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REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
Comments on paper titled “Cross-property deep transfer learning framework for enhanced 
predictive analytics on small materials data” by Gupta et al. Submitted to Nature Communications 
 
The authors present an interesting and timely study that proposes the use of a type of deep 
learning-based transfer learning method which seeks to use learned knowledge of properties 
stemming from large materials databases and applying the learned features to predict other 
properties not used in the initial training, properties for which comparatively small amounts of data 
are available. 
 
This seems to be a fairly characteristic example of using transfer learning and have it be effective 
at predicting the property of interest. It reminds one of how transfer learning is used in object 
detection deep learning models (e.g. train on images of stop signs, detect images with speed limit 
signs). In this way, the strategy is not novel, however the strategy seems to be effective for the 
examples shown here and thus is likely useful, particularly for small datasets. 
 
If only raw elemental fractions are used as input, how does one distinguish between different 
structure types or polymorphs for the same composition effectively? Two materials can have the 
same composition but different structure and thus quite different values of a property of interest. 
 
The authors state that the overlap compositions are removed to avoid redundancy, which is good. 
However, how does one discern between materials that have the same composition but different 
structure, e.g. polymorphs of Al2O3? Was structural information also present in the databases and 
used as a guide for cleaning the data? Some description of how this was handled would be helpful. 
 
Regarding the discussion of improving ElemNet between tensorflow versions: is the reduction in 
MAE (from 0.0417 eV/atom to 0.0405 eV/atom) calculated using the exact same train/validation 
split? Even if so, could these slight differences in MAE stem from the stochasticity of the model 
training process? This is not a big issue, but one wonders if the slight improvement in MAE is 
statistically significant or not. 
 
The provided link for the JARVIS Figshare data appears to be broken. 
 
In the SI, Table 5, the MAE for the bandgap energy is listed as 0.04 eV. Is this correct? It seems 
extremely low, but could be reasonable if these are training data errors. Are these listed errors the 
errors on training data or validation data? 
 
The main results figures, Figures 2-4, are very difficult to parse visually, as they are essentially 
massive tables with many abbreviations, colors, and font styles. I think the authors need to find a 
way to visually represent their results with data plots that better highlight the key results. These 
table-style figures can still provide lots of information, and thus may be better suited to be moved 
to the SI. 
 
The authors state that the feature extraction method from the pre-trained DL model is the best 
method with regard to getting TL-based results on new properties of small datasets. However, it is 
unclear how this feature extraction method is performed. Are feature vectors from the individual 
ElemNet layers somehow extracted and then used as new features to train the ML models e.g. 
AdaBoost? This sounds like the case from the Methods section. However, the features extracted 
from layers of different sizes (i.e. numbers of neurons) will have different shapes, correct? For 
instance, some feature vectors may have length 1024 and others 512. Therefore, when put into 
other ML algorithms, the feature matrix will not be a uniform size. How is this issue handled, or am 
I just confused? 
 
In the results for Table 1, since 10-fold cross validation was performed, the authors should put 
error bars on the predicted formation enthalpy and bandgap values. In the case of bandgaps, the 
TL:DL result of 0.398 eV is very close to the AutoML(PA) result of 0.402 eV. The uncertainties from 



cross validation are almost certainly larger than this very small 0.004 eV difference, so these 
results are likely within the error bars of the prediction. Some more discussion of the model 
uncertainty and how that plays into the choice of best model type for these properties would be 
helpful. One may also take into account model ease of use: AutoML with magpie-type features is 
likely easier to use than the transfer learning deep learning technique described here, so for the 
case of bandgaps one may wish to opt for the AutoML method as the errors are essentially 
degenerate and the non-deep learning method is likely easier and faster to use in practice. 
 
The discussion section reads more like a summary/conclusion than an actual discussion of the 
results. Perhaps some content needs to be reorganized or relabeled accordingly. 
 
The authors say that in the future they plan to develop web-based tools to deploy the best 
performing predictive models. They may wish to consider uploading their best models to DLHub 
(dlhub.org), which is actively being developed precisely for this purpose. 
 
The deep learning methods used in this work use elemental fraction vectors as the input, which is 
great for simplicity. Some of the most state-of-the-art deep learning models for predicting 
materials properties use graph-based methods and materials structure as input. These methods 
should also be highly amenable to transfer learning, though may be slightly more difficult to use as 
some knowledge of material structure is needed. Can the authors discuss a bit more on the 
presently used methods and the possible interplay/relationship with the graph-based based deep 
learning methods? 
 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
This paper is an empirical exploration of a large number of model variants exploring transfer 
learning in material properties. The fundamental question is interesting and builds on the author’s 
previous work. 
 
Unfortunately, the analysis method here is flawed in a way that makes all the conclusions and 
discussion unreliable. The fundamental issue is that in a great many places, the best performing 
models of a set of N models are compared to a single model (or a set of models of different size). 
Consider the columns of Table 2: 
SC: ML(EF) is the min of the test set across 12 models, while TL: DL (FeatExtr) is the min of the 
test set across 16 models. 
Especially for the DL models which will observe significant variation is performance even across 
training runs, this results in a statistically unfair comparison. It’s like comparing test scores of a 
class of students by comparing a random student from one class with the best score of the 
students from another class. 
 
It would also greatly strengthen the analysis if an estimate of the inherent variability of the 
estimates of model performance. For example, the author bold .811 vs. .821 but there is no data 
shown to the reader to say that is even a measurable difference in performance. I would suggest 
looking at either the variation of multiple trainings of the same models or from bootstraps of the 
test set to better understand what magnitude of difference in performance could actually be 
measured. 
 
While the above is the most important issue, I have a few other issues with the paper. 
 
Novelty: There is nothing novel with the fundamental idea here. Transfer learning is well 
established, even in materials with paper such as this: 
Chen, Chi, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. 2019. “Graph Networks as a 
Universal Machine Learning Framework for Molecules and Crystals.” Chemistry of Materials: A 
Publication of the American Chemical Society 31 (9): 3564–72. 
There are some novel ideas on some technical details of how the transfer learning is done. 



However “a novel cross-property deep transfer learning framework” strains the author’s credibility. 
 
As the author’s note, FineTune is a well established technique. They propose ModFineTune and put 
the experimental results in the paper. However, there is no analysis that ModFineTune is useful or 
even different from FineTune (by eye, I bet they are indistinguishable). If the author’s would like 
to introduce a new technique, they should actually evaluate it. 
 
The author’s also miss a real opportunity. The large difference between TL:Freezing and 
TL:FineTune is actually quite interesting and a better understanding and explanation of that 
difference could make for an interesting scientific result. 
 
The analysis connected to Figure 6 is quite incomplete. The visualization makes it difficult to 
actually decide what a real pattern is and what is us fooling ourselves. If a claim like “those 
material properties that are correlated with each other tend to perform better…” is made, a much 
better analysis needs to support that. 
 
