Figure S1. Conserved phenotypes exist among several Tn mutant strains of A. baumannii. A: Murine, bone marrow-derived macrophages were infected with chemically-killed, mid log-phase Ab 17978 VU or one of the Tn mutant strains made in the Ab 17978 UN background – Tn5A7, Tn2, or Tn7 - at an MOI of 10. At 18 h.p.i., supernatants were collected from each well, and the concentration of IL-1ß was guantified via ELISA. B: Representative electron microscopy images of *Ab* 17978 VU and the Tn mutant strains Tn5A7 and Tn20A11. Numerous appendages (pili) are visible on the cell surface of both Tn mutant strains, but not on the cell surface of Ab 17978 VU. C: Quantification of the differences in cell surface appendages between strains in terms of the number of cells with pili and the average number of pili per cell. A and C: Columns depict the mean, and error bars show standard deviation of the mean. All means were compared with the mean of the first column using a one-way ANOVA adjusted for multiple comparisons. *: p<0.05; **: p<0.01; ***: p<0.001.

- ___

27	Figure S2. No differences in blood neutrophil or lymphocyte abundance exist between mice
28	infected with Ab 17978 VU and mice infected with Ab 17978 UN. A-D: Mice were challenged
29	intranasally with 3×10 ⁸ CFU of mid log-phase Ab 17978 VU or Ab 17978 UN. At 24 h.p.i., mice were
30	euthanized, blood was collected via cardiac puncture, and blood cell counts were determined using an
31	automated hematology analyzer. Circles represent individual animals, columns depict the mean, and
32	error bars show standard deviation of the mean. Means were compared using an unpaired Welch's t-
33	test. ns: not significant.
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	

53	Figure S3. Lung and	l serum levels of IL·	1β do not differ be	etween mice infected wi	th Ab 17978 VU
	5 5				

and mice infected with Ab 17978 UN at 24 h.p.i. Mice were challenged intranasally with 3×10⁸ CFU of mid log-phase Ab 17978 VU or Ab 17978 UN. At 24 h.p.i., mice were euthanized, blood was collected via cardiac puncture, and lungs were harvested. IL-1 β in the serum (A) or lung homogenates (B) was quantified using ELISA. A: N=3-5 biological replicates per group, per experiment. Experiments were repeated for a total of at least two times, with graphs depicting representative data. B: N=3-5 biological replicates per group, per experiment. Graphs depict average results from at least two independent experiments. A and B: Columns depict the mean, and error bars show standard deviation of the mean. Means were compared using an unpaired Welch's *t*-test. ns: not significant.

- . –

78 Figure S4. The accessory pilus assembly genes present in Ab 17978 UN do not contribute to 79 increased phagocytosis by macrophages, biofilm formation, bacterial surface associated motility, bacterial association with epithelial cells and erythrocytes, or differential production of 80 cytokines by infected macrophages. A: Macrophage-like RAW 264.7 cells were infected with mid 81 log-phase Ab 17978 VU. Ab 17978 UN. or Ab 17978 UN ⊿pilus at an MOI of 15. At 1 h.p.i., and 82 extracellular bacteria were killed with gentamicin at 1 h.p.i. Thirty minutes after the addition of 83 gentamicin, RAW cells were lysed, and intracellular bacterial burdens were determined. B: Stationary-84 phase cultures of Ab 17978 VU, Ab 17978 UN, and Ab 17978 UN ∆pilus were diluted 1:10 in PBS, 85 coated onto the wells of a 96-well plate, and incubated at 37 °C without agitation for 24-48 hours. After 86 87 incubation, biofilm formation was quantified using crystal violet staining, and the ratio of biofilm to 88 biomass was determined by measuring the optical densities at 580 nm and 600 nm, respectively. C: 89 A549 cells were infected with mid log-phase Ab 17978 VU, Ab 17978 UN, or Ab 17978 UN ∆pilus at an 90 MOI of 100, and incubated at 37 °C for two hours. At 2 h.p.i., non-adherent bacteria were removed by 91 washing with PBS, A549 cells were lysed, and the number of cell-associated bacteria was determined. 92 D: Stationary-phase Ab 17978 VU, Ab 17978 UN, and Ab 17978 UN Apilus were spotted on the surface 93 of motility agar plates at the center and incubated overnight at 37 °C without agitation. After incubation, 94 the maximum motility radius was measured. E: Ab 17978 VU, Ab 17978 UN, and Ab 17978 UN ∆pilus 95 were grown in static liquid culture (left) or on LBA plates (right), and incubated overnight at 4 °C with an equal volume of 1% human ervthrocytes in PBS. Static liquid cultures of E. coli UTI89 and E. coli 96 UTI89 *AfimAH* served as positive and negative controls, respectively. After incubation, 97 98 hemagglutination titers (i.e. the maximum dilution at which bacteria are able to agglutinate erythrocytes) 99 were determined. F and G: Murine, bone marrow-derived macrophages were infected with mid logphase cultures of Ab 17978 VU, Ab 17978 UN, or Ab 17978 UN ∆pilus at an MOI of 10 and incubated 00 at 37°C. At 18 h.p.i., supernatants of infected BMDMs were collected. The concentrations of IL-10 (A) 01 and IL-1ß (B) in the supernatants of infected BMDMs were determined by ELISA. A–G: N=3-4 biological 02

