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Supplementary Note 1: Stability Analysis for Optical Trapping and Binding 

Intense laser fields confine small particles at intensity extrema, a phenomenon known as optical 

trapping. Multiple particles can also be coupled together through light scattering, which modifies 

the spatial light distribution, thereby inducing a new particle-particle interaction known as optical 

binding. 

Optical trapping and binding drive moving particles towards an equilibrium where they experience 

zero net force. Nonetheless, the existence of equilibrium does not necessarily imply stability. Upon 

perturbation, the particles will return to a stable equilibrium, but they will escape from an unstable 

equilibrium. Rigorous stability analysis is therefore essential, and is given below. 

Particles illuminated by light and immersed in a fluid are subjected to optical forces, dissipative 

ambient damping, hydrodynamic couplings [1], and Brownian fluctuations. In this Supplementary 

Note 1, to obtain the analytical solutions, we focus on well-separated micro-particles illuminated 

by a laser field with modest intensity ( 2

0 1.0 mW/μmI = ), such that the hydrodynamic coupling 

and Brownian motion can be neglected. For particles near each other, the hydrodynamic coupling 

will be considered in the numerical simulation presented in Supplementary Note 4. 

Considering a cluster of N particles in a fluid, the equation of motion with hydrodynamic coupling 

and Brownian motion neglected is given by [2] 
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2
( )

d d
m
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 
=  −

X X
F X  , (S1.1) 

where m is the single-particle mass, ( )
1 1 1 N N Nx y z x y z, , , , , ,F F F F F F=F  are the optical forces, 

( )1 1 1 N N N, , , , , ,x y z x y z =      X  are the displacements from the equilibrium, S6 r =  is 

the friction coefficient,   is the viscosity, Sr  is the particle radius, and t is the time. According to 

the Lyapunov stability theorem [3], the stability of Eq. (S1.1) near an equilibrium is equivalent to 

its linear approximation: 
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where ij i j/=  K F X  is the force matrix, and K X  is the linear approximation to F .1 

Everywhere but at the exceptional point in which K  is defective, Eq. (S1.2) can be transformed 

by a similarity transformation using V  whose columns are the eigenvectors of K , and Eq. (S1.2) 

is reduced to a set of decoupled 2nd order differential equations: 

 
2

i i
i i2

d d
m K

dt dt

 
   − , (S1.3) 

where iK  is the ith eigenvalue of K , i.e. ( )1

i ij
ij

K − =V KV , and ( )1

i j
ij

i

 −=  V X . Equation 

(S1.3) can be solved using the standard substitution technique: 

 i

i 0i ,i te  =   (S1.4) 

where 0i  is a constant independent of time. The solution to Eq. (S1.3) can be categorized 

according to iK , or equivalently according to the natural frequency of the eigenmode, given by  

 i i / .K m = −   (S1.5) 

In the following, we discuss several stability categories that depend upon the nature of iK . 

 

 
1 For some optically-bound clusters consider in the main text, which are trapped on a plane of 

uniform intensity, those that do not possess spatial inversion symmetry are in a dynamical 

equilibrium such that the optical forces acting on all particles are the same but not zero. The cluster 

is therefore moving with a fixed shape. Eq. (S1.2) is generalized to 

2 2/ /md dt d dt = +  − 0X F K X X , where ( )0x 0y 0z 0x 0y 0z, , , , , ,F F F F F F=
0

F   is a constant 

force acting on every particle. One may mathematically eliminate 0F  and restore the equation of 

motion to the standard form of Eq. (S1.2) by applying the transformation: 

0

2

0

/ 0

/ 2 0
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t m b

 − 
 = 

 − =

x F
x

x F
 [2]. 
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a) Neutral mode characterized by iK =0 (or i =0). 

The forces acting on particles trapped on a plane of uniform intensity depend only on their relative 

positions. Consequently, there must be 2 neutral modes characterized by i 0K = , corresponding to 

a uniform translational motion along the trapping plane (assumed here to be the xy-plane): 

 
( )

( )

x x x

y y y

( ) 1,0,0, ,1,0,0, ,1,0,0 ( ),

( ) 0,1,0, ,0,1,0, ,0,1,0 ( ),

- t / m

- t / m

X t e

X t e





 

 

 =  +

 =  +
  (S1.6) 

when x , x , y , and y  are constants to be determined by the initial conditions. 

b) Unstable mode characterized by a positive iK  (or an imaginary i ).

