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Supplementary Methods

Strains and growth conditions
The following strains were used in this study.
° BW25113: F- DE(araD-araB)567 lacZ4787(del)::rrnB-3 LAM- rph-1 DE(rhaD-rhaB)568 hsdR514.

(Note that the genotype of BW27378 is F- DE(araD-araB)567 lacZ4787(del)::rrnB-3 LAM- rph-1 DE(rhaD-rhaB)568
hsdR514 DE(araH-araF)570(::FRT).)

° SJ_FS130: To construct this strain, we introduced AdnaN::[dnaN-ypet] into BW25113 using P1 transduction.

U SJ_DL188: MG1655 F- A- rph-1 dnaA msfGFP kan mCherry-dnaN

We used minimal MOPS media for the MG1655 experiments and minimal M9 glucose media with and without uracil for
the SJ_FS130 (BW25113 based) experiments.

Microfluidics, Microscopy and Image processing

We used the same method as described in (11).

Data availability

The scripts used to produce the results presented in this manuscript are available in the branch frontiers of the
repository: https://github.com/junlabucsd/DoubleAdderArticle/tree/frontiers. The repository also contains a copy of all
the  experimental data used in this  manuscript. Please start at the repository index
(https://github.com/junlabucsd/DoubleAdderArticle/blob/frontiers/Response/frontiers index.ipynb). The commit at the
date of publication of the manuscript is 4d3b79dc8492324f2eedfc789d6e9a24a8c98c82.

I-value analysis
Following the methodology proposed by Witz et al. (17), we first defined the covariance matrix (Eq. 13) of the analyzed
variables. Then the /-value was computed as:

= da)
Hkil

where the k; are the diagonal elements of the covariance matrix, hence the variances. To compute the /-values of the four
models listed in Figure 3 (top), we used the following combinations of physiological variables:

Model Variables
RDA A 64, 6 S;
IDA A Ay, 6, S,
IA A, iy Teye Si
sHC A, Toyer Si Sp

In Figure 3(bottom), we defined 18 physiological variables in line with the definitions given by (17)(see Figure S1): A, S,,
Ss Siy Ay, Ay Si S, 5™, 6y, 6, Ris Rigs Bogs Buir T, Toye @nd 1. We generated all possible combinations of 4 variables,
that is = 3060. We emphasize the difference between s, and S,. The former is the cell size per origin of replication at the
initiation event associated with the division in the current generation; therefore it could be in a previous generation (e.g.
mother, grand-mother cell). The latter is the cell size when replication initiation occurs in the current generation. These 2
variables are only the same in the case of non-overlapping cell cycles (Figure 1). We also found that the results of this
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analysis were sensitive to processing of the experimental data. In their work, Witz and colleagues, instead of using the
measured values for S,, S;, S, and s, first fitted traces of cell sizes to an exponential function and took values
interpolated by this fit. Yet it did not affect the relative ranking of the division-centric model with respect to the
initiation-centric model.
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Figure S1: Definition of the physiological variables in a scenario with 2 overlapping cell cycles. All variables with blue
font are associated with the current generation (n). We added a superscript when using physiological variables
associated with another generation. We also defined variables derived from these quantities. Replication initiations are
indicated with stars, and the red star is the initiation determining the division for the current generation. N, is the number
of origins of replication just before initiation happens.
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Simulations

In this study we have performed simulations of both initiation-centric and division-centric models. For this, we have
re-used the code provided in (17). Few and minor modifications have been made, but these modifications did not affect
the outcome or the essence of the original simulations. Simulations performed consist of:

e Repeats of the simulations performed by Witz and colleagues in their original study.
e Simulations using Witz and colleagues’ original parameters, but with perfectly symmetrical division..

e Simulations of Witz et al. model, and our model, using experimental parameters taken from experimental
datasets from Witz and et al. and datasets published in (11).