03	replicates per group, per experiment. Experiments were repeated for a total of at least two times, with
04	graphs depicting representative (A, B, E-G) or average (C and D) data. Columns depict the mean, and
05	error bars show standard deviation of the mean. A-D, F and G: Means were compared to all other
06	means using a one-way ANOVA adjusted for multiple comparisons. E: Means were compared to the
07	mean of the first column using a one-way ANOVA adjusted for multiple comparisons. CFU/mL: colony
08	forming units per milliliter. **: p<0.01; ***: p<0.001; ****: p<0.0001; ns: not significant.
09	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

killing. Murine, bone marrow-derived neutrophils were incubated with mid log-phase *Ab* 17978 VU, *Ab* 17978 UN, or *Ab* 17978 UN $\Delta katX$ at an MOI of 1. Two hours post-incubation, neutrophils were lysed, and neutrophil-mediated killing of bacteria was assessed by determining the number of viable bacteria in each well. N=3 per group, per experiment. Experiments were repeated for a total of at least two times, with graphs depicting representative data. Columns depict the mean, and error bars show standard deviation of the mean. Means were compared to all other means using a one-way ANOVA adjusted for multiple comparisons. **: p<0.01; ****: p<0.0001.

- . .

Figure S6: Small, punctate colonies are present in supernatants and lysates of macrophage-like
RAW 264.7 cells infected with Ab 17978 UN ∆c/sC2 or Ab 17978 UN ∆c/sC2/c/sC2. A-C:
Macrophage-like RAW 264.7 cells were infected with Ab 17978 UN, Ab 17978 AclsC2, or Ab 17978
△clsC2/clsC2 at a target MOI of 15 and starting inoculums were serially diluted in PBS and plated on
LBA (A). B: At 30 minutes post-infection, supernatants were serially diluted in PBS and plated on LBA.
C: The remaining supernatant was aspirated, cells were washed twice with PBS, lysed with 0.01%
Triton X-100, and lysates were serially diluted in PBS and plated on LBA.

81 Table S1. Bacterial strains and plasmids used in this study

Strain/plasmid	Description	Source	Reference
Variant of A. baumannii ATCC 17978Ab 17978 VUthat lacks AbaAL44, stored at VanderbiltUniversity		Vanderbilt University	ATCC
<i>Ab</i> 17978 UN	Variant of <i>A. baumannii</i> ATCC 17978 that harbors AbaAL44, stored at the University of Nebraska	University of University of University of Nebraska	
<i>Ab</i> 17978 UN <i>Δpilus</i> /pAT02	<i>Ab</i> 17978 UN with accessory pilus locus (<i>smf1, yadV, htrE, and mrkD</i>) replaced by kan ^R cassette		This study
<i>Ab</i> 17978 UN <i>ΔkatX</i>	<i>Ab</i> 17978 UN with accessory <i>katX</i> gene (KZA74_09300) replaced by kan ^R cassette		This study
<i>Ab</i> 17978 UN <i>ΔkatX</i> /EV	<i>Ab</i> 17978 UN <i>ΔkatX</i> transformed with pWH1266		This study
Ab 17978 UN ∆katX/pkatX	<i>Ab</i> 17978 UN <i>ΔkatX</i> transformed with pWH1266(<i>katX</i>)		This study
Ab 17978 UN ΔclsC2	<i>Ab</i> 17978 UN with accessory cardiolipin synthase gene (<i>clsC2</i>) replaced by kan ^R cassette		This study
Ab 17978 UN ΔclsC2/clsC2	Ab 17978 UN ΔclsC2 with clsC2 reintegrated chromosomally under its native promoter		This study