2 22 2( /2 ) ( /2 )i i/2

i i i i( ) ,
t m t m

t mt e e e
 

  
− + +

−  
 =  + 

 
X v  

For i 0K  , i  is purely imaginary and the eigenmode is 

   (S1.7) 

where iv  is the ith eigenvector of iK , and i  and i  are constants to be determined by the initial 

conditions. Eq. (S1.7) diverges with time, and the mode is thus unstable. 

c) Stable mode characterized by a negative iK  (or a real i ). 

For i 0K  , one has harmonic oscillation-like modes: 

 
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  (S1.8) 

where i  and i  or iA  and i  are constants to be determined by the initial conditions. All these 

modes are stable. 

d) Complex mode characterized by a complex iK  (or a complex i ). 
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Optical forces are open and thus nonconservative. Consequently, TK K  such that complex 

conjugate pairs of eigenvalues are allowed, even for a real matrix K : i+1 iK K = . The modes 

corresponding to the conjugate pair of eigenvalues are 
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  (S1.9) 

where i , i , i , and i  are constants to be determined by the initial conditions,  
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  (S1.10) 

and 
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  (S1.11) 

The stabilities of the complex modes are summarized in Supplementary Fig. 1. For iRe[ ] 0K  , 

conservative and nonconservative forces both induce instability. The former corresponds to a 

potential energy maximum, while the latter will induce a centrifugal force that tears the partiles 

away. Thus the cluster is unstable. For iRe[ ] 0K   and critical i iIm[ ] / Re[ ]m K K  = , the 

conservative force attracts particles toward the equilibrium, however, the nonconservative force 

causes the particles to revolve with increasing speed, eventually overcoming any attraction. In 

contrast, if iRe[ ] 0K   and critical  , the damping is sufficient to remove the kinetic energy 

pumped in by the nonconservative force, thereby maintaining the stability of the cluster. See main 

text for further details. 
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Supplementary Fig. 1| Flow-chart illustrating the stability of complex modes. 

 

e) Stability at Exceptional Points (EPs) 

For completeness, we present the stability analysis for a system at its exceptional point (EP), where 

particles are affected solely by optical forces. 

For simplicity, we consider an arbitrary 2×2 force matrix. The treatment for matrices with arbitrary 

sizes is available in Ref. [3]. The force matrix at the EP, after appropriate rotation, can be written 

as 

 
a b g a g g

g a b g a g

+ +   
= =   

− − − −   
K ,  (S1.12) 

where b g=  at the EP and K  becomes defective. Both eigenvalues are a , but there is only one 

eigenvector  

 1

1
.

1

− 
=  
 

v   (S1.13) 

The generalized eigenvector 1u , corresponding to 1v , can be obtained by solving  
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 ( ) 1 1,a− =K I u v   (S1.14) 

which gives  

 
1

1/
.

0

g− 
=  
 

u   (S1.15) 

The eigenmodes at the EP are given by 

 
1 1 1

2 2 1 1

,
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a
i t

m
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i t
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e

t e





−

−


 =


 = +

X v

X v u

  (S1.16) 

where 1 2 and    are constants to be determined by the initial conditions. In all cases, the second 

mode diverges with time, and therefore the cluster is unstable.  
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Supplementary Note 2: Symmetry and Nonconservative Forces 

In general, K  is asymmetric for nonconservative systems, such as optical trapping and binding. 

However, sometimes some asymmetric components in K  are incompatible with the system 

symmetry, and must vanish. This is especially important for small clusters. Consider the pair of 

spheres shown in Fig. 2(b) of the main text. To be specific, we assume r 1.2n = , 1064 nm =  and 

S 0.41r = , but the conclusion drawn is independent of these details. The force matrix turns out to 

be symmetric: 

 

0.02682

0.0268 m

0.02682 0 0

0.57957 0 0.57957 pN

0 0.02682 0 μ

0 0.57957 0 0.5795

2

0

7

− 
 

−
 =
 
 

− 

−
K  , (S2.1) 

due to mirror symmetries about the xz and yz planes. To see this, consider Supplementary Fig. 2(a). 