Lines 198-199 compare TL and SC. The claim is written to make TL seem positive, but this is not a 
rigorous test. From a quick sign test on the results, I get p~=.1. I would interpret this as “neither 
SC or TL outperform each other”. From a practical perspective, the SC(PA) models are much more 
appealing than the complexity of the TL models. Therefore, this section tells me: don’t bother with 
these TL models because it’s a coin flip which one will work better. If the authors would like to 
make a different claim, they should support it. 
 
A few last more minor points 
“Thus preventing any possibility of model overfitting or confounding” is simply a false, hyperbolic 
statement. Being careful in your test set split does not “prevent” overfitting or all kinds of 
confounding 
Your color bar scales on Figures 2 and 3 are mislabeled 
LInes 272-273: Similar to the main concern above, I can’t tell from the words if you took the 
model with the best cross-validation score and reported its value on the holdout set or if you took 
the model with the best performance on the holdout set. 
Lines 391-392: You need to report the details of your hyperparameter search rather than just 
saying it is “extensive”. 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors present a transfer learning (TL) framework that was developed to transfer knowledge 
from a deep learning (DL) model trained on a large dataset labeled with a single property to a 
small dataset containing multiple properties. The authors demonstrate their cross-property deep 
TL framework at the example of the materials databases OQMD (six properties considered, one of 
which is used for training at a time; source of the large dataset), and JARVIS (39 properties; 
source of the small dataset). To realize a truly data-driven learning process, the authors employ 
“elemental fractions” as independent variables (features), which do not contain any physical 
domain knowledge. 
 
The authors find that their TL approach outperforms popular machine learning (ML)/DL models 
trained from scratch (i.e., without consideration of the OQMD database) for up to 37 out of 39 
properties. Even if physical domain knowledge is incorporated into the scratch models, the TL 
approach by the authors yields superior predictions in 24 out of 39 cases. These results suggest 
that cross-property deep TL bears the potential to support researchers in situations where large 
datasets are unavailable for certain properties, which I would consider the rule rather than the 
exception. Therefore, the work by Agrawal and co-workers clearly has high potential significance 
for materials science and related fields (such as molecular and pharmaceutical science). 
 
The initial step of the method proposed consists in the application of DL to a large dataset (OQMD, 
about 340K entries). A single property (six in total: formation enthalpy per atom, bandgap, total 
energy per atom, stability, magnetic moment, volume per atom) is selected to train the DL model, 



which is a 17-layer neural network called ElemNet and is based on elemental fractions. In the 
manuscript, this DL model is referred to as the source model. After training, the source model or 
information extracted thereof is utilized to learn 39 properties of a smaller dataset (JARVIS, 557 to 
28K entries, depending on the property) containing comparable systems. Those systems that 
overlap with OQMD were removed from training the source model to avoid bias. One of two 
possible TL paths can be chosen: 
 
Path A (Fine-Tuning). The source model is retrained on JARVIS. 
 
Path B (FeatExtr). Features of the source model are extracted and combined with other machine 
learning (ML)/DL models. This path was shown to be superior to path A in terms of prediction 
accuracy. It also allows users to combine the cross-property deep TL framework of the authors 
with a learning model of their choice. 
 
The authors compare the performance of both TL paths against both the above-mentioned scratch 
models and a baseline (average property value over all training data). The latter is inferior to both 
TL and scratch ML/DL for all properties. 
 
As much as I am confident that the current study is relevant, comprehensible, and reproducible 
(the authors made the production code openly available), it lacks — in my opinion — robustness of 
the conclusions drawn: 
 
i) The authors show that TL generally outperforms scratch ML/DL with respect to predicting JARVIS 
properties. However, 90% of the JARVIS data are used for training (81%) and validation (9%), 
leaving only 10% of the data for testing purposes. Given that 90% of the dataset still corresponds 
to up to about 25K entries, the results reported by the authors are only informative to researchers 
who study systems and properties for which such rich data pool is available. I would argue that 
this scenario is the exception rather than the rule. To address a larger target audience, learning 
curves that measure prediction accuracy as a function of the training set size might be helpful. 
 
ii) It is interesting to see that transfer learning across properties seems to work, but how fast does 
transferability decay? If the materials of the test set are very similar to those of the training set, 
the conclusions drawn by the authors may be too optimistic. A visualization of the dataset 
(separated into training[/validation]/test) might be helpful. I am thinking of a two-dimensional 
data distribution in which the data points of the test set are colored according to the absolute error 
between prediction and actual property value. How fast does transferability decay / the error 
increase as a function of distance to the training data? How do these plots differ for TL and scratch 
ML/DL? Can one observe different decay rates for these two modes of learning? 
 
iii) The relative performance of TL is, on average, better by 12±7% compared to scratch ML/DL. 
This value refers to the mean absolute error (MAE), the only performance measure reported by the 
authors. It has been shown by Pernot and Savin (https://aip.scitation.org/doi/10.1063/1.5016248) 
that the MAE is an ambiguous measure of performance. They propose that a series of performance 
measure should be reported to increase the reliability of conclusions drawn from statistical 
analyses (https://iopscience.iop.org/article/10.1088/2632-2153/aba184). In particular, Pernot and 
Savin show that the 95% percentile of the distribution of absolute errors (Q95) is a less 
ambiguous measure of performance. In my opinion, the inclusion of additional performance 
measures (following the recommendations by Pernot and Savin) would most certainly corroborate 
the robustness of the authors’ conclusions. 
 
Furthermore, I find the manuscript lengthy considering that the discussion is very descriptive 
rather than explanatory. In my opinion, this applies particularly to the later sections “Source Model 
Based Analysis” and “Correlation Among Materials Properties”. I think that the manuscript would 
benefit from removing these sections as they do not offer novel insight and rather distract the 
reader from the actual research problem. Regarding my previous comment (“... descriptive rather 
than explanatory”): although I am aware of the difficulty to gain insight into neural networks, it 
seems to be an obviously interesting question why transfer learning across properties works. For 
instance, is there a link between the transfer performance from a source property to a target 
property and the correlation between these properties? 



 
Eventually, it appears to me that the list of references is not up to date and somewhat arbitrary, at 
least with regard to the following two sentences: 
1) “The field of materials science has seen a growing application of Artificial Intelligence (AI) and 
Machine Learning (ML) techniques, which has significantly contributed to enhanced property 
prediction models as well as accelerated materials exploration and discovery 1–12.” Several 
important contributions are missing, for instance (reviews/perspectives only): 
- https://www.nature.com/articles/s41563-020-0777-6 
- https://doi.org/10.1021/acs.accounts.0c00785 
- http://arxiv.org/abs/2102.08435 
- https://www.nature.com/articles/s41578-018-0005-z 
- https://www.nature.com/articles/s41586-018-0337-2 
- http://science.sciencemag.org/content/361/6400/360 
2) “Therefore, Transfer Learning (TL) 33 is often applied to tackle limited dataset problems by 
utilizing the rich features extracted from large datasets 34–44.” I am wondering that no references 
from 2020 and 2021 are cited. However, as I am not familiar with this particular branch of 
literature, it is difficult for me to assess whether this list is up to date or not. 
 