E. coli UTI89	Prototypical UPEC strain	Dr. Maria Hadjifrangiskou	(2)
		(Nashville, TN)	
E. coli UTI89Prototypical UPEC strain with fimA and∆fimAHfimH genes deleted		Dr. Maria Hadjifrangiskou (Nashville, TN)	(3)
E. coliE. coli 100D transformed with helperDiasmid encoding the site-specific100D/pTNS2TnsABCD Tn7 transposition pathway			(4)
E. coliE. coli HB101 transformed with oriTHB101/pRK2013helper-containing plasmid			(4)
E coli DH5αStrain that permits maintenance ofλpir116plasmids at high copy numbers		Dr. Eric Skaar (Nashville, TN)	
pCR2.1	Vector to amplify kan ^R cassette for insertion		(5)
pAT02	precET-carb confers carb/amp resistance and <i>A. baumannii</i> recombinase		(6)
pWH1266	<i>E. coli – A. baumannii</i> shuttle vector conferring ampicillin and tetracycline resistance		(7)
pKNOCK-mTn7-Plasmid with R6K origin of replicationampand mini-Tn7 element			(4, 8)

Table S2. Annotated genes of the accessory cluster present in *Ab* 17978 UN.

Gene	Locus Tag	Annotation	Notes
	(CP079931)		
3977*	KZA74_09200	phage/plasmid replication	Identical to 3978, only
		protein	partially in the island
4059*	KZA74_09205	helix-turn-helix transcriptional	Identical to 4060
		regulator	
3965*	KZA74_09210	putative replication initiation	Identical to 3966
		protein	
390*	KZA74_09215		No putative conserved
			domains have been
		hypothetical protein	detected
491*	KZA74_09220	putative Zonular occludens	
		toxin (Zot)	
191*	KZA74_09225	DUF2523 domain-containing	
		protein	
492*	KZA74_09230		No putative conserved
			domains have been
			detected. Truncated
			relative to
			Aba810CP_9780 in A.
		hypothetical protein	<i>baumannii</i> strain 810CP
493*	KZA74_09235		No putative conserved
			domains have been
		uncharacterized protein	detected

4011*	KZA74_09240		No putative conserved
			domains have been
		hypothetical protein	detected
3978*	KZA74_09245	phage/plasmid replication	Identical to 3977
		protein	
4060*	KZA74_09250	helix-turn-helix transcriptional	Identical to 4059
		regulator	
3966*	KZA74_09255	putative replication initiation	Identical to 3965
		protein	
495*	KZA74_09260		No putative conserved
			domains have been
		hypothetical protein	detected
smf-1_1	KZA74_09265	Major fimbrial subunit SMF-1	
yadV_1	KZA74_09270	putative fimbrial chaperone	
		YadV	
htrE_1	KZA74_09275	Outer membrane usher	
		protein HtrE	
mrkD_1	KZA74_09280	Fimbria adhesin protein	
501*	KZA74_09285		This small family consists
			of several
			uncharacterized proteins
			around 325 residues in
			length and is mainly
			found in various
		DUF 4882 superfamily protein	Acinetobacter species.

			The function of this family
			is unknown.
frmA	KZA74_09290	S-(hydroxymethyl)glutathione	
		dehydrogenase	
193*	KZA74_09295	phage capsid protein	
503*	KZA74_09300	catalase	
504*	KZA74_09305		No putative conserved
			domains have been
		hypothetical protein	detected
505*	KZA74_09310		No putative conserved
			domains have been
		hypothetical protein	detected
clsC2	KZA74_09315	Cardiolipin synthase C	
506*	KZA74_09320	Uracil-DNA glycosylase	
507*	KZA74_09325		No putative conserved
			domains have been
		hypothetical protein	detected
509*	KZA74_09330	peptidase	
pqqE	KZA74_09335	Pyrroloquinoline quinone	
		biosynthesis protein	
		PqqE	
pqqD	KZA74_09340	Coenzyme PQQ synthesis	
		protein D	
pqqC	KZA74_09345	Pyrroloquinoline-quinone	
		synthase	

pqqB	KZA74_09350	Coenzyme PQQ synthesis protein B
pqqA	KZA74_09355	pyrroloquinoline quinone
ppk 1	KZA74 09360	Polyphosphate kinase
yhcR	KZA74_09365	Endonuclease YhcR
516*	 KZA74_09370	Fur family transcriptional
vibB	KZA74 09375	Vibriobactin-specific
		isochorismatase
dhbA	KZA74_09380	2,3-dihydro-2,3- dihydroxybenzoate
		dehydrogenase
cysA_2	KZA74_09385	Sulfate/thiosulfateimportATP-binding protein CysA
modB	KZA74_09390	Molybdenum transport system permease protein ModB
modA	KZA74_09395	Molybdate-binding protein ModA
торА	KZA74_09400	Molybdenum-pterin-binding protein MopA
antA_2	KZA74_09405	Anthranilate 1,2-dioxygenase large subunit

antB	KZA74_09410	Anthranilate 1,2-dioxygenase	
		small subunit	
antC	KZA74_09415	anthranilate 1,2-dioxygenase	Partially in AbaLA44
		electron transfer	
		component	