On one hand, the small displacements x (red) and x−  (black) induce y-directional forces of  

( )
1y 1/F x x    and ( )

1y 1/F x x−     on the first (top) particle, respectively. On the other hand, the 

yz-plane mirror symmetry requires the induced forces to be equal. Accordingly, the only solution 

is 
1y 1/ 0F x  = , represented by the red zero in Eq. (S2.1). Similarly, in Supplementary Fig. 2(b), 

the red and blue forces are induced by the red and blue x , respectively, and are thus equal due 

to the mirror symmetry, which are represented by the two blue components in Eq. (S2.1). Other 

symmetries may be considered in a similar manner, which eventually resulted in the symmetric 

matrix Eq. (S2.1). 
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Supplementary Fig. 2| Schematics illustrating how the symmetries of the cluster affect the 

matrix elements in  Eq. (S2.1). 

 

The 3-sphere triangle shown in Supplementary Fig. 3 is different from the 2-sphere cluster in that 

it has fewer symmetries and more degrees of freedom. Each particle adds 2 degrees of freedom on 

the xy-plane, which gives a 6 6  force matrix, and thus 6 modes in total. The force matrix, when 

r 1.2n =  and S 0.41r = , is 

 

0.02209 0 0.01104 0.00896 0.01104 0.00896

0 0.17777 0.07155 0.08888 0.07155 0.08888

0.01225 0.00780 0.43439 0.00703 0.42214 0.00077

0.08343 0.09331 0.07258 0.08694 0.01087 0.00636

0.01225 0.00780 0.42214 0.00077 0

− −

− −

− − −

− − −

−

=

−

K .

.43439 0.00703

0.08343 0.09331 0.01087 0.00636 0.07258 0 6

pN

μ

.08 94

m

 


−


 
 
 
 
 


 − − −


 (S2.2)  

The system is conservative if and only if A , the anti-symmetric part of K , vanishes  
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T

0 0 0.00061 0.04620 0.00061 0.04620

0 0 0.03968 0.00222 0.03968 0.00222

0.00061 0.03968 0 0.03981 0 0.00505

0.04620 0.00222 0.03981 0 0.00505 0

0.00061 0.03968 0 0.00505 0 0.03981

0.04620 0.00222 0.0051 0 0.0398

2

− − −

− − −

−

−

−

=

−

−

−
=

−

K K
A

.

1

N

m

0

p

μ

 
 
 
 
 
 
 
 
 

  (S2.3) 

It is noteworthy that the yz mirror symmetric plane has forced some components of A  to vanish. 

Yet, the limited symmetries are still insufficient to make K  symmetric, and thus the system is 

nonconservative. Similarly, for the configuation in Fig. 2(c) with two mirror symmetries, when 

r 1.2n =  and S 0.41r = , the force matrix is  

 

0.00980 0 0 0.00376 0

0 0.15930 0 0.14001 0 0.01928

0 0.01468 0 0.00734 0

0 0.13882 0 0.27764 0 0.13882

0.00376 0 0.00604 0 0.00980 0

0 0.01928 0 0.14001 0 0.15

.

93

pN

μ

0.00604

0.007 4

m

3

0

−

−

−

−



− −

−

 
 
 
 

=  
 
 
 


−

−
K   (S2.4) 

The corresponding asymmetric part is 

 

0 0 0.00065 0 0 0

0 0 0 0.00060 0 0

0.00065 0 0 0 0.00065 0

0 0.00060 0 0
.

0 0.00060

0 0 0.00

p

065 0 0 0

0 0 0 0.

N

00 6

μm

0 0 0 0

− −

−

 
 
 
 

=  
 
 
 


−



A   (S2.5) 

Because two mirror symmetries are present, there are more zeros in K  and A . However, the 

system is still nonconservative. In Supplementary Fig. 4, we explained the inequality of the blue 

elements in Eq. (S2.4). The lack of mirror symmetries between the top and middle spheres is the 

reason for the asymmetry of K  in Eq. (S2.4). 

 



11 

 

3 Spheres: 

 

Supplementary Fig. 3| Three-sphere triangular cluster bound by light. (a) A schematic plot for 

optical binding of 3 spheres, with relative refractive index r 1.2n = . (b-c) The real (b) and 

imaginary (c) parts of iK  versus particle radius. The modes that make a transition to complex 

modes are highlighted with light blue and red. 

 

 

Supplementary Fig. 4| Schematics illustrating how the symmetries of the cluster affect the 

matrix elements in Eq. (S2.4). The inequality shown in the Figure is a result of lacking mirror 

symmetry between the top and middle spheres. 
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Four different 4-sphere configurations are shown in Supplementary Fig. 5. The physics of these is 

similar to that of the 3-sphere clusters. 

