Supporting Information

Biodegradable, tissue adhesive polyester blend for safe, complete wound healing

John L. Daristotle^{†,#}, Metecan Erdi^{‡,#}, Lung W. Lau[§], Shadden T. Zaki[#], Priya Srinivasan[§], Manogna Balabhadrapatruni[‡], Omar B. Ayyub[‡], Anthony D. Sandler[§], and Peter Kofinas^{‡,*}

[†]Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Dr., College Park, MD 20742, United States

[‡]Department of Chemical and Biomolecular Engineering, University of Maryland, 4418 Stadium Dr., College Park, MD 20742, United States

[§]Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, 111 Michigan Ave. NW, Washington, D.C. 20010, United States

^{II}Department of Materials Science and Engineering, University of Maryland, 4418 Stadium Dr., College Park, MD 20742, United States

Keywords: tissue adhesion, wound healing, biodegradable adhesive, sprayable polymer, bandage

*Corresponding author: Peter Kofinas, kofinas@umd.edu

[#]J.L.D. and M.E. contributed equally to this manuscript

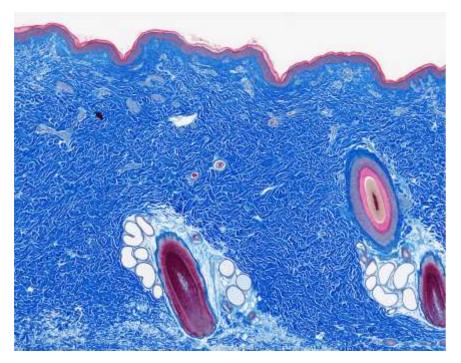
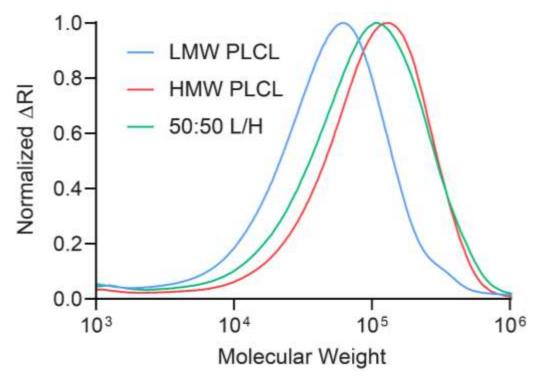
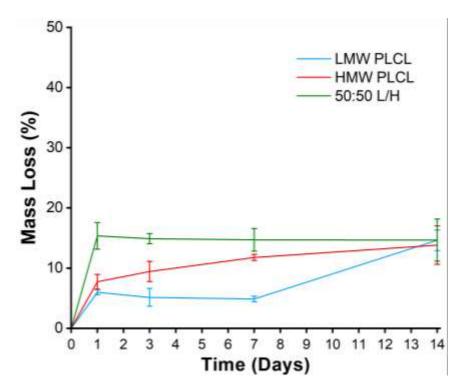




Figure S1. Histology of unwounded porcine skin tissue.

Figure S2. Gel permeation chromatography of low molecular weight (LMW) poly(lactide-cocaprolactone) (PLCL), high molecular weight PLCL, and a 50:50 blend of those two polymers (50:50 L/H), which has pressure-sensitive adhesive properties.

Figure S3. Mass loss data for low molecular weight (LMW) poly(lactide-co-caprolactone) (PLCL), high molecular weight PLCL, and a 50:50 blend of those two polymers (50:50 L/H), which has pressure-sensitive adhesive properties, during *in vitro* degradation.