Witz et al.’s simulations of the RDA reproduced the adder behavior observed in their data, in apparent contradiction with
our prediction in Eq. 5 that the RDA model is inconsistent with size homeostasis by the adder. We analyzed their
simulations and found that they produced the adder-like behavior because of the additional fluctuations in the septum
position (Figure S2a). Experimentally, septum position represents the most precise control among all measured
single-cell parameters with CV < 5% (8, 28). Indeed, removing fluctuations in the septum position alone made the
simulation deviate from experiment in a quantitative manner consistent with Eq. 5. We also conducted a similar analysis
using our experimental data (11), and reached the same conclusion (Figure S2b). Based on this observation, we
conclude that the RDA model does not self-consistently explain the adder phenotype.
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Figure S2: Agreement of the RDA model with experimental data from a. (17), M9 + glucose condition and b. (11),
MOPS + glucose condition (MG1655 E. coli). After removing fluctuations in the division ratio, simulations don’t agree
with experimental data.
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Supplementary Figures
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Figure S3 - a. Witz et al.’s validation of the RDA model is exclusively based on this data set. b. 3 out of the 4 datasets of
Witz et al. present a slight negative correlation. c-d.Most of the experimental data we obtained with E. coli MG1655,
NCM3722, BW25113 and B. subtilis NCIB 3610 strain also show varying degrees of negative correlation, consistent with
the IDA model.
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Figure S4 - Varying degrees of positive correlation between the birth size S, and the initiation size per origin s. The
experimental data from (17) shows the most positive correlation whereas experimental data acquired in our lab with E.
coli MG1655 and with B. subtilis show moderate to zero correlation.
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Supplementary Appendices
Appendix A: Cell size homeostasis in the RDA model

In the model proposed by Witz and colleagues, the cell size per origin at division is determined by the cell size at
initiation per origin s,, the added size per origin between consecutive replication initiation events §,, and the added size
per origin from replication initiation to cell division 6,,. The following relation holds:

Sd(”) = sl.(”) + 2 6id(") ,
5D =45 4 5,0
where the index as n denotes the generation (or division cycle) . Under the assumption that 6, (resp. 6, are
independently and identically distributed Gaussian stochastic variables with mean p; (resp. u,y) and standard deviation g;

(resp. o), it follows that s{” and S,” are also Gaussian stochastic variables. At large n, they converge to the limiting
distributions s, = N(u,, 0) and S, = N(uy, 0,), where:

_ 2 _452
W=2p,, 0" =30,

My =2 (y+ W) s 0d2 =4 (%Oii2 + Oidz) :

The mother-daughter correlation for division size is a central quantity in cell size homeostasis, which can be derived in
this model. As a first step, let us define the centered variables: ds{ = s - y, and dS " = S™ - ,. We then obtain the
relations:

<dsV - ds > = 1072,

< de(n+1) . de(n) > = < dsi(n+l) . dSl.(n) >,

where the brackets denote averages. We therefore obtain the mother-daughter Pearson correlation coefficients (in the
large n limit):

<ds, "D ds >
s M) A

i 0].2

-1
=5.
1), g () Nt
_ <dS;"dSy > 1_'_3(5i
Qa’ - 0d2 ) Giiz
It also follows that the Pearson correlation coefficient between initiation size per origin and division size is:

<ds;™-ds "> .2\
0= e = (1437
L 0,40;

In this model the joint distribution (S,”, S,™") is a bivariate Gaussian, therefore we can write the conditional expectation
of S,” as:

n n—1 n—1
<S8 > = 0,8, + (1= 00) e

With the hypothesis of symmetrical division, namely S, = 2 S,™", we obtain for the conditional expectation of the
added size from birth to division:

<S,=8,18,> = 2o, - DS, +(1— 0, W,
Therefore, the “adder” principle is equivalent to having p, = 1/2. Therefore, the RDA model always results in 2 p, - 1 < 0.
In fact, it only reproduces the “adder” principle in the deterministic limit o, — O.