Supplementary Fig. 6 shows the eigenvalues for the configuration shown in the inset of 

Supplementary Fig. 6(c), where 25 particles are trapped by a square optical lattice formed by a 

standing wave, and the particles are bound by scattering. Supplementary Fig. 6(a)-(b) and Fig. 

6(c)-(d) are, respectively, the eigenvalues on linear and logarithmic scales. For Rayleigh particles 

illuminated by a standing wave, optical trapping and optical binding are approximately 

conservative [4]. The eigenvalues are real for a small radius. However, the nonconservative force 

increases at a faster rate and induces complex eigenvalues beginning at a radius of approximately 

one-sixth of a wavelength. More complex eigenvalues emerge later, and a total of 10 complex 

modes occur out of 50 transverse modes in the parameter range considered. We note that the steep 

increase of the imaginary components near the EP may seem to contradict the square-root-increase 

law for a second-order EP, but if one zooms into the exceptional point, one will see that the square-

root-increase law still holds.  
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4 Spheres: 

 

 

Supplementary Fig. 5| Four-sphere clusters bound by light. (a1-a4) A chain with r 1.30n = . (b1-

b4) A rhombus with r 1.30n = . (c1-c4) A rectangle with r 1.25n = . (d1-d4) A kite with r 1.25n = . 

The red and yellow arrows denote the direction of momentum vorticity, defined in the main text.  
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25 Spheres: 

 

 

Supplementary Fig. 6| iK  for the 25-sphere optically-bound square lattice illustrated in the 

inset of (c). Two pairs of counter-propagating plane waves, forming a standing wave in the shape 

of a square lattice, trap and bind the 25 particles ( r 1.2n = ). The real (a) and imaginary (b) parts of 

the 50 in-plane eigenvalues of the force matrix are plotted in (a) and (b), respectively. The real and 

imaginary parts of the 10 complex eigenvalues are highlighted in light blue and red, respectively. 

The degenerate modes are marked in (b). The eigenvalues are plotted on a logarithmic scale in (c-

d). 
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Supplementary Note 3: Arrangement of Incident Waves and Particles  

This supplementary note shows in detail the actual configuration considered in the main text. The 

optically-bound clusters are grouped into 3 classes: Lattices Bound by Standing Wave, Lattices 

Bound by Non-Standing Wave, and Planar Optically Bound Clusters (see the directory below 

for details). 

Lattices Bound by Standing Wave and Lattices Bound by Non-Standing Wave refer to lattices of 

particles trapped by a periodic (or quasi-periodic) interference pattern formed by a few coherent 

plane waves, with the former  being a standing incident wave, while the latter being a non-standing 

incident wave. For small to moderately sized clusters, the trapping force is much larger than the 

binding force. The particles are trapped by the hotspots of the interference patterns, while the 

optical binding force slightly perturbs the positions of the trapped particles. In Supplementary Fig. 

7 both the average distance of the particles from the lattice hotspots 1

i i

i 1

N

d N d−

=

=    and its 

standard deviation 2 1 2

i i

i 1

N

d N d−

=

=   are plotted for a 7 7  array. The lattice constant is 

approximately . The deviations of the particles from the hotspots are quite small even for near-

contact particles, indicating the dominance of the trapping force. Surprisingly, the much weaker 

optical binding force plays a significant role in stability in the many-particle limit, as discussed in 

the main text. 

For Planar Optically Bound Clusters, the particles are confined on the xy-plane by two counter-

propagating plane waves and then bound together by the scattered light. In such a structure the 

transverse binding arises solely from the optical binding force. We start with an arbitrarily chosen 

configuration, and then apply our molecular simulation technique to search for the equilibrium 

positions.  
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Supplementary Fig. 7| The averaged distance of the particle equilibriums from the hotspots 

and its standard derivation, for the 7 7  square lattice shown in the inset. Parameters and 

other details of the optically trapped and bound structures are consistent with Fig. 3 in the main 

text.  