Despite these points of criticism, I appreciate the very thorough and transparent methodological 
work presented by the authors. Therefore, I am confident that the manuscript would already 
benefit from a high-level revision addressing the analysis of results and the conclusions drawn 
thereof, without need for further computational work. 
 
I wish the authors good luck. 
 
 
 



Response to the Reviewers
We thank the reviewers for their critical assessment of our work. In the following we address their concerns
point by point.

Reviewer 1
Comments on paper titled “Cross-property deep transfer learning framework for enhanced predictive ana-
lytics on small materials data” by Gupta et al. Submitted to Nature Communications

The authors present an interesting and timely study that proposes the use of a type of deep learning-
based transfer learning method which seeks to use learned knowledge of properties stemming from large
materials databases and applying the learned features to predict other properties not used in the initial
training, properties for which comparatively small amounts of data are available.

This seems to be a fairly characteristic example of using transfer learning and have it be effective at
predicting the property of interest. It reminds one of how transfer learning is used in object detection deep
learning models (e.g. train on images of stop signs, detect images with speed limit signs). In this way, the
strategy is not novel, however the strategy seems to be effective for the examples shown here and thus is
likely useful, particularly for small datasets.

Q 1.1 If only raw elemental fractions are used as input, how does one distinguish between different structure
types or polymorphs for the same composition effectively? Two materials can have the same composition but
different structure and thus quite different values of a property of interest.

Reply: This is a materials representation question. As the reviewer might be aware, there are two broad
types of representations used for this problem: composition-based and structure-based, both of which have
their advantages and limitations. By definition, the representations based on composition alone are unable
to distinguish between different structure polymorphs of the same composition, which would end up being
duplicates in the data, and thus would need to be removed before ML modeling. However, the resulting
composition-based models could be used to make predictions without the need for structure as an input, which
is useful since structure information is often unavailable or very expensive to calculate for new materials.
Composition-based models can thus be used effectively for virtual combinatorial screening to narrow down
the vast space of promising materials systems by identifying promising compositions, which could then be
further explored with methods for structure prediction and structure-based property prediction models. In
this work, we use composition-based representation, similar to [1, 2, 3, 4, 5, 6]. To deal with duplicates
arising due to different structures of same composition, we only keep the most stable structure available in
the database, i.e., the one with minimum formation energy, in line with previous works. We have added text
in Results section (Datasets subsection) in the revised manuscript to better clarify this.

Q 1.2 The authors state that the overlap compositions are removed to avoid redundancy, which is good.
However, how does one discern between materials that have the same composition but different structure,
e.g. polymorphs of Al2O3? Was structural information also present in the databases and used as a guide for
cleaning the data? Some description of how this was handled would be helpful.

Reply: There are two preprocessing steps to remove duplicate/overlapping compositions. First, we de-
duplicate both the source and target datasets independently by keeping only the most stable structure
for each unique composition, as explained in the response to the previous question. Next, we remove the
overlapping compositions between the source and target dataset by removing them from the source dataset
(New source dataset = Old source dataset - Target dataset). We have added text in Results section (Datasets
subsection) in the revised manuscript to better clarify this.

Q 1.3 Regarding the discussion of improving ElemNet between tensorflow versions: is the reduction in MAE
(from 0.0417 eV/atom to 0.0405 eV/atom) calculated using the exact same train/validation split? Even if
so, could these slight differences in MAE stem from the stochasticity of the model training process? This is
not a big issue, but one wonders if the slight improvement in MAE is statistically significant or not.
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Reply: We would like to thank the reviewer for this interesting comment. Yes, the exact same train/validation
split was used for different Tensorflow versions. In order to find if the improvement is significant or not, we
have now performed five runs with different train/validation splits each for TF1 and TF2 (the same set of
five splits were used for both versions). An average MAE and standard deviation of 0.0393 ± 0.0008 was
obtained for TF2 and 0.0415 ± 0.0002 for TF1, with TF2 giving a more accurate model than TF1 in all
five cases. Statistical testing gave a p-value of 0.0016 using corrected paired Student’s t-test proposed by
Nadeau and Bengio [7] suggesting that the improvement is statistically significant. There are also several
comparative studies on open source deep learning frameworks [8, 9] that show the difference in performance
for different deep learning frameworks.

Q 1.4 The provided link for the JARVIS Figshare data appears to be broken.

Reply: The provided link seems to work fine for us. In order to avoid any URL formatting issues, the
reviewer may want to try copy-pasting it directly in the browser. Here it is again:
https://ndownloader.figshare.com/files/22471022

Q 1.5 In the SI, Table S5, the MAE for the bandgap energy is listed as 0.04 eV. Is this correct? It seems
extremely low, but could be reasonable if these are training data errors. Are these listed errors the errors on
training data or validation data?

Reply: The results mentioned in SI old Table S5 (now Table S 6) are the errors on validation data. A similar
error for OQMD bandgaps was obtained in [2, 10, 11, 12]. The difference in bandgap values between OQMD
and other DFT databases is well-recognized [13].

Q 1.6 The main results figures, Figures 2-4, are very difficult to parse visually, as they are essentially massive
tables with many abbreviations, colors, and font styles. I think the authors need to find a way to visually
represent their results with data plots that better highlight the key results. These table-style figures can still
provide lots of information, and thus may be better suited to be moved to the SI.

Reply: We thank the reviewer for the suggestion. We have moved old Figures 2-4 (now Tables S 5, S 7
and S 9) to the SI as suggested. Moreover, we have modified these tabels by replacing the relative MAEs
to Actual MAE (for Table S 5) and mean and standard deviation of MAE from the 10-fold cross-validation
(for Tables S 7 and S 9) of the best-performing model under each category to show the actual performance.
This was done to aid in more rigorous statistical testing as suggested by Reviewer 2. In the main paper, we
have added Tables 2-4 which show the actual MAE on the test set of the best performing model for SC and
TL (identified using validation MAEs).

Q 1.7 The authors state that the feature extraction method from the pre-trained DL model is the best method
with regard to getting TL-based results on new properties of small datasets. However, it is unclear how this
feature extraction method is performed. Are feature vectors from the individual ElemNet layers somehow
extracted and then used as new features to train the ML models e.g. AdaBoost? This sounds like the case
from the Methods section. However, the features extracted from layers of different sizes (i.e. numbers of
neurons) will have different shapes, correct? For instance, some feature vectors may have length 1024 and
others 512. Therefore, when put into other ML algorithms, the feature matrix will not be a uniform size.
How is this issue handled, or am I just confused?

