iScience, Volume 24

Supplemental information

Noncanonical protease-activated

receptor 1 regulates lymphatic

differentiation in zebrafish

Daoxi Lei, Xiuru Zhang, Muhammad Abdul Rouf, Yoga Mahendra, Lin Wen, Yan Li, Xiaojuan Zhang, Li Li, Luming Wang, Tao Zhang, Guixue Wang, and Yeqi Wang

Supplemental information

Figure S1. *par1* mutants show defective lympho-venous sprouting in zebrafish embryos, related to Figure 1.

(A) Confocal images showing lympho-venous sprouting in the posterior cardinal vein (PCV) area in sibling and *par1* mutants in *Tg(lyve1b:dsRed;flk1:EGFP)* line at 36 hpf. Blue arrowheads indicate lympho-venous sprouting from the PCV area in each intersegmental vessel (ISV); yellow asterisks represent a lack of lympho-venous sprouting from the PCV areas are also noted. ISV; the white arrowhead indicates the ISV, and the dorsal aorta (DA) and PCV areas are also noted. Scale bars: 100 μ m. (B) Percentage of lympho-venous sprouting from the PCV in sibling (n = 15 embryos) and *par1* mutants (n = 15 embryos); 8 ISVs/embryo were used for quantification. In (B), values represent means ± SEMs. **P* ≤ 0.001 in the Student's t-test.

Figure S2. Generation of *gnai2a* zebrafish mutants, related to Figure 4.

(A) Top, schematic representation of the generated *gnai2a* zebrafish mutant (68 bp deletion in its exon 3); middle, results of sequencing for validating *gnai2a* mutants; bottom, DNA gel results for genotyping wildtype (+/+), heterozygous (+/-), and homozygous mutant (-/-) embryos. (B) Brightfield lateral views of siblings and *gnai2a* zebrafish mutants at 5 dpf. Scale bars: 1 mm.

в

Figure S3. Knockdown of *gnai2a* by *gnai2a* MO impaired lympho-venous sprouting in zebrafish embryos, related to Figure 4.

the (A) Confocal images showina lympho-venous sprouting in PCV area in Tg(lyve1b:TopazYFP;kdrl:mCherry) injected with control MO and gnai2a MO at 36 hpf. Blue arrowheads indicate lympho-venous sprouting from the PCV area in each ISV; yellow asterisks represent the lack of lympho-venous sprouting from the PCV area in each ISV; the white arrowhead indicates the ISV, and DA and PCV areas are also noted. Scale bars: 100 µm. (B) Percentage of lympho-venous sprouting from the PCV in embryos injected with control MO (n = 31 embryos) or 4 ng gnai2a MO (n = 31 embryos); 8 ISVs/embryo were used for quantification. In (B), values represent means \pm SEMs. **P* \leq 0.001 in the Student's t-test.

Figure S4. Genetic interaction analyses between $par1^{+/-}$ and $gnai2a^{+/-}$ zebrafish mutants, related to Figure 4.

(A) Confocal images showing TD formation of wildtype, $par1^{+/-}$ heterozygous mutants, $gnai2a^{+/-}$ heterozygous mutants, and $par1^{+/-}$ and $gnai2a^{+/-}$ double heterozygous mutants in the Tg(fli1a:EGFP) line at 5 dpf. Scale bars: 100 µm. (B) Confocal images showing LECs nuclear numbers in the TD tube of wildtype, $par1^{+/-}$ heterozygous mutants, $gnai2a^{+/-}$ heterozygous mutants, and $par1^{+/-}$ and $gnai2a^{+/-}$ heterozygous mutants, and $par1^{+/-}$ and $gnai2a^{+/-}$ double heterozygous mutants in the Tg(fli1a:EGFP) and Tg(fli1aep:dsRed;fli1a:nEGFP) lines at 5 dpf. White circles indicate the presence of LECs nuclear numbers in the TD tube. Scale bars: 100 µm. (C) Percentage of somites lacking TD formation in wildtype (n = 92), $par1^{+/-}$ heterozygous mutants (n = 65), $gnai2a^{+/-}$ heterozygous mutants (n = 62), and $par1^{+/-}$ and $gnai2a^{+/-}$ double heterozygous mutants (n = 53) in the Tg(fli1a:EGFP) line at 5 dpf; 6 somites/embryo were used for quantification. (D) Quantification of LECs nuclear number in the TD tube of wildtype (n = 38), $par1^{+/-}$ heterozygous mutants (n = 33),

gnai2a^{+/-} heterozygous mutants (n = 34), and *par1*^{+/-} and *gnai2a*^{+/-} double heterozygous mutants (n = 36) in the *Tg(fli1aep:dsRed;fli1a:nEGFP)* line at 5 dpf; 6 segments/embryo were used for quantification. (E) Brightfield lateral views of morphology of wildtype, *par1*^{+/-} heterozygous mutants, *gnai2a*^{+/-} heterozygous mutants, and *par1*^{+/-} and *gnai2a*^{+/-} double heterozygous mutants at 5 dpf. Scale bars: 1 mm. In (C) and (D), values represent means ± SEMs. **P* ≤ 0.01, ***P* ≤ 0.001, ns, not significant in the Student's t-test.

Figure S5. Classic Par1 ligand thrombin (F2) is not required for zebrafish lymphatic

development, related to Figure 5.