 

Directory 

Lattices Bound by Standing Wave 

Planar square lattices ......................................................................................................Fig. 3(b) 

Cubic lattices (3D) ..........................................................................................................  Fig. 3(c) 

Lattices Bound by Non-Standing Wave 

Planar quasi-crystal lattices ...........................................................................................  Fig. 3(e) 

Planar triangular lattices A ...........................................................................................  Fig. 3(f) 

Planar triangular lattices B ........................................................................................... Fig. 3(g) 

Planar Optically Bound Clusters 

Planar optically bound clusters ..................................................................................... Fig. 3(d) 
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Lattices Bound by Standing Wave 

Planar square lattices: 

The optically bound square lattices with different numbers of particles are schematically illustrated 

in Supplementary Fig. 8. The incident field consists of two orthogonal pairs of counter-propagating 

plane waves: 

 ( ) ( )in 0 0
ˆ ˆ ˆ ˆ ˆ( ) 2 cos cos ,ikx ikx iky ikyE e e e e E kx ky− −= + + + = +E r z z z z z   (S3.1) 

where 2 /k  =  is the wavenumber. The lattice constant is  .  

 

Supplementary Fig. 8| Planar square lattices bound by standing wave. The number of particles 

ranges from N = 1 to 289. Clusters with N > 100 are not shown.
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Cubic lattices (3D): 

The incident wave consists of three orthogonal pairs of counter-propagating plane waves 

(Supplementary Fig. 9):  

 
( )
( )

in 0

0

ˆ ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ         2 cos cos cos .

ikx ikx iky iky ikz ikzE e e e e e e

E kx ky kz

− − −= + + + + +

= + +

E r z z z z x x

z z x
  (S3.2) 

The lattice constant is approximately .  

 

 

Supplementary Fig. 9| Optically bound 3D cubic lattices. The number of particles considered 

ranges from N = 1 to 729. Clusters with N > 125 are not shown. 
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Lattices Bound by Non-Standing Wave 

Planar quasi-crystal lattices: 

The incident wave consists of five equiangular plane waves, as depicted in Supplementary Fig. 10: 

 

2 2 4 4
cos sin cos sin

5 5 5 5

in 0 6 6 8 8
cos sin cos sin

5 5 5 5

ˆ ˆ ˆ
( ) .

ˆ ˆ

ik x y ik x y
ikx

ik x y ik x y

e e e
E

e e

   

   

   
+ +   

   

   
+ +   

   

 
+ + 

=  
 
+ + 

z z z
E r

z z

  (S3.3) 

The hotspots resulted from the wave interference form a quasi-crystalline optical lattice. The 

particles are trapped near the hotspots. Supplementary Fig. 10 illustrates the clusters with different 

numbers of particles (N). The particles are introcuced in a ring-by-ring manner. 

Layer No. 1 2 3 4 5 6 7 8 9 

No. of Particles N 1 11 21 31 41 51 71 91 101 

 

 

Supplementary Fig. 10| Optically bound planar quasi-crystal lattices. The number of particles 

considered ranges from N = 1 to 101.
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Planar triangular lattices A: 

The incident wave, as depicted in Supplementary Fig. 11, is given by: 

 

2 2 4 4
cos sin cos sin

3 3 3 3

in 0
ˆ ˆ ˆ( ) .

ik x y ik x y
ikxE e e e

      
+ +   

   
 

= + + 
 
 

E r z z z   (S3.4) 

The lattice constant is approximately 0.7 . The particles are introduced in a ring-by-ring manner, 

as illustrated in Supplementary Fig. 11.  

Layer No. m 1 2 3 4 5 6 7 

No. of Particles N 1 7 19 37 61 91 127 

 

 

 

Supplementary Fig. 11| Optically bound planar triangular lattices A. The number of particles 

considered ranges from N = 1 to 127. The particles are introduced in a ring-by-ring manner.  
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Planar triangular lattices B: 

In Supplementary Fig. 12, the incident wave is 

 

( ) ( )

( )

( )

sin(1 ) cos(1 )

2 2
cos sin(1 ) sin sin(1 ) cos(1 )

3 3

in 0

4 4
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ˆ ˆcos(1 ) sin(1 )
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ˆ ˆ0.999962 0.0087272

ik x z

ik x y z

ik x y z

e

E e

e

 

 

+

 
+ + 
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  (S3.5) 

The three incident plane waves are approximately x-polarized and each makes an angle of 1  with 

the z-axis (beams’ propagating direction). In the simulation, we ignore the z-directional forces, 

while in the experiment in ref. [5], the particles are pushed onto a glass surface. The lattice constant 

is approximately 15 μm . The particles are introduced in a ring-by-ring manner, as shown in 

Supplementary Fig. 12. 