Reply: Yes, the feature vectors from the individual ElemNet layers are extracted using an in-built library (the
method for which is also provided in our github repository https://github.com/GuptaVishu2002/ElemNet2.0)
and then used as new features to train the ML/DL models. We use the pre-trained model’s activations from
each of the 16 layers of ElemNet as 16 possible materials representations for each compound in the target
dataset to train the model i.e. each set of feature vector (1024, 512, ...) is used seperately to train the
ML/DL models which makes the input sizes uniform each time we perform model training. Hence, for each
target materials property, we perform two runs for Fine-tuning (TL:FineTune and TL:ModFineTune), 16
runs TL:DL(FeatExtr), and 183 runs each for SC:ML(EF), SC:ML(PA) and TL:ML(FeatExtr). For TL
models, this is done for each source model. We have added additional information in methods section to
better clarify this.
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Q 1.8 In the results for Table 1, since 10-fold cross validation was performed, the authors should put error
bars on the predicted formation energy and bandgap values. In the case of bandgaps, the TL:DL result of
0.398 eV is very close to the AutoML(PA) result of 0.402 eV. The uncertainties from cross validation are
almost certainly larger than this very small 0.004 eV difference, so these results are likely within the error
bars of the prediction. Some more discussion of the model uncertainty and how that plays into the choice
of best model type for these properties would be helpful. One may also take into account model ease of use:
AutoML with magpie-type features is likely easier to use than the transfer learning deep learning technique
described here, so for the case of bandgaps one may wish to opt for the AutoML method as the errors are
essentially degenerate and the non-deep learning method is likely easier and faster to use in practice.

Reply: We thank the reviewer for the suggestion. We have modified our results for ML models (including
AutoML) to make the ML and DL models’ evaluation more consistent in terms of using the exact same
training/validation/testing splits, after going over the comments given by Reviewer 2. Further, in order
to evaluate statistical significance of the accuracy differences between SC and TL models as suggested by
Reviewer 2, we now perform cross-validation (CV) for all models in the multi-source TL analysis, including
SC models used for comparison. For the 39 DFT-computed properties, we perform 10-fold CV (Tables S 7
and S 9 in the revised SI) to find the model with the best validation error, which is then used on the test
set (Tables 3-4 in the revised paper). Since there are only two experimental datasets, we perform a more
rigorous 100-fold CV so as to get more number of MAE observations for more accurate statistical testing
(Table S 11 in the revised SI) to find the model with the best validation error, which is then used on the test
set (Table 5 in the revised paper). Finally, for the experimental bandgap dataset, we have also performed
TL using formation energy as the source model, following the general cross-property TL insight obtained
from this study that of all the source properties studied in this work, formation energy performed the best
for most of the target properties.
From the new results in Tables S 11 and 5, we find that the best TL model is significantly better than the
best SC model for both experimental properties. It is also worth noting that we are only using ElemNet
for our pre-trained/deep learning model and transfer learning without any optimization or hyper-parameter
tuning. In contrast, AutoML uses a wide variety of algorithms and optimizations to find the best model.
Despite this, the current results and the statistical significance analysis indicate a clear advantage of using
the proposed cross-property TL approach in terms of accuracy improvement, which is expected to encourage
practitioners to use this approach over existing approaches. Moreover, we provide all the necessary code to
perform cross-property TL, including feature extraction and fine-tuning, which is expected to facilitate the
adoption and further building upon the proposed techniques.

Q 1.9 The discussion section reads more like a summary/conclusion than an actual discussion of the results.
Perhaps some content needs to be reorganized or relabeled accordingly.

Reply: Thank you for your valuable suggestion. We have reorganized the figures of the later sub-sections
of the Results section into Supplementary Information and added the explanation in the discussion section
as also suggested by Reviewer 3.

Q 1.10 The authors say that in the future they plan to develop web-based tools to deploy the best performing
predictive models. They may wish to consider uploading their best models to DLHub (dlhub.org), which is
actively being developed precisely for this purpose.

Reply: Thank you for your valuable suggestion. We will definitely consider uploading the best models to
DLHub in the future.

Q 1.11 The deep learning methods used in this work use elemental fraction vectors as the input, which is great
for simplicity. Some of the most state-of-the-art deep learning models for predicting materials properties use
graph-based methods and materials structure as input. These methods should also be highly amenable to trans-
fer learning, though may be slightly more difficult to use as some knowledge of material structure is needed.
Can the authors discuss a bit more on the presently used methods and the possible interplay/relationship with
the graph-based based deep learning methods?
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Reply: Thank you for your valuable suggestion. We have added some text in the Discussion Section along
these lines.

Reviewer 2
This paper is an empirical exploration of a large number of model variants exploring transfer learning in
material properties. The fundamental question is interesting and builds on the author’s previous work.

Q 2.1 Unfortunately, the analysis method here is flawed in a way that makes all the conclusions and discussion
unreliable. The fundamental issue is that in a great many places, the best performing models of a set of N
models are compared to a single model (or a set of models of different size). Consider the columns of Table
2: SC: ML(EF) is the min of the test set across 12 models, while TL: DL (FeatExtr) is the min of the test
set across 16 models. Especially for the DL models which will observe significant variation is performance
even across training runs, this results in a statistically unfair comparison. It’s like comparing test scores of
a class of students by comparing a random student from one class with the best score of the students from
another class.

Reply: We thank the reviewer for this important comment. We should have made it more clear that we
perform extensive hyperparameter search for the ML results. Table S 4 in the revised SI lists the hyperpa-
rameters explored for each of the 12 ML algorithms, leading to an exploration of 183 models for SC:ML(EF).
On the other hand, for TL:DL(FeatExtr), the best model was selected from 16 models by using only ElemNet
as the deep learning model architecture without any hyperparameter tuning for each of the materials prop-
erties. Moreover, the reviewer’s comment has helped us discover that for SC:ML(EF), all 183 models were
run on the test set, of which the minimum test MAE was reported, whereas for TL:DL(FeatExtr), the 16
models were evaluated on the validation set, and the model with the best validation MAE was subsequently
used on the test set to report the MAE. Hence, if at all there was any unfair advantage, it was in favor of
ML and not DL. This happened because for ML models, we performed model selection using the testing set
instead of a validation set, which was inconsistent from how we built and evaluated the DL models.
In order to fix this, we have made the following modifications in our workflow: i) we now use identical
training/validation/testing splits for all models in multi-target analysis (Table S 5 in SI and Table 2 in
main paper); ii) for multi-source analysis, we also do cross-validation for model selection using the train-
ing+validation set for all models (Tables S 7, S 9 and S 11 in SI show the mean and stddev of validation
MAEs); iii) The best model selected based on validation MAE is used on the test set to obtain the test
MAEs (Tables 3, 4 and 5 in main paper).
Further, in the new results, we have ensured that model selection is always done using validation MAEs and
never using test MAEs, i.e., when comparing two models (or groups of models), the test set is looked at
only once for each model (or group of models). Thus, in Tables 2-5, the “Best SC” and “Best TL” MAE
values are not the minimum of a set of test MAEs. Rather, each of them is a single test MAE of a model
selected based on a set of validation MAEs. Thus the new results should be statistically comparable. We
again thank the reviewer for their help with this.