- 86 *: Indicates name assigned by genome analysis software PROKKA

Nucleotide Position (CP012004 [VU]/ CP079931 [UN])	Allele in VU (residue)	Allele in UN (residue)	Gene	Description
129,758	ISAba18	Δ1,312 bp	ACX60_00590–ACX60_00595	transposase, transposase
207,638/206,237	G (A382)	A (T382)	actP	acetate permease
524,616/ 523,217	+A	Δ1 bp	ACX60_02575/KZA74_02575	Phosphohydrolase/pseudogene
807,273/805,874	G (P439)	A (P439)	cysG	sirohydrochlorin ferrochelatase
1,075,443/1,074,044	A (N258)	T (I258)	ACX60_05080/cgtA	GTPase obgE
1,226,257/1,224,858	G (G12)	A (D12)	ACX60_05695/KZA74_05725	membrane protein DUF817
1,685,154/1,683,755	T (M78)	C (T78)	ACX60_07925/uppS	UDP diphosphate synthase
2,068,076/2,111,105	T (stop codon)	A (L376)	Intergenic ACX60_09755- ACX60_09765/KZA74_10025	SurA N-terminal domain-containing protein
2,109,791/2,152,820	C (A55)	T (T55)	ACX60_09960/KZA74_10230	hypothetical protein/ putative transporter
2,135,294/2,178,324	+C	(C) _{5→4}	ACX60_10130/KZA74_10405	DNA helicase AAA family ATPase
2,172,876/2,215,906	T (F799)	G (V799)	ACX60_10365/KZA74_10630	LPS biosynthesis protein LptD

2,189,235/2,232,265	A	G	ACX60_10450 -ACX60_10455/KZA74_10715- putP	Intergenic (NAD-dependent deacetylase/proline:sodium symporter PutP)
2,236,009/2,279,039	G	A	ACX60_10685-ACX60_10690/KZA74_10950- KZA74_10955	Intergenic (ABC transporter substrate-binding protein/glutathione S-transferase)
2,410,784/2,453,814	C (T2)	A (K2)	ACX60_11495/KZA74_11775	aspartate:proton symporter APC family permease
2,846,783/2,889,821	Δ1,106 bp	ISAba11	ACX60_17045/KZA74_13815	transposase
3,384,892/3,429,018	Δ1 bp	+T	ACX60_15995-ACX60_16000/KZA74_16315 - infA	Intergenic (AraC family transcriptional regulator/translation initiation factor IF-1)
3,384,893/3,429,019	G	A	ACX60_15995-ACX60_16000/KZA74_16315 - infA	Intergenic (AraC family transcriptional regulator/translation initiation factor IF-1)
3,852,237	(ATGGTG) _{9→8}	(ATGGTG) _{9→8}	ACX60_18165/dmeF	cobalt transporter

98 **REFERENCES (SUPPLEMENT)**

- Jacobs AC, Hood I, Boyd KL, Olson PD, Morrison JM, Carson S, Sayood K, Iwen PC, Skaar
 EP, Dunman PM. 2010. Inactivation of phospholipase D diminishes *Acinetobacter baumannii* pathogenesis. Infect Immun 78:1952-62.
- Mulvey MA, Schilling JD, Hultgren SJ. 2001. Establishment of a persistent *Escherichia coli* reservoir during the acute phase of a bladder infection. Infect Immun 69:4572-9.
- Rosen DA, Pinkner JS, Jones JM, Walker JN, Clegg S, Hultgren SJ. 2008. Utilization of an
 intracellular bacterial community pathway in *Klebsiella pneumoniae* urinary tract infection and
 the effects of FimK on type 1 pilus expression. Infect Immun 76:3337-45.
- Kumar A, Dalton C, Cortez-Cordova J, Schweizer HP. 2010. Mini-Tn7 vectors as genetic tools
 for single copy gene cloning in *Acinetobacter baumannii*. J Microbiol Methods 82:296-300.
- 09 5. Spiliotis M. 2012. Inverse fusion PCR cloning. PLoS One 7:e35407.
- Tucker AT, Nowicki EM, Boll JM, Knauf GA, Burdis NC, Trent MS, Davies BW. 2014. Defining
 gene-phenotype relationships in *Acinetobacter baumannii* through one-step chromosomal
 gene inactivation. MBio 5:e01313-14.
- Hunger M, Schmucker R, Kishan V, Hillen W. 1990. Analysis and nucleotide sequence of an
 origin of DNA replication in *Acinetobacter calcoaceticus* and its use for *Escherichia coli* shuttle
 plasmids. Gene 87:45-51.
- Carruthers MD, Nicholson PA, Tracy EN, Munson RS. 2013. *Acinetobacter baumannii* utilizes
 a type VI secretion system for bacterial competition. PLoS One 8:e59388.