

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Neighbourhood deprivation, fetal growth and adverse pregnancy outcomes: the Generation R Study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-049075
Article Type:	Original research
Date Submitted by the Author:	14-Jan-2021
Complete List of Authors:	Gootjes, Dionne; Erasmus MC, Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine; Erasmus MC, Generation R Study Group Posthumus, Anke G; Erasmus MC, Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine; Erasmus MC, Generation R Study Group Jaddoe, Vincent; Erasmus MC, Department of Paediatrics; Erasmus MC, Generation R Study Group Steegers, E.A.P.; Erasmus MC, Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine; Erasmus MC, Generation R Study Group
Keywords:	SOCIAL MEDICINE, PUBLIC HEALTH, PREVENTIVE MEDICINE, Ultrasonography < OBSTETRICS, Prenatal diagnosis < OBSTETRICS, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Naighbourbood donrivation fotal growth and advorse programmy outcomes
reighbour nood deprivation, retar growth and adverse pregnancy outcomes.
the Generation R Study.
D.V. Gootjes ^{1,3} , A.G. Posthumus ^{1,3} , V.W.V Jaddoe ^{2,3} , E.A.P. Steegers ^{1,3}
¹ Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine,
² Department of Paediatrics, ³ Generation R Study Group, all: Erasmus University Medical Centre,
Rotterdam, The Netherlands.
The authors declare no conflict of interest.
Corresponding author
Correspondence to Dionne V. Gootjes
Wytemaweg 80, 3015 CN Rotterdam
<u>d.gootjes@erasmusmc.nl</u>
Telephone: +3110 703 04 52 +316 307 252 47
Key words: fetal, neighborhood/place, deprivation, pregnancy, socio-economic
Word count: 3661

1		
2	20	
4	20	Abstract
5 6	21	Objectives: To study the associations between neighbourhood deprivation and fetal growth, including
7 8	22	growth in the first trimester, and adverse pregnancy outcomes.
9 10 11	23	Design: Prospective cohort study.
12 13 14 15	24	Setting: The Netherlands, Rotterdam.
16 17	25	Participants: 8617 live singleton births from the Generation R cohort study.
18 19 20	26	Interventions: Living in a deprived neighbourhood.
21 22 23	27	Outcome measures: Fetal growth, including growth in the first trimester, and adverse pregnancy
24 25	28	outcomes (small-for-gestational age (SGA) and preterm birth (PTB)).
26 27 28	29	Results: Neighbourhood deprivation was not associated with first trimester growth. However, a higher
29 30	30	neighbourhood status score (less deprivation), was associated with increased fetal growth in the
31 32	31	second and third trimester (e.g. estimated fetal weight (adjusted regression coefficient 0.04 (95% CI
33 34 25	32	0.02 ; 0.06). Less deprivation was also associated with a decreased risk of SGA (aOR 0.91 (95% CI
36 37	33	0.86 ; 0.97)) and PTB (aOR 0.89 (95% CI 0.82 ; 0.96)).
38 39	34	Conclusions: We found an association between neighbourhood deprivation and fetal growth in the
40 41 42	35	second and third trimester pregnancy, but not with first trimester growth. Neighbourhood deprivation
42 43 44	36	is associated with adverse pregnancy outcomes. The associations remained after adjustment for
45 46	37	individual level risk factors. This supports the hypothesis that living in a deprived neighbourhood acts
47 48	38	as an independent risk factor for fetal growth and adverse pregnancy outcomes, above and beyond
49 50 51 52	39	individual risk factors.

40 Article Summary

41 Strengths and limitations of this study

• This study investigated the association between neighbourhood deprivation and fetal growth

and adverse pregnancy outcomes.

- This study is performed within in a large, multi-ethnic cohort.
- The Generation R study population is not completely representative of the Dutch population.
- Associations were adjusted for a wide range of relevant individual level risk factors, which

allows the isolation of a neighbourhood specific effect best as possible.