Appendix B: Calculation of p(s;, ,,) for the IDA model

In the IDA model, the cell size at division is determined by the cell size at birth S, and the added size from birth to
division Ay; and the cell size per origin at initiation in the next cell cycle s™" is determined by the added size per origin
between consecutive replication initiation events §;, and the cell size per origin at initiation s,. The following relations
hold:



m _ 1o @D (n)
S, =38 + A,
1

d
(n) n)
+90,,

si(n+1) =1s
where the index n denotes the generation (or division cycle), and {A,"} and {6,"} are independently distributed random
variables. Denoting p,, = <A,>and p,= <90,>, we have p,= <S,> =2y, and u, = <s,> = 2p,. We also
define the centered variables: dA,” = A"~y dS,” =5," — p,, @5, =8, —p,; and ds,® = 5™ —y, . Denoting
0,7 = <dA;/>and 0,7 = <dd,;>>,wehave 0, = <dS;> = 40,” and 0> = <ds?> = 40,2.
The added size between initiation and division reads 6id(”) = (Sd(”) —s,")/2, where the factor of 2 reflects the fact that
origins of replication double at initiation. Therefore:
<ds/”-dd, " > = -1 < sy >,
by independence of S and s,”, and we obtain the Pearson correlation coefficient:
<ds;™-dd, "> Ou -1/

0,°0y = <1 + 0,,2>
Appendix C: Calculation of p(s;, S,) and p(S/", S,") for the sHC and IA models
Let us rewrite Eq. 1 as:

S, = 5Ma®

where o = exp(x(”)rcyc(")). To derive p(s,, S, and p(S,™, S/™"), we will assume that {s"} and {a™} are independent
random vectors. This is true in the IA model (because §; is independent of the other physiological variables), but it is an
additional constraint for the sHC model. Using this assumption, we can derive the mean and variance of the cell size at
division. The mean is given by:

Hg=<S4> = Wy,

where W, =<s;> and p,=<a>. Let us introduce the centered variables: ds,” =s™ -y, do®™ =oa™ —p, and

ds,” =5, -y, , and the variances o;?> =< ds;> > and o, =< do? > . The variance of the cell size at division is given by:
2 2 2 2

o = <dS;}> = <s?t><a’> —pp2 =p? <<%> + <‘;—‘;> +<%> (i—z) > :

We now compute p(s;, Sy):

<ds;-dS ;> 0; M

Qiu = 0,0, odu(l - 7],-2+Tla2+7],-271a2 ’

where we have introduced the coefficient of variations (CVs): v, = o,/p, and n, = o./y, - As can be seen, the value of p,
depends on the CVs of the initiation size and of a = exp(At.,.). When a is deterministic (i.e. n,=0), division is “slaved” to
replication initiation and p,=1.

To compute p(S,", S,™"), we introduce the mother/daughter correlations:

<ds M-ds D> <da™-da D>
0, = —;;0[_2 and o, = 0,2 .

In particular, we have < s,® -5 > = 2 +900,> and <a® - o™V > = p,?+9,0,* . We thus have:

1
_ <ds,"ds "> <5 s V><a®a" 0> — pt o Heutle’ +00uN MG’
d o2 o2 N,241,240 21,2

When a is deterministic (i.e. n,=0), we have p, = p;: cell size homeostasis is determined by the initiation size homeostasis.
On the other hand, when s, is deterministic (i.e. n=0), we have p, = p,. In general, the level sets of p, are determined by a
quadratic equation of the variables p, and p,. Therefore each level set is a conic section.



In the absence of mother/daughter correlations, namely p, = p, = 0, then p, = 0, which is a sizer regime. If we only have p,
=0, then:

Q — @(l.n(lz
d = 2l

For the IA model, we have p, = 1/2. Furthermore, there are no mother/daughter correlations among the other
physiological variables, therefore p, = 0. We thus obtain:

M_1__ W
Qu 2nAm g T2

Therefore, the IA model can only reproduce the adder correlation in the deterministic limit where o =exp(At.,) is a
deterministic variable, namely n,=0.

