem consistent with the 
previous finding that anxious indivduals accquire fear conditioning more rapidly, although it seems 
difficult to square this with the more consistent finding that anxiety is associated with reduced extinction 
of fear. 

If the authors think this isn't a problem for their proposal, it might be useful to add a line explaining this. 
If it doesn't fit, then this is worth acknowledging (as it is probably the most commonly reported finding in 
anxiety conditioning studies). 

We are thankful to the reviewer for their positive evaluation of the revised manuscript, 
and for these important points about fear conditioning. Our interpretation would be that 
the seeming disconnect between acquisition and extinction reflects the fact that unlike 
acquisition, extinction is dominated by other processes (notably state splitting / contextual 
inference) rather than associative (un) learning per se. Combining this type of model with 
inferred volatility and unpredictability is an important (but substantial) piece of future 
work; it is clear there should be substantial effects but it’s not at present obvious (to us) 
how they would ultimately shake out in terms of faster or slower extinction in different 
circumstances. We now briefly mention this point in discussion: 
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This hypothesis is also consistent with the observation that acquisition of fear conditioning 
tends to be enhanced in anxious individuals (Duits et al., 2015; Lissek et al., 2005). Finally, 
although a simple increase in learning rate seems harder to reconcile with generally slower 
extinction of Pavlovian fear learning in anxiety (Duits et al., 2015), this probably reflects 
the well-known fact that extinction is not simply unlearning of the original association, but 
instead is dominated by additional processes (Bouton, 2004; Redish et al., 2007). This 
includes in particular statistical inference about latent contexts (Gershman et al., 2010), 
which is likely to be affected by both stochasticity and volatility in ways that should be 
explored in future work. 