Layer No. m 1 2 3 4 5 6 

No. of Particles N 1 7 19 37 61 91 

 

Supplementary Fig. 12| Planar triangular lattice B (simulating experiments in Ref. [5]). The 

number of particles considered ranges from N = 1 to 91. The particles (N) are introduced in a ring-

by-ring manner. 
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Planar Optically Bound Clusters 

The incident wave consists of two counter-propagating plane waves (y-polarized): 

 ( )in 0 0
ˆ ˆ ˆ( ) 2 cosikz ikzE e e E kz−= + =E r y y y .  (S3.6) 

 

 

 

Supplementary Fig. 13| Planar optically bound clusters. The number of particles considered in 

the main text varies from N = 2 to N = 55. As shown in Fig. S1.3, for the same number of particles, 

there can be multiple stable configurations. Two examples of planar optically-bound structures are 

shown, and the remainders are not shown.  
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Supplementary Note 4: Optical Binding Simulations with Hydrodynamic Interaction 

It is expected that sufficiently strong damping can remove the excess energy of the complex modes 

pumped in by light, as discussed in the main text, preventing energy accumulation, and rendering 

the cluster stable. We now consider the stability of a collection of particles under optical forces, 

damping forces, and hydrodynamic coupling [1]. As expected, the introduction of strong ambient 

damping stabilizes the cluster with complex modes. 

For a medium with heavy damping, such as water, the inertial term can be neglected such that the 

optical forces are balanced by the Stokes drag. The velocity of the ith particle is given by 

 
ij ijS

i ij ij j2
j 1 ij ij

3
(1 ) ,

4

N r

r r
 

 =

  
= + − +   

   


r rI
V I F   (S4.1) 

where the hydrodynamic coupling is governed by the Oseen tensor [6], S6 r = is the friction 

coefficient with viscosity 30.89 10 Pa s −=    in water, ij  denotes the Kronecker delta function, 

ijr  is the vector pointing from particle i to j, I  is the unit tensor, and jF  denotes the optical force 

exerted on the particle j. We take the linear approximation for the optical force: = F K X , with 

X  denoting the displacement away from the equilibrium position. 

Consider particles immersed in a triangular optical lattice, as shown in the first column of 

Supplementary Fig. 14. Such structures possess multiple pairs of complex modes, and one may 

simulate their trajectories using the Verlet algorithm. Consider particles in vacuum (see the second 

column of Supplementary Fig. 14), which experience only optical forces. The particles initially 

deviate from the hotspots of the lattice by only a few nanometers, but the cluster vibrates with 

increasing amplitude due to the optical forces associated the complex modes. As a result, the 

cluster will eventually disintegrate. For particles in water (see the third column of Supplementary 

Fig. 14), at the laser intensity under consideration, one has to consider only optical and 

hydrodynamic forces [1]. Although the particles are initially given a random deviation from the 

hotspots by 0.1 , their energy is quickly dissipated by the damping effect of the water, and the 

particles return to their hotspots. 
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Supplementary Fig. 14| 

Particles trajectories 

for triangular lattices 

with different sizes 7 

(a), 19 (b), 37 (c), 61 (d), 

97 (e). 2nd column: 

optical force only, the 

particles vibrate with 

imcreasing amplitudes 

and eventually 

disintegrate. 3rd column: 

optical force + 

hydrodynamic forces, the 

particles return to the 

equilibrium positions 

even if they are perturbed 

by relatively large initial 

deviations from the 

equilibrium. The relative 

refractive index and the 

particle radius is set as 

r 1.1n =  and S 0.2r = , 

respectively. 
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Supplementary Note 5: Non-Hermitian Theory for Transverse and Longitudinal Optical 

Binding in Vacuum 

While the interaction between optically bound particles is nonconservative thus Hermitian, small 

and highly symmetric systems may be treated as approximately Hermitian. Here, we consider two 

examples, namely longitudinal [Svak et al., Optica 8, 220-229 (2021)] and transverse [Arita et al., 

Optica 5, 910-917 (2018)] optical binding in vacuum. We find that the Hermitian treatment 

adopted in those experiments are indeed a good approximation that captures the essence of the 

interaction. However, more general non-Hermitian treatment shows that strictly speaking, these 

systems are non-Hermitian in nature. Non-Hermiticity becomes important when more particles are 

involved or when spatial symmetry is broken, echoing the main conclusion in the main text. This 

strongly supports the need of a non-Hermitian theory for optical binding and our non-Hermitian 

approach yields interesting and timely new insight. 