1 2

3
1
4
5
6
7
Q
0
9
10
11
12
12
15
14
15
16
17
10
10
19
20
21
22
22
∠_) \^
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
20
29
40
41
42
43
44
15
4J
46
47
48
49
50
50
52
53
54
55
55
30
57
58
59
60

Introduction

A low individual socioeconomic status (SES) is associated with adverse health outcomes.(1)
Additionally, there is accumulating evidence that the socioeconomic status of the neighbourhood in
which a person lives is also associated with health outcomes.(2) This is also the case for pregnancy:
both individual SES and living in a deprived neighbourhood are acknowledged risk factors for adverse
pregnancy outcomes.(3-5)

Recent evidence shows that other factors, such as maternal nutrition and lifestyle, already 54 55 affect pregnancy from the first trimester of pregnancy onwards.(6) Gaining a better understanding of modifiable factors that influence pregnancy from the earliest phase onwards is important. First, since 56 57 impaired development during the first trimester of pregnancy is associated with adverse pregnancy 58 outcomes.(6) Second, in line with the DOHaD-paradigm (Developmental Origin of Health and 59 Disease), impaired development in pregnancy and adverse pregnancy outcomes are associated with an increased risk of non-communicable diseases in adult life like cardiovascular disease.(7) If impaired 60 early fetal development could be prevented or recognized, this would enable the prevention of both 61 62 short-term and long-term adverse outcomes.

Living in a deprived neighbourhood is known to be a risk factor for adverse pregnancy
outcomes. It is however unknown whether this potentially modifiable factor is also associated with
early fetal development. Therefore, the aim of this study was to investigate the associations between
neighbourhood deprivation, fetal growth including growth in the first trimester, and adverse pregnancy
outcomes.

68

69 Methods

70 Design

This study was embedded in the Generation R Study, a population-based prospective cohort
study.(8) Pregnant women living in the area of Rotterdam, the Netherlands, with an expected delivery
date between April 2002 and January 2006, were invited to participate in this study. We excluded the

following pregnancies: twin pregnancies, terminated pregnancies, intra-uterine deaths and pregnancies
without information on area of residence or ultrasound data (Figure 1). The study protocol was
approved by the Medical Ethical Committee of Erasmus Medical Centre, Rotterdam (MEC 198.782/
2001/31). Written informed consent was obtained from all participants.

Patient and public involvement statement

This research was done without patient involvement. Patients were not invited to comment on
the study design and were not consulted to develop patient relevant outcomes or interpret the results.
Patients were not invited to contribute to the writing or editing of this document for readability or
accuracy.

Neighbourhood deprivation

We used area-based status scores as a proxy for neighbourhood deprivation, which were made available by the Netherlands Institute for Social Research.(9) The scores are matched on four-digit postcodes and are based on mean household income, proportion of population with low income, proportion of population with low educational level, and proportion of population without paid work. The scores are determined every 4 years, and a more negative score represents a lower socioeconomic status. The status scores used in this study were calculated in 2002 and 2006. The correlations between the status scores in 2002 and 2006 were very high: r = 0.97. To assign the status scores in the best possible way, pregnancies in 2002 and 2003 were allocated with the status score of 2002. For pregnancies in 2005 and 2006, the status score of 2006 was assigned. For pregnancies in 2004, the average score of 2002 and 2006 was assigned.

Pregnancy dating

Gestational age is the most important determinant of fetal growth, so precise dating of the
pregnancy is important. It has long been assumed that embryonic growth in the first trimester of
pregnancy is universal. This is the rationale behind the current practice of pregnancy dating using the
CRL, if the gestational age is less than 12 weeks and 5 days and the CRL measurement is smaller than
65 mm.(10) However, study findings suggest that first trimester growth is not uniform.(11) Therefore,
in our analyses with CRL measurements as the outcome of interest, pregnancy dating was not based
on the CRL, but on the known and reliable last menstrual period (LMP) in case of a regular menstrual