Q 2.2 It would also greatly strengthen the analysis if an estimate of the inherent variability of the estimates
of model performance. For example, the author bold .811 vs. .821 but there is no data shown to the reader
to say that is even a measurable difference in performance. I would suggest looking at either the variation of
multiple trainings of the same models or from bootstraps of the test set to better understand what magnitude
of difference in performance could actually be measured.

Reply: We thank the reviewer for the suggestion. We have modified our workflow as described in response to
the previous comment by incorporating cross-validation (CV) for all models in multi-source analysis, which
now allows us to do statistical significance testing across models. Note that in order to keep the number of
TL models tractable, we performed cross-validation only for multi-source analysis with the best TL modeling
configuration for each source property identified using multi-target analysis, which was done with a single
fold of training-validation split (Table S 5 in revised SI shows the same for one source property).
For the 39 DFT-computed properties, we perform 10-fold CV (Tables S 7 and S 9 in the revised SI). Since
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there are only two experimental datasets, we perform a more rigorous 100-fold CV so as to get more number
of MAE observations for more accurate statistical testing (Table S 11 in the revised SI). For each target
property, the model with the best validation MAE is identified, including those models whose validation
MAEs were not statistically distinguishable from that of the best model at α=0.05, i.e., their p-value > α.
The p-values were calculated using corrected paired Student’s t-test proposed by Nadeau and Bengio [7].

Q 2.3 Novelty: There is nothing novel with the fundamental idea here. Transfer learning is well established,
even in materials with paper such as this: Chen, Chi, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping
Ong. 2019. “Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals.”
Chemistry of Materials: A Publication of the American Chemical Society 31 (9): 3564–72. There are some
novel ideas on some technical details of how the transfer learning is done. However “a novel cross-property
deep transfer learning framework” strains the author’s credibility.

Reply: We thank the reviewer for recognizing that there is some novelty in this work. We agree that the
fundamental idea of transfer learning has been around for many years, and would like to clarify that all
we are proposing here is a “framework” for performing cross-property transfer learning in materials science
which has not been done before. We have modified appropriate places in the paper to indicate that we are
building upon the existing works on transfer learning. We have also added a citation to the above-mentioned
work.

Q 2.4 As the author’s note, FineTune is a well established technique. They propose ModFineTune and put
the experimental results in the paper. However, there is no analysis that ModFineTune is useful or even
different from FineTune (by eye, I bet they are indistinguishable). If the author’s would like to introduce a
new technique, they should actually evaluate it.

Reply: We thank the reviewer for raising the issue. ModFineTune is fundamentally similar to FineTune,
except that in ModFineTune, the weights of the last layer are not transferred but are randomly reinitialized.
We investigated ModFineTune because here we are performing cross-property transfer learning. The idea was
that since the last layer would have learnt to predict the source property, it might become over-specific to the
source property, which could possibly make fine-tuning the model for the target property more challenging
in some cases. To see if there is a significant difference between FineTune and ModFineTune, we calculate
the one-tailed p-value using Signed Test [14, 15] as we have their results on 39 different datasets. Here, the
null hypothesis is “ModFineTune is not better than FineTune” and alternate hypothesis is “ModFineTune
is better than FineTune”. After comparing the results from 6 (source properties) x 39 (target properties) =
234 cases, we get the p-value = 0.00104 using a sign test calculator [16], thereby rejecting the null hypothesis
at α=0.05, indicating that TL:ModFineTune performs significantly better as compared to TL:FineTune for
cross-property transfer learning.

Q 2.5 The author’s also miss a real opportunity. The large difference between TL:Freezing and TL:FineTune
is actually quite interesting and a better understanding and explanation of that difference could make for an
interesting scientific result.

Reply: We thank the reviewer for the suggestion. We think that the large difference between TL:Freezing
and TL:FineTune may be because the representation can change drastically after every layer, gradually
becoming more specific to the particular property and dataset used for source model training, thus making
it difficult for the target DL model to learn the target property, especially for cross-property TL. Moreover,
this seems to be consistent with the fact that of the 16 layers of ElemNet, the representations extracted from
only the first four layers were found to result in competitive models. We have added additional information
in Discussion Section regarding this.

Q 2.6 The analysis connected to Figure 6 is quite incomplete. The visualization makes it difficult to actually
decide what a real pattern is and what is us fooling ourselves. If a claim like “those material properties that
are correlated with each other tend to perform better. . . ” is made, a much better analysis needs to support
that.

5



Reply: Figure 6 was mainly used to find a pair-wise relationship between different target properties and not
any general pattern or trend from the heatmap. We have updated it by adding correlation values to make
it easier to visualize and moved it to supplementary materials after reviewing the comments by Reviewer 1
and Reviewer 3. The insights gained from the heatmap are added to the Discussion section.

Q 2.7 Lines 198-199 compare TL and SC. The claim is written to make TL seem positive, but this is not a
rigorous test. From a quick sign test on the results, I get p =.1. I would interpret this as “neither SC or
TL outperform each other”. From a practical perspective, the SC(PA) models are much more appealing than
the complexity of the TL models. Therefore, this section tells me: don’t bother with these TL models because
it’s a coin flip which one will work better. If the authors would like to make a different claim, they should
support it.
Reply: We thank the reviewer for raising the issue. As described earlier, we have modified our workflow
by first performing one run for all the SC/TL models for multi-target analysis. We then identify the best-
performing model for each category and perform 10-fold cross-validation for that model. Finally, the model
which gives the best validation error among SC and TL models is used to perform model testing on the
holdout test set. We have also added 95th percentile of the distribution of the absolute error in addition to
MAE for the best performing models to increase the reliability of conclusions drawn from statistical analyses
as suggested by reviewer 3.
As also mentioned earlier, we perform extensive hyperparameter search for the ML results. Table S 4 in the
revised SI lists the hyperparameters explored for each of the 12 ML algorithms, leading to an exploration
of 183 models. On the other hand, for DL models, we only use ElemNet (which was originally designed
for formation energy and which uses only raw elemental fractions as input) as the deep learning model
architecture without any hyperparameter optimization, and it still shows comparable or better performance
compared to SC(PA) which uses different and more informative attributes as input, which we consider quite
promising.
Furthermore, for the new results from the modified workflow, we have calculated the one-tailed p-value for
test MAE comparison for 41 materials properties datasets (39 DFT-computed datasets and two experimental
datasets) using Signed Test [14, 15] as we are dealing with different datasets. Here, the null hypothesis is
“TL model is not better than SC model” and alternate hypothesis is “TL model is better than SC model”.
If we take into account that the SC models are allowed PA as input, we get the p-value = 0.00397 for MAE
comparison and p-value = 0.04291 for (Q95) comparison using a sign test calculator [16], thus rejecting
the null hypothesis at α=0.05, suggesting that such difference in test MAE/Q95 is unlikely to have arisen
by chance. We can thus infer that in general TL models perform significantly better than SC models for
cross-property transfer learning. We have added additional information in the Results section.