A. Longitudinal optical binding in counter-propagating Gaussian beams [for configurations 

discussed in Svak et al., Optica 8, 220-229 (2021)]. 

Supplementary Figure 15(a) and (b) show the longitudinal binding of 2 and 3 spheres using 

counter-propagating Gaussian beam in vacuum (or very low air pressure), as discussed in Ref. [7]. 

In our numerical simulations, the N particles are initially separated by 𝜆. Equilibrium positions are 

then found by using molecular dynamics simulations.  

For 2 silica spheres (Supplementary Fig. 15(a)) with S 0.2μmr =  and r 1.45n = , the 3D force 

matrix is 

 

2Spheres

3D

2.59810 0 0 0.11257 0 0

0 1.99241 0 0 0.11248 0

0 0 8.31732 0 0 0.01410

0.1125
,

7 0 0 2.59810 0 0

0 0.11248 0 0 1.99241 0

0 0 0.01410 0 0 8.317

pN

μm

32

−

−

− −

−

−

−

=

 
 
 
 
 
 
 
 
 − 

K

  (S5.1) 

which is symmetric (Hermitian). Its Hermiticity is protected by reflection symmetries, as explained 

in the Supplementary Note 2. 
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However, for 𝑁 = 3 (Supplementary Fig. 15(b)), the force matrix becomes asymmetric 
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0
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 (S5.2) 

With increasing degrees of freedom, the available symmetries are not sufficient to keep the matrix 

Hermitian. It is noteworthy that in the geometry of Supplementary Fig.15, x, y, and z directions 

are decoupled. Accordingly, we can decompose 
3Spheres

3DK  into three asymmetric matrices: 

 
3Spheres

1D,x

0.42707 0.04942 0.012854

0.04578 0.4 ,9791 0.04578

0.012
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2 0. 2
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4 7
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K   (S5.3) 
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and  

 
3Spheres

1D,z

4.56961 0.136609 0.07079

0.15475 5.0 .8720 0.15475

0.070

p
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μ
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K   (S5.5) 

Nevertheless, the non-Hermiticity is weak such that their eigenvalues are essentially real, 

signifying stable optical binding. Thus it is a good approximation to adopt the Hermitian theory as 

in Ref. [7]. Sphere chains with 4-10 spheres are also considered, and their eigenvalues are exactly 

real. 
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Supplementary Fig. 15| Longitudinal optical binding of N spheres by counter propagating 

focused beam in vacuum. The numerical apertures of the two lenses (light blue) are 0.5. The 

incident beams are linearly polarized with a wavelength of 𝜆 = 1.064 μm. Different particle radius, 

particle composition, and particle numbers are considered. The beam power for each is normalized 

to 1.0 mW. (a) 𝑁 = 2. (b) 𝑁 = 3. We also considered other particle numbers with 𝑁 = 4 − 10, 

but no complex eigenvalue (vibration frequency) is found. 

 

Nonetheless, strictly speaking, the system is non-Hermitian, and the Hermitian approximation is 

not always valid. For example, we deliberately break the mirror symmetry along z-axis by 

assigning a different numerical apertures (0.5 and 0.6) to the two lenses. Under such condition, the 

non-Hermitian (antisymmetric) components will be enhanced. This can be most easily seen from 

the fact that the scattered light from the right sphere to the left sphere is now different from that of 

the left to right, and therefore the two matrix elements (force on right sphere due to the left and 

force on left sphere due to right) will be different, therefore an antisymmetric component has now 

emerged. We calculated the force matrices for 4 silica spheres illustrated in Supplementary Fig. 

16, with radius ranging from 0.20 μm to 0.28 μm. The real and imaginary parts of the eigenvalues 

for force matrix 𝐊⃡  1D,z
4Spheres

 versus the particle radius are plotted in Supplementary Fig. 16 (b) and 

(c), respectively. Complex eigenvalues have emerged. The minimally required viscosity for stably 
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binding the particles is also plotted in Supplementary Fig. 16(d). The beam power for each incident 

beam is normalized to 1.0 mW for the data shown in Supplementary Fig. 16. According to the 

definition of 𝜂Critical
i =

𝛾Critical
i

6𝜋𝑟S
=

√𝑚|Im[𝐾i]|/√|Re[𝐾i]|

6𝜋𝑟S
, the critical viscosity will be 𝜂Critical

i =

𝛾Critical
i

6𝜋𝑟S
=

√𝑚|Im[𝐾i]|/√|Re[𝐾i]|

6𝜋𝑟S
√𝑃0, where the power for a single incident beam is 𝑃0 mW. 

