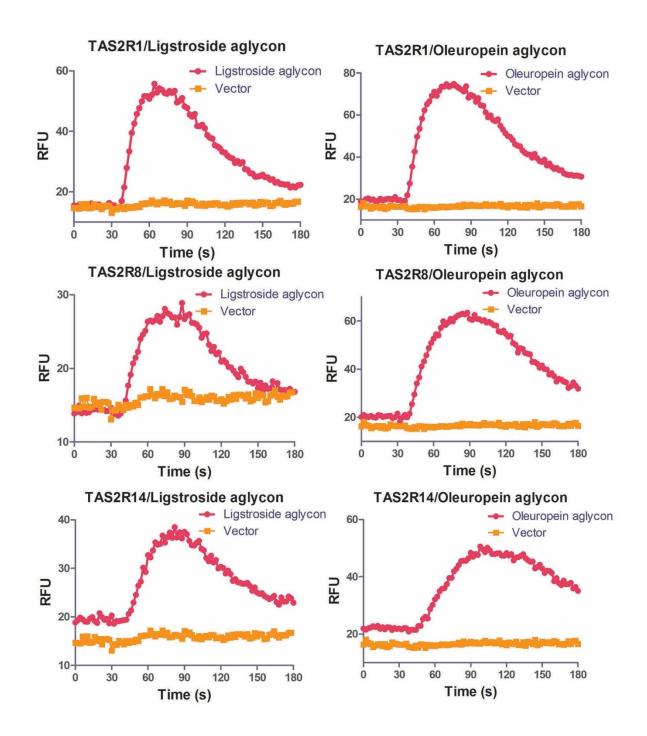
## Activation of specific bitter taste receptors by olive oil phenolics and secoiridoids Meng Cui<sup>1\*</sup>, Bohan Chen<sup>1</sup>, Keman Xu<sup>1</sup>, Aimilia Rigakou<sup>2</sup>, Panagiotis Diamantakos<sup>2</sup>, Eleni Melliou<sup>2</sup>, Diomedes E. Logothetis<sup>1,3,4\*</sup> and Prokopios Magiatis<sup>2\*</sup>

## Supplementary information

<sup>1</sup>Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, 02115, USA


<sup>2</sup> Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece

<sup>3</sup>Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA 02115, USA

<sup>4</sup>Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA

\* To whom correspondence should be addressed: m.cui@northeastern.edu (MC); d.logothetis@northeastern.edu (DEL); <u>magiatis@pharm.uoa.gr</u> (PM).

Running title: Olive oil phenolics activate bitter taste receptors



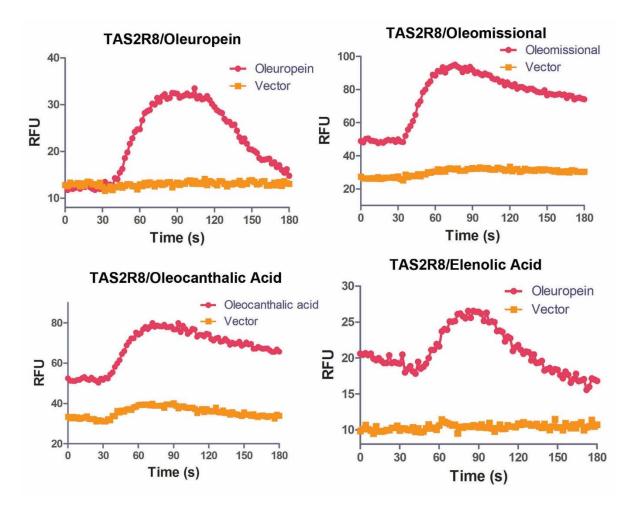



Figure S1. Representative traces from Calcium mobilization assay. Ligstroside aglycon [200 $\mu$ M] activates TAS2R1, TAS2R8, and TAS2R14; Oleuropein aglycon [200 $\mu$ M] activates TAS2R1, TAS2R8, and TAS2R14; Oleuropein [3mM], Oleomissional [300 $\mu$ M], Oleocanthalic acid [300 $\mu$ M], and Elenolic acid [300 $\mu$ M] activate TAS2R8. Compounds were injected at 30s, RFU: relative fluorescence units.