Page 7 of 50

1 2

BMJ Open

3		
4		
5		
6		
7		
, 8		
g		
1	ი	
1	1	
1	י כ	
1	2	
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
2	0	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
2	8	
2	9	
3	0	
3	1	
3	2	
3	3	
3	4	
3	5	
3	6	
3	7	
3	8	
3	9	
4	0	
4	1	
4	2	
4	3	
4	4	
4	5	
4	6	
4	7	
4	8	
4 7	9	
5	0	
5 г	ן ר	
5 г	2	
כ ד	ک ∧	
5 5	4 5	
5 5	5 6	
כ ב	0 7	
5	י פ	
ر ح	0 0	
د	1	

cycle (28 ± 4 days).(6) All other cases were excluded for that particular analyses of CRL. The LMP
was obtained from the referral letter and confirmed at enrolment. Additional information on regularity
and cycle duration was obtained through questionnaires. When the gestational age was more than 12
weeks and 5 days, or the biparietal diameter (BPD) was larger than 23 mm, pregnancy dating was
performed using the BPD.

107 Growth parameters

108 Ultrasound assessments were carried out during visits to one of the research centres, and took place in early- (median 13.2 weeks of gestation), mid- (median 20.5 weeks of gestation) and late 109 110 (median 30.3 weeks of gestation) pregnancy. Growth parameters included the crown-rump length (CRL), head circumference (HC), femur length (FL), abdominal circumference (AC), estimated fetal 111 112 weight (EFW) and birthweight. EFW was calculated using the Hadlock formula with parameters AC, HC and FL (in cm): $EFW = 10^{(1.326 - 0.00326*AC*FL + 0.0107*HC + 0.0438*AC + 0.158*FL)$ 113 114 (Supplemental 2. First trimester and fetal growth, measurement guidelines).(12) Gestational age adjusted standard deviation scores (SDS) were constructed for all growth measurements.(13) The SDS 115 116 for birthweight were constructed using growth standards from Niklasson et al., which were adjusted for gestational age at the time of birth and sex of the neonate.(14) Measurements were performed 117 using uniform ultrasound procedures and were executed with the Aloka® model SSD-1700 (Tokyo, 118 119 Japan) or the ATL-Philips Model HDI 5000 (Seattle, WA, USA).

120 Adverse pregnancy outcomes

Preterm birth (PTB) was defined as a gestational age of <37 weeks at delivery. Small size for
gestational age (SGA) at birth was defined as a sex and gestational age adjusted birth weight below the
10th percentile (<-1.40 SDS) in the study cohort.

124 Covariates

Information on maternal age, education level, ethnicity, and maternal folic acid supplement
 Information on maternal age, education level, ethnicity, and maternal folic acid supplement
 use was obtained at enrolment.(8) Ethnicity of participating mothers was defined according to the
 classification of Statistics Netherlands, and was categorized into Dutch and other Western (European,
 American, and Oceanian); Turkish and Moroccan; African (Cape Verdean, other African, Surinamese-

Creole, and Dutch Antillean); and Asian (Indonesian, other Asian, and Surinamese-Hindu) according to the largest ethnic groups in our study population and similarities in skin colour and cultural background. In sensitivity analyses, the following classification was used: Dutch, European, Turkish, Moroccan, African, Dutch Antillean, Cape Verdean, Indonesian, Surinamese-Creole, Surinamese-Hindu, Surinamese-unspecified, American Western, American non Western, Asia Western, Asia non Western and Oceanian.(8) Information about smoking, alcohol consumption, and caffeine intake was assessed by questionnaires in each trimester. Maternal pre-pregnancy body mass index was calculated from the reported height (cm) and weight (kg) in the questionnaires. Information about pregnancy complications, mode of delivery and childhood sex, gestational age, and weight and length at birth was obtained from medical records.(13, 14) Complications in a previous pregnancy were defined as: gestational diabetes, pre-eclampsia, thrombosis in arm or leg, pulmonary embolism, solutio placentae, premature rupture of membranes, contractions before 37 weeks of pregnancy or pregnancy induced hypertension. We selected potential confounding variables based on their associations with the outcomes of interest, in order to isolate a neighbourhood specific effect. 4.0