Q 2.8 “Thus preventing any possibility of model overfitting or confounding” is simply a false, hyperbolic
statement. Being careful in your test set split does not “prevent” overfitting or all kinds of confounding
Reply: We thank the reviewer for catching that! Obviously the intent was to convey that ensuring no
overlap between training and testing splits is important, without which the model can easily overfit. But we
see how the previously used phrase could be misleading, and have now removed it.

Q 2.9 Your color bar scales on Figures 2 and 3 are mislabeled
Reply: Actually they were not mislabeled as they represented the values for the middle table in both the
figures. We apologize for not explicitly mentioning that in the table description. Anyway, since we have
performed the model training for ML models again (due to the previous inconsistency with their evaluation
w.r.t. DL models as described before), we have changed the results from relative MAE to actual MAE, and
performed statistical significance testing on validation MAEs. Since that allows us to identify top performing
models for each target property in a more statistically rigorous way, we have now removed the color scale
altogether in the revised manuscript.

Q 2.10 Lines 272-273: Similar to the main concern above, I can’t tell from the words if you took the model
with the best cross-validation score and reported its value on the holdout set or if you took the model with the
best performance on the holdout set.
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Reply: We thank the reviewer for the comment. We have clarified it by modifying the text at the mentioned
place. We took the model with the best cross-validation score and reported its value on the holdout set.

Q 2.11 Lines 391-392: You need to report the details of your hyperparameter search rather than just saying
it is “extensive”.

Reply: As mentioned earlier, we have now added a table with the list of algorithms and their respective
hyper-parameters for performing the model training in the supplementary materials (Table S 4).

Reviewer 3
The authors present a transfer learning (TL) framework that was developed to transfer knowledge from
a deep learning (DL) model trained on a large dataset labeled with a single property to a small dataset
containing multiple properties. The authors demonstrate their cross-property deep TL framework at the
example of the materials databases OQMD (six properties considered, one of which is used for training at a
time; source of the large dataset), and JARVIS (39 properties; source of the small dataset). To realize a truly
data-driven learning process, the authors employ “elemental fractions” as independent variables (features),
which do not contain any physical domain knowledge.

The authors find that their TL approach outperforms popular machine learning (ML)/DL models trained
from scratch (i.e., without consideration of the OQMD database) for up to 37 out of 39 properties. Even
if physical domain knowledge is incorporated into the scratch models, the TL approach by the authors
yields superior predictions in 24 out of 39 cases. These results suggest that cross-property deep TL bears the
potential to support researchers in situations where large datasets are unavailable for certain properties, which
I would consider the rule rather than the exception. Therefore, the work by Agrawal and co-workers clearly
has high potential significance for materials science and related fields (such as molecular and pharmaceutical
science).

The initial step of the method proposed consists in the application of DL to a large dataset (OQMD,
about 340K entries). A single property (six in total: formation energy per atom, bandgap, total energy
per atom, stability, magnetic moment, volume per atom) is selected to train the DL model, which is a
17-layer neural network called ElemNet and is based on elemental fractions. In the manuscript, this DL
model is referred to as the source model. After training, the source model or information extracted thereof is
utilized to learn 39 properties of a smaller dataset (JARVIS, 557 to 28K entries, depending on the property)
containing comparable systems. Those systems that overlap with OQMD were removed from training the
source model to avoid bias. One of two possible TL paths can be chosen:

Path A (Fine-Tuning). The source model is retrained on JARVIS.
Path B (FeatExtr). Features of the source model are extracted and combined with other machine learning

(ML)/DL models. This path was shown to be superior to path A in terms of prediction accuracy. It also
allows users to combine the cross-property deep TL framework of the authors with a learning model of their
choice.

The authors compare the performance of both TL paths against both the above-mentioned scratch models
and a baseline (average property value over all training data). The latter is inferior to both TL and scratch
ML/DL for all properties.

As much as I am confident that the current study is relevant, comprehensible, and reproducible (the
authors made the production code openly available), it lacks — in my opinion — robustness of the conclusions
drawn:

Q 3.1 The authors show that TL generally outperforms scratch ML/DL with respect to predicting JARVIS
properties. However, 90% of the JARVIS data are used for training (81%) and validation (9%), leaving
only 10% of the data for testing purposes. Given that 90% of the dataset still corresponds to up to about
25K entries, the results reported by the authors are only informative to researchers who study systems and
properties for which such rich data pool is available. I would argue that this scenario is the exception rather
than the rule. To address a larger target audience, learning curves that measure prediction accuracy as a
function of the training set size might be helpful.
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Reply: We thank the reviewer for the valuable suggestion. As the reviewer has indicated in his summary
of the work above, we perform model training on 39 different materials properties from DFT-computed
database and two different materials properties from experimental dataset with different training data sizes
ranging from 28K to 500 entries in this work. In addition, following the reviewer’s suggestion, we performed
additional model training experiments for formation energy for different training data size using the same
test set (10% of the total data size) to create a learning curve that shows prediction accuracy as a function
of the training set size.

Figure R1: Training curve for prediction accuracy of target formation energy for different training data sizes
on a fixed test set.

Figure R 1 shows that in general, TL models outperforms SC models for all the training sizes for formation
energy prediction. We have also added this figure in the SI and referred to it in the discussion section.

Q 3.2 It is interesting to see that transfer learning across properties seems to work, but how fast does transfer-
ability decay? If the materials of the test set are very similar to those of the training set, the conclusions drawn
by the authors may be too optimistic. A visualization of the dataset (separated into training[/validation]/test)
might be helpful. I am thinking of a two-dimensional data distribution in which the data points of the test
set are colored according to the absolute error between prediction and actual property value. How fast does
transferability decay / the error increase as a function of distance to the training data? How do these plots
differ for TL and scratch ML/DL? Can one observe different decay rates for these two modes of learning?
Reply: We thank the reviewer for the valuable suggestion. We agree it would be an interesting and useful
analysis. Unfortunately the specific plot suggestion made by the reviewer was not entirely clear to us, but
taking cue from the comment, we have tried to perform a transferability decay study as described below for
formation energy as an illustrative target property.

The data points corresponding to the bottom 10% of formation energy values were set aside as the
“Extrapolation test set”. The remaining data was divided into into training, validation, and test split by using
the train test split function from the Sklearn library. The obtained test split was called as “Interpolation
test split”. The lower values for formation energy indicate a more stable compound, and it is desirable to
have a model that can predict (and maybe even extrapolate) the lower values accurately.

Here the materials property value range of the training data is [-2.41005, 4.25274] and of testing data
is [-2.4096, 3.31337] for the Interpolation test split and [-4.38553, -2.41013] for the Extrapolation test split.
The scatter plot of the prediction error analysis is shown in Figure R 2.

Figure R 2 shows that the best TL model performs significantly better as compared to the best SC model.
The SC model is only able to predict values closer to -2 eV/atom, which was the lowest property value in
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Figure R2: Prediction error analysis for predicting formation energy in JARVIS dataset using best SC and
best TL model.

the training data, whereas the TL model can accurately predict even lower values. Hence one can observe
different decay rates for these two modes of learning where the TL model outperforms the SC model for
formation energy as materials property.