(A) Confocal images showing TD formation after injecting Tg(fli1a:EGFP) with 4 ng control MO and 4 ng F2 MO at 5 dpf. Blue arrowheads indicate TD formation in each somite. Scale bars: 100 µm. (B) Confocal images showing TD formation of the vehicle control group and SCH79797-treated group at 5 dpf. Blue arrowheads indicate TD formation in each somite. Scale bars: 100 µm. (C) Percentage of somites lacking TD formation in control embryos (n = 30 embryos) or F2 morphants (n = 30 embryos); 6 somites/embryo were used for quantification. (D) Percentage of somites lacking TD formation in embryos treated with vehicle control (n = 30 embryos) or 100 nM SCH79797 (n = 30 embryos); 6 somites/embryo were used for quantification. In (C) and (D), values represent means ± SEMs. ns, not significant in the Student's t-test.

Figure S6. Generation of *mmp13b* zebrafish mutant, related to Figure 5.

Top, schematic representation of the generated *mmp13b* zebrafish mutant (7 bp deletion in its exon 4); middle, results of sequencing for validating *mmp13b* mutants; bottom, DNA gel results for genotyping wildtype (+/+), heterozygous (+/-), and homozygous mutant (-/-) embryos.

Gene	Purpose	Sequence
 nar1	Primers for mutant	F: 5'-GAGCCGTTTGATTATCTGGACG-3'
(zebrafish)	genotyping	R: 5'-CGGCTCCGTATATCCAGTTG-3'
<i>gnai</i> 2a (zebrafish)	Probe for WISH Primers for mutant genotyping	F: 5'-TTCTGTGCTGCTGATTATGT-3' R: 5'-CTTGTGCTGGAGGTGAAC-3' F: 5'-ATGCACGCCGCTAAATATTTCATA-3' R: 5'-AGGCTGTGGGTTTTCCAAATTCAG-3'
	Probe for WISH	F:5'-GTCTTCAGTAACACCATCCA-3'
<i>gnai</i> 2b (zebrafish)	Primers for WISH	F: 5'-GAGCCGTGGTTTACAGCAAC-3' R: 5'-CCTGCTGGGTGGGAATGTAG-3'
mmp13b (zebrafish)	Primers for mutant genotyping	WT-F: 5'-CGGCATTGGTGGTGATACAC-3' R: 5'-TGTGGTGTATGAGGACATGTGTTA-3' MU-F: 5'-AATCGGCATGATACACACT-3' R: 5'-TGTGGTGTATGAGGACATGTGTTA-3'
	Probe for WISH	F: 5'-CGACATTGAGGGCATCCAGT-3' R: 5'-GAACGACTTTCCTTGCGCTG-3'
<i>flt4</i> (zebrafish)	Probe for WISH	F: 5'- AGTCAAGTGCGACGGATGAT-3' R: 5'- ACCATCCCACTGTCTGTCTG-3'
<i>PAR1</i> (human)	Primers for qPCR	F: 5'-CCAGTGAGGACAGATGCAGA-3' R: 5'-GCAGTGGCACCATCCAA-3'
GNA11 (human)	Primers for qPCR	F: 5'-GTCTACCAGAACATCTTCACCG-3' R: 5'-GTACTGATGCTCGAAGGTGG-3'
GNAQ (human)	Primers for qPCR	F: 5'-ATCAGAACATCTTCACGGCC-3' R: 5'-AAAGCAGACACCTTCTCCAC-3'
GNA13 (human)	Primers for qPCR	F: 5'-GTCGAGAATTTCAACTGGGTG-3' R: 5'-CAAAGTCGTATTCATGGATGCC-3'
GNA12 (human)	Primers for qPCR	F: 5'-AAGTCCACGTTCCTCAAGC-3' R: 5'-CCAAGGAATGCCAAGCTTATC-3'
<i>GNAl</i> 2 (human)	Primers for qPCR	F: 5'-ATGGACTGGATGGTGTTGCT-3' R: 5'-GGAGGTGAAGTTGCTGCTGT-3'
<i>GNAI1</i> (human)	Primers for qPCR	F: 5'-TCTGAATAACCAGCTTCATGGAT-3' R: 5'-GGAGCGGAGTAAGATGATCG-3'
<i>GNAI3</i> (human)	Primers for qPCR	F: 5'-CATCCTCTGAATAGCCATCCTC-3' R: 5'-AAGATGATCGACCGCAACTT-3'
<i>MMP1</i> (human)	Primers for qPCR	F: 5'-GCACAAATCCCTTCTACCCG-3' R: 5'-TGAACAGCCCAGTACTTATTCC-3'
<i>MMP13</i> (human)	Primers for qPCR	F: 5'-GATGACGATGTACAAGGGATCC-3' R: 5'-ACTGGTAATGGCATCAAGGG-3'
APC (human)	Primers for qPCR	F: 5'-ACGACAGCTTTTACAGTCCC-3' R: 5'-TTGAACCCTGACCATTACCAG-3'
F2 (human)	Primers for qPCR	F: 5'-ATGTCTGGAAGGTAACTGTGC-3' R: 5'-CAGGATGGGTAGTGGAGTTG-3'
<i>GZMA</i> (human)	Primers for qPCR	F: 5'-AACTCCTATAGATTTCTGGCATCC-3' R: 5'-CCATGTAGGGTCTTGAATGAGG-3'
<i>PLG</i> (human)	Primers for qPCR	F: 5'-GAAGACCCCAGAAAACTACCC-3' R: 5'-TTTCAGGTTGCAGTACTCCC-3'

PROX1	Primers for qPCR	F: {
(human)		R: 5

F: 5'-GGCATTGAAAAACTCCCGTA-3' R: 5'-ACAGGGCTCTGAACATGCAC-3'