Statistical analysis

First, we examined differences between quartiles of neighbourhood deprivation for maternal characteristics, first trimester growth and fetal growth and adverse pregnancy outcomes. Second, we examined the associations of neighbourhood deprivation with fetal growth patterns using unbalanced repeated measurement regression models.(15) We included neighbourhood deprivation in these models as intercept and as interaction term with gestational age to estimate fetal growth rates over time.(15) Third, we assessed the associations of neighbourhood deprivation with the risks of adverse pregnancy outcomes using multiple logistic regression models. In the basic model, the crude association between neighbourhood deprivation and the outcomes of interest were investigated. The adjusted model was adjusted for maternal age, maternal educational level, smoking, alcohol use, folic acid supplement use, ethnicity, parity, pre-pregnancy BMI and fetal sex. We tested interaction between neighbourhood deprivation and complications in previous pregnancy in the regression models. Fourth,

we examined the associations of neighbourhood deprivation with fetal growth in gestational-age-adjusted SDS in each pregnancy period using linear regression models with the same adjustment models.

We performed several sensitivity analyses: in the first, we performed multilevel regression analysis in order to adjust for potential clustering between the different neighbourhoods. In the second, we repeated the analyses with all 1614 available CRL measurements, compared to the analyses with only CRL measurements below the 12 weeks of gestational age (GA).(6, 16) A third sensitivity analysis was performed to determine to which extent the inclusion of pregnancies with an impaired fetal development due to placental dysfunction influenced our results. Therefore we performed analyses excluding SGA born babies. Fourth, analyses were additionally adjusted for the household income and complications in a previous pregnancy. Fifth, we repeated the analyses with the different classification of ethnicity, described in the 'Covariates' section. Lastly, we explored the associations in the dataset only including the first born (i.e. excluding siblings). We used multiple imputation for missing values of covariates according to Markov Chain Monte Carlo method (details given in Supplemental 1).(17) The percentage of missing data was <10%, except for smoking (12.7%), alcohol use (13.8%) and folic acid supplement use (25.9%). Five imputed datasets were created and pooled for analyses. A sensitivity analysis was performed to observe differences in observed and expected values of confounders before and after imputation. Tests for trend were based on regression models with neighbourhood deprivation as a continuous variable. We checked whether the regression models were linear using scatterplots of the dependent variable plotted against the independent variable.(18) Residuals were normally distributed as assessed by visual inspection of a normal probability plot. We tested for multicollinearity using the tolerance statistic. As tolerance was >0.20for all variables in our models, there were no problems of multicollinearity. The repeated measurement analysis was performed using the Statistical Analysis System version 9.3 (SAS, Institute Inc., Cary, NC, USA), including the Proc Mixed module for unbalanced repeated measurements. All other analyses were performed using the Statistical Package of Social Sciences version 21.0 for Windows (IBM Corp., Armonk, NY, USA).

Results

A total of 8976 pregnancies were included in the Generation R study. In total, we included 8617 pregnancies for analyses (Figure 1). Table 1 depicts the baseline characteristics of both the total study population and the population stratified according to the quartiles of neighbourhood deprivation. Women in the total study population were on average 29.6 years old with a median BMI of 22.8 kg/m². Stratification of the population in deprivation quartiles revealed that 2170 women (25.2%) lived in a neighbourhood with the most deprivation, i.e. lowest status score, and 2149 (24.9%) lived in the least deprived neighbourhoods, i.e. the highest status score. When comparing women in the most deprived neighbourhoods to those in the least deprived neighbourhoods, less women were highly educated (23.7% vs. 62.8% (p<0.001)), more women continued smoking in pregnancy (22.3% vs. 11.9% (p<0.001)) and less women used any folic acid supplements (20.0% vs. 49.7% respectively (p<0.001)) (Table 1). In Supplemental Table 1 the fetal growth parameters and adverse pregnancy outcomes stratified by quartile of neighbourhood deprivation are presented. Overall, growth parameters are smaller in the most deprived neighbourhoods compared to the least deprived neighbourhoods (e.g. -0.07 SD vs. 0.15 SD, EFW in the third trimester of pregnancy, respectively).