Q 3.3 The relative performance of TL is, on average, better by 12+-7% compared to scratch ML/DL. This
value refers to the mean absolute error (MAE), the only performance measure reported by the authors. It has
been shown by Pernot and Savin (https://aip.scitation.org/doi/10.1063/1.5016248) that the MAE is an am-
biguous measure of performance. They propose that a series of performance measure should be reported to in-
crease the reliability of conclusions drawn from statistical analyses (https://iopscience.iop.org/article/10.1088/2632-
2153/aba184). In particular, Pernot and Savin show that the 95% percentile of the distribution of absolute
errors (Q95) is a less ambiguous measure of performance. In my opinion, the inclusion of additional per-
formance measures (following the recommendations by Pernot and Savin) would most certainly corroborate
the robustness of the authors’ conclusions.
Reply: We thank the reviewer for the valuable suggestion. We have added the 95th percentile of the
distribution of the absolute error for the best performing models in table S 12 for the models used in Table
2-5 in the SI for all the target properties and added text in the discussion section about it.

Q 3.4 Furthermore, I find the manuscript lengthy considering that the discussion is very descriptive rather
than explanatory. In my opinion, this applies particularly to the later sections “Source Model Based Analysis”
and “Correlation Among Materials Properties”. I think that the manuscript would benefit from removing these
sections as they do not offer novel insight and rather distract the reader from the actual research problem.
Regarding my previous comment (“... descriptive rather than explanatory”): although I am aware of the
difficulty to gain insight into neural networks, it seems to be an obviously interesting question why transfer
learning across properties works. For instance, is there a link between the transfer performance from a source
property to a target property and the correlation between these properties?
Reply: We thank the reviewer for the valuable suggestion. We have removed the text of later sub-sections
“Source Model-Based Analysis” and “Correlation Among Materials Properties” Result sections and moved
the Figures to the Supplementary Materials. We have also added an explanation regarding the “correlation
between different target properties” into the Discussion (which was initially briefly discussed in the “Corre-
lation Among Materials Properties”). We did not see a clear link between the transfer performance from a
source property to the target property.

Q 3.5 “The field of materials science has seen a growing application of Artificial Intelligence (AI) and Machine
Learning (ML) techniques, which has significantly contributed to enhanced property prediction models as well

9



as accelerated materials exploration and discovery 1–12.” Several important contributions are missing, for
instance (reviews/perspectives only):
- https://www.nature.com/articles/s41563-020-0777-6
- https://doi.org/10.1021/acs.accounts.0c00785
- http://arxiv.org/abs/2102.08435
- https://www.nature.com/articles/s41578-018-0005-z
- https://www.nature.com/articles/s41586-018-0337-2
- http://science.sciencemag.org/content/361/6400/360

Reply: We thank the reviewer for highlighting the lack of references for several important contributions and
providing their valuable suggestions. We have added and cited the above mentioned papers.

Q 3.6 “Therefore, Transfer Learning (TL) 33 is often applied to tackle limited dataset problems by utilizing
the rich features extracted from large datasets 34–44.” I am wondering that no references from 2020 and 2021
are cited. However, as I am not familiar with this particular branch of literature, it is difficult for me to
assess whether this list is up to date or not.

Reply: We thank the reviewer for highlighting the lack of references for more recent transfer learning (TL)
related work. We have added and cited more recent TL works.
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REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
Comments on paper titled “Cross-property deep transfer learning framework for enhanced 
predictive analytics on small materials data” by Gupta et al. Submitted to Nature Communications 
(R1 revision) 
 
 
Regarding the author’s response to my original comments which they label as Q1.1 and Q1.2 in 
their rebuttal: 
 
This is a materials representation question. As the reviewer might be aware, there are two broad 
types of representations used for this problem: composition-based and structure-based, both of 
which have 
their advantages and limitations. By definition, the representations based on composition alone are 
unable 
to distinguish between different structure polymorphs of the same composition, which would end 
up being 
duplicates in the data, and thus would need to be removed before ML modeling. However, the 
resulting 
composition-based models could be used to make predictions without the need for structure as an 
input, which 
is useful since structure information is often unavailable or very expensive to calculate for new 
materials. 
Composition-based models can thus be used effectively for virtual combinatorial screening to 
narrow down 
the vast space of promising materials systems by identifying promising compositions, which could 
then be 
further explored with methods for structure prediction and structure-based property prediction 
models. In 
this work, we use composition-based representation, similar to [1, 2, 3, 4, 5, 6]. To deal with 
duplicates 
arising due to different structures of same composition, we only keep the most stable structure 
available in 
the database, i.e., the one with minimum formation energy, in line with previous works. We have 
added text 
in Results section (Datasets subsection) in the revised manuscript to better clarify this. 
 
I understand the need to restrict the model to use just composition-based features. I think then 
the limitations of the model need to be stated more clearly then, in the interest of transparency 
and so that a property value of two structural polymorphs cannot be distinguished. 
 
Regarding Q1.4, the Figshare link indeed works. 
 
 
It is great that the authors have the source code and a notebook to make new predictions on 
Github. They should also include the fitted model weights on Github or maybe Figshare (if it is too 
large) so that others can make predictions without having to re-train the full deep learning model- 
I think this is essential for maximum transferability. The Figshare API makes it easy to pull in large 
files like saved DL network weights if Github can’t host the file for you. 
 
Other than the small above comments, the authors have adequately addressed my previous 
comments. 
 
 
 
 



Reviewer #2 (Remarks to the Author): 
 
I am happy to see revisions to the evaluation process to deal with the obvious flaws in the first 
version of the manuscript. I have a few follow-on points I will detail below. 
 
However, as I said in the first review, I think the level of novelty and broad interest of this work is 
low. The few technical innovations would be better suited towards a smaller computational 
audience. 
 
A few technical and presentation points that I hope are helpful: 
* Q2.2: “corrected paired Student’s t-test proposed by Nadeau and Bengio”. I do not know what 
this phrase means. From the methods proposed (from Table 1 in their paper), the closest method 
would be “corrected resampled t” 
* Q2.4: This analysis should be included in the paper itself. 
* Table S7 and S11. The meaning of the +- is not defined 
* Page 9, lines 136 - 144. This reflects a fundamental misunderstanding of Dropout. It was 
specifically proposed to improve the generalization error. The use of drop out during inference as 
an uncertainty technique is a later concept (which has very questionable value, see [1] for a good 
evaluation/discussion, though this is a long running debate). Simply disabling drop out at inference 
would cause especially ReLU networks to have quite uncalibrated output (because the average 
activation at a layer would go up). So it is extremely surprising if it would improve the MAE. There 
is a standard technique of rescaling the weights of activations to make inference a deterministic 
process, but your text does not say that you do this. I did not look at your code, but it is possible 
your code is doing this without your knowledge. 
* Page 9, lines 151. This tiered model selection process is unusual. Assuming your text means that 
the multiple layers of validation testing still results in exactly one model being run on the test set 
for each category (and the test set is never mixed in), I think it is fair, but in general you would be 
better served by following a more standard process. You may be interested in [2] [3] 
* Your results in Table 2, 3, and 5 would still benefit from showing whether the difference between 
values in rows is significant or not in some way. Understanding variation in MAE for the same 
trained model, or the MAE of predicting to mean, or a well designed statistical test would be 
helpful to the reader. 
 