 

Supplementary Fig. 16| Optical binding of 4 spheres using counter propagating focused beam 

in vacuum. The numerical apertures of the focusing lenses (light blue) are 0.6 (left beam) and 0.5 

(right beam), which breaks the mirror symmetry on the xy-plane. For silica spheres with nr = 1.45, 

the real and imaginary parts of the eigenvalues for force matrix 𝐊⃡  1D,z
4Spheres

 are plotted in (b) and 

(c), respectively. (d) The minimal requirement for the background viscosity to stabilize the cluster. 

The density of the particle is set as 2.650 g/cm3. The beam power for each is normalized to 1.0 

mW, and 𝜆 = 1.064 μm. 
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B. Lateral optical binding for two particles in vacuum 

Lateral (or transverse) optical binding in vacuum has been investigated experimentally by Ref. [8] 

for a pair of vaterite microparticles levitated, bounded, and spined by a pair of parallel circularly 

polarized Gaussian beams. It is an important example in vacuum binding. However, simulation of 

the binding of the anisotropic vaterite particles is beyond the scope of this work. Instead, we 

consider a pair of homogeneous particles. The levitated particles will be close to (away from) the 

focus if the NA of the focusing lenses is large (small) or when the particle is heavy (light). Our 

simulations show that for particles levitated close to the focus, the eigenvalues are always complex, 

implying instability in the absence of sufficient damping, while for particles away from the focus, 

the stability along the x and y directions is not guaranteed. We stress that such instability may not 

occur for spinning particle, as spinning can stabilize the trapping, as stated in Ref. [8]. 

Accordingly, we consider the levitation and binding of two homogeneous dielectric spheres in the 

lateral optical binding settings. Lateral optical binding refers to the geometry depicted in 

Supplementary Fig. 17(a), where the two 2.2 μm radius particles (green spheres) are separated by 

10 μm. The physical ground for the particle-particle coupling can be envisioned as originating 

from the multiple scattering between the two particles. To be specific, the scattered light from one 

sphere reaches the other one, which modifies the intensity distribution near the second sphere, and 

thus exerts a force on it, resulting in the mechanical coupling. Owing to the large refractive index 

contrast and lack of damping, vacuum trapping is typically difficult. Instead, the particles can be 

levitated, where the equilibrium is established by balancing the upward radiation pressure with the 

particle weight. Such stable equilibrium is found at 𝑧 ≈ 17 μm (assuming a mass density of 2.710 

g/cm3 for the particle), marked by the intersection point of the redlines in Supplementary Fig. 17(e).  

In Supplementary Fig. 17(b-c), we tune the particle’s mass density such that its equilibrium varies 

from 𝑧 = 0 to 40 μm, and plot the real and imaginary parts of the eigenvalues for the 𝐊⃡  .  Here, we 

only show the complex eigenmodes ( iK ), with 𝑖 = 1 − 4 . Clearly, complex eigenvalues are 

observed when the particles are near the focal points 𝑧 = 0 μm. The minimum ambient damping 

required to stabilize the particles is plotted in Supplementary Fig. 17(d).  
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Supplementary Fig. 17| Lateral optical binding of two dielectric spheres (𝒏𝐫 = 𝟏. 𝟓𝟕) levitated 

in vacuum by two focused circularly polarized Gaussian beam. (a) Schematic plot for the 

geometry. The incident beams are focused by the focal lenses (cyan circular plates) with the same 

numerical aperture 0.5, and the wavelength is 1.064 μm. The two spheres are trapped at the same 

height (b-c) Real (b) and imaginary (c) parts of the eigenvalues for the force matrix 𝐊⃡   versus the 

particle position (z). (d) The critical viscosity (minimal requirement for stable trapping and binding) 

versus the particle position (z). (e) Difference between the optical force along z-direction and the 

gravity of one particle versus the particle positions (z). The intersection point of the red lines marks 

the equilibrium position when the mass density of the particle is set to 2.710 g/cm3. The beam 

power for each beam is 7.0 mW and 𝜆 = 1.064 μm. 
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