Appendix D: Calculation of p(s;, S,) and p(S/™, S,™") for the CCCP model

For simplicity, and following the conventions used by the authors of this model (14), we rewrite Eq. (8-11) as:

ln(si(n+l)) — qi(n+l) — QiCIi(”) + A(n) ,

In(S;") = g™ =g, + \C™ |

(S, ™) = 4™ = 0pgu™ " + B”

In(S,") = q,” = max(qz™. g4 ,

where we have introduced p, and p,, to be more general. Assuming that A®, B® and C™ are Gaussian variables with

means p,, g and L, and variances g,2, og2 and 0.2, then g, gz and g, are also Gaussian variables. We first compute
their means and variances. We have:
Ha

* g, =N(y. o) With ;= =% and o/ =

1-07 ;
® gp =N(u,, o) With = + Ay, and 04> =0i2+ Mo.2;

_ . B 2 0y’
® g, =N(u,, oy) With p, = Y and o, = 1—_5:2.

Note that g, is independent from g, and gz. We now compute the autocovariances for these 3 variables. We obtain:
° < dqi(n+l) dqi(n) > = Qi o

o <dqy"Vdqy" > = g,0; since C"is an independently distributed random variable;
o <dq,"Vdg,"> = 9,0,°,

2.
i

where as before ¢x™ = X - < x >. We furthermore compute for subsequent use the following cross-correlation:

<dqy"dg,"” > = 07 since C" is an independently distributed random variable. These preliminary results will be useful
to compute pg, p; and py,.

We now follow the approach of the authors, and replace the expression of g, in Eq. (11) by the effective equation:
a, " = q,®u™ + g (1 —u),

where {u™} are independent Bernoulli variables such that: Pr(u™ =1) = f. We note that Pru®™ =0) = 1-f and

Pr((u<”>)2 =1) = f. The previous equation is an effective approach in which f represents the fraction of the cases in
which the division process is limiting, namely ¢,™ < g,™ . With this effective expression, one can compute the mean p
and the variance g2 of q,. We obtain:

® =y + (=)
2
o o0,/=< (qH(”))2 >< (u(”))2 > + < (qR(”))2 >< (1 - u(")> > +2<qy" >< g™ ><u™ (1 - u(")> > —u’

=0, + 6 21— f)+F(1 = Hpy — 1) -
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We now turn our attention to the computation of p,,. For that purpose, we compute the average:

<q9,;>=<q,qy ><u>+<qqp ><1—u>=puu,f + (<dgdgy >+ ) (1 —f) = wu, + oiz(l -f-
We thus obtain:
<dq,dq, >=< q,q,> W, = (1 — Mo, and therefore:

<dq;dq ;>

o.
0, = sz - (1 - f) ’ -
id = oo, N2 + 0,21~y i)’

We now turn our attention to the computation of p,. We start by computing the average:
<q,"q, "V >=< g, Mg, ><u™ ><u™D >4+< g, Vg, >< 1 - U™ >< 1 -y >
+< @M >< @Y ><u™ >< 1= u™D >+< g, ") >< g, ><u™) >< 1 —u™ >,
= 1+ (= )+ 20 (1= ) + 04,0, +0,02(1 =)
We therefore obtain:
<dg,"dg, "V >=< q,"q,"" >— p 2
= 0,0,%f + 021~
Finally, we obtain:

<dqd(”)dqd("+])> _ QH0H2f2+Q,-0;2(1_f)2
o 032 + 02 (1= A=y~ 1)

Q4=

When the division process is limiting, namely =1, then we have p=p,,. Conversely when the initiation process is limiting,
we have p,=p,. More generally, the level set curves for p, are lines in the (o,,0) plane.