[1] Osband, Ian, Zheng Wen, Mohammad Asghari, Morteza Ibrahimi, Xiyuan Lu, and Benjamin Van 
Roy. 2021. “Epistemic Neural Networks.” arXiv [cs.LG]. arXiv. http://arxiv.org/abs/2107.08924. 
[2] Bates, Stephen, Trevor Hastie, and Robert Tibshirani. 2021. “Cross-Validation: What Does It 
Estimate and How Well Does It Do It?” arXiv [stat.ME]. http://arxiv.org/abs/2104.00673. 
[3] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.6720 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors addressed all remarks by the reviewers in a thorough, convincing, and constructive 
way. The manuscript's length reflects its information content. The line of reasoning is 
comprehensible and complete. In addition to my previous assessment (the study is relevant, 
comprehensible, and reproducible), the robustness of conclusions has increased substantially due 
to the revisions made by the authors. 
 
 
 



Response to the Reviewers
We thank the reviewers for their thorough assessment of our work. In the following we address their remaining
comments.

Reviewer 1
Comments on paper titled “Cross-property deep transfer learning framework for enhanced predictive ana-
lytics on small materials data” by Gupta et al. Submitted to Nature Communications (R1 revision)

Q 1.1 Regarding the author’s response to my original comments which they label as Q1.1 and Q1.2 in their
rebuttal:
“This is a materials representation question. As the reviewer might be aware, there are two broad types of
representations used for this problem: composition-based and structure-based, both of which have their advan-
tages and limitations. By definition, the representations based on composition alone are unable to distinguish
between different structure polymorphs of the same composition, which would end up being duplicates in the
data, and thus would need to be removed before ML modeling. However, the resulting composition-based
models could be used to make predictions without the need for structure as an input, which is useful since
structure information is often unavailable or very expensive to calculate for new materials. Composition-
based models can thus be used effectively for virtual combinatorial screening to narrow down the vast space
of promising materials systems by identifying promising compositions, which could then be further explored
with methods for structure prediction and structure-based property prediction models. In this work, we use
composition-based representation, similar to [1, 2, 3, 4, 5, 6]. To deal with duplicates arising due to different
structures of same composition, we only keep the most stable structure available in the database, i.e., the
one with minimum formation energy, in line with previous works. We have added text in Results section
(Datasets subsection) in the revised manuscript to better clarify this.”
I understand the need to restrict the model to use just composition-based features. I think then the limitations
of the model need to be stated more clearly then, in the interest of transparency and so that a property value
of two structural polymorphs cannot be distinguished.

Reply: Thank you for your valuable suggestion. We have added text in the ”Model Architectures” under
Methods Section along these lines.

Q 1.2 Regarding Q1.4, the Figshare link indeed works. It is great that the authors have the source code and
a notebook to make new predictions on Github. They should also include the fitted model weights on Github
or maybe Figshare (if it is too large) so that others can make predictions without having to re-train the full
deep learning model- I think this is essential for maximum transferability. The Figshare API makes it easy
to pull in large files like saved DL network weights if Github can’t host the file for you.

Reply: We thank the reviewer for the valuable feedback. We have provided the source models in the github
under elemnet/model directory and the target models via a zenodo link which is also provided in the github.

Q 1.3 Other than the small above comments, the authors have adequately addressed my previous comments.

Reply: We thank the reviewer for investing time into providing us with valuable feedback.

Reviewer 2
I am happy to see revisions to the evaluation process to deal with the obvious flaws in the first version of
the manuscript. I have a few follow-on points I will detail below.

However, as I said in the first review, I think the level of novelty and broad interest of this work is low.
The few technical innovations would be better suited towards a smaller computational audience.

A few technical and presentation points that I hope are helpful:

1



Q 2.1 Q2.2: “corrected paired Student’s t-test proposed by Nadeau and Bengio”. I do not know what this phrase
means. From the methods proposed (from Table 1 in their paper), the closest method would be “corrected
resampled t”

Reply: We thank the reviewer for correcting the terminology. We have also added the term in the caption
of Table S7, S9 and S11 with the correct terminology.

Q 2.2 Q2.4: This analysis should be included in the paper itself.

Reply: Thank you for your valuable suggestion. We have modified text in Discussion Section along these
lines.

Q 2.3 Table S7 and S11. The meaning of the +- is not defined

Reply: Thank you for your feedback. We have modified the caption of Table S7, S9 and S11 to better
explain the meaning of the +-.

Q 2.4 Page 9, lines 136 - 144. This reflects a fundamental misunderstanding of Dropout. It was specifically
proposed to improve the generalization error. The use of drop out during inference as an uncertainty technique
is a later concept (which has very questionable value, see [1] for a good evaluation/discussion, though this
is a long running debate). Simply disabling drop out at inference would cause especially ReLU networks to
have quite uncalibrated output (because the average activation at a layer would go up). So it is extremely
surprising if it would improve the MAE. There is a standard technique of rescaling the weights of activations
to make inference a deterministic process, but your text does not say that you do this. I did not look at your
code, but it is possible your code is doing this without your knowledge.

Reply: We thank the reviewer for the feedback. After carefully examining the code we found that actually
dropout was disabled both during the training and inference phases. We have changed the text under Model
Architecture Design to clearly specify this.

Q 2.5 Page 9, lines 151. This tiered model selection process is unusual. Assuming your text means that
the multiple layers of validation testing still results in exactly one model being run on the test set for each
category (and the test set is never mixed in), I think it is fair, but in general you would be better served by
following a more standard process. You may be interested in [2] [3]

Reply: We thank the reviewer for the valuable feedback in providing the relavant references. We will
definitely look into it.

Q 2.6 Your results in Table 2, 3, and 5 would still benefit from showing whether the difference between values
in rows is significant or not in some way. Understanding variation in MAE for the same trained model, or
the MAE of predicting to mean, or a well designed statistical test would be helpful to the reader.

Reply: We thank the reviewer for the valuable feedback. As suggested, we have added the test MAE
obtained from the base model which uses the average property value of all the training data provided to it
as the predicted property of a test compound i.e. the MAE of predicting the mean in Tables 2, 3, 4 and 5.

Reviewer 3
The authors addressed all remarks by the reviewers in a thorough, convincing, and constructive way. The
manuscript’s length reflects its information content. The line of reasoning is comprehensible and complete. In
addition to my previous assessment (the study is relevant, comprehensible, and reproducible), the robustness
of conclusions has increased substantially due to the revisions made by the authors.

Reply: We thank the reviewer for their encouraging feedback! It is very much appreciated.
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