Neighbourhood deprivation and fetal growth

Figure 2 gives the results of the longitudinal analyses on the association between quartiles of neighbourhood deprivation and fetal head circumference, length, and weight growth patterns from mid-pregnancy onwards. It shows that compared to the least deprived neighbourhoods, in the more deprived neighbourhoods fetal head circumferences, length and weight are smaller (for all measures, the gestational age dependent effect of neighbourhood deprivation on fetal growth was significant value<0.05). Regression coefficients for gestational age-independent and gestational age-dependent effects are given in Supplemental Table 2.

The associations of neighbourhood deprivation with first trimester and second and third trimester fetal growth based on regular linear regression models are given in Supplemental Figure 1. In both the basic and adjusted analyses, a positive association between neighbourhood deprivation and AC was present (difference in AC in the adjusted model, 0.03 SDS [95% CI 0.01, 0.05, P-value 0.002] per 1 unit increase in neighbourhood status score). In the third trimester of pregnancy a positive

BMJ Open

2		
2 3 4	211	association was found for the HC, AC and EFW (adjusted model difference of 0.04 SDS [95% CI
5 6	212	0.02, 0.05, P-value <0.001], 0.04 SDS [95% CI 0.03, 0.06, P-value <0.001] and 0.04 SDS [95% CI
7 8	213	0.03, 0.06, P-value <0.001] per 1 unit increase in neighbourhood status score, respectively). Overall,
9 10	214	there is a dose-response like association between neighbourhood deprivation and fetal growth, with
11 12	215	stronger associations in the most deprived neighbourhoods compared to the least deprived
13 14	216	neighbourhoods.
15 16	217	Effect modification analyses showed significant interaction between neighbourhood
17 18 10	218	deprivation and complications in previous pregnancies for PTB (Supplemental Table 3). The
19 20 21	219	associations between neighbourhood deprivation and fetal growth and adverse pregnancy outcomes
22 23	220	were non-significant in the group with a complication in a previous pregnancy (e.g. HC in late
24 25	221	pregnancy attenuates from 0.06 SDS [95%CI 0.05 , 0.08, P-value <0.001] to 0.03 SDS [95%CI -0.05 ,
26 27	222	0.11, P-value 0.50] per 1 unit increase in neighbourhood status score) (Supplemental Table 4).
28 29	223	Neighbourhood deprivation and adverse pregnancy outcomes
30 31	224	Results of the regression analysis between neighbourhood deprivation and adverse pregnancy
32 33	225	outcomes are presented in Table 2. Living in a more affluent neighbourhood was inversely associated
34 35 26	226	with the risk of delivering a SGA neonate (adjusted model, OR 0.91 [95% CI 0.86, 0.97, P-value
30 37 38	227	0.01], independent of maternal sociodemographic or lifestyle factors. Moreover, it was inversely and
39 40	228	independently associated with the risk of PTB (adjusted model, OR 0.89 [95% CI 0.82, 0.96, P-value
41 42	229	0.01]. The adverse pregnancy outcomes were most prevalent in the neighbourhood with the lowest
43 44	230	deprivation status compared to the neighbourhood with the highest social status (SGA: 12.2% vs.
45 46	231	7.1%, PTB: 5.9% vs. 3.8%) (Supplemental Table 1).
47 48	232	Sensitivity analyses
49 50	233	The first sensitivity analyses revealed largely similar associations after performing multilevel
51 52	234	analyses (Supplemental Table 5). Second, the results of the associations between neighbourhood
53 54	235	deprivation and CRL did not change after including all CRL measurements, in comparison to only the
55 56 57	236	CRL measurements below 12 weeks GA (Supplemental Table 5). The third sensitivity analyses
58 59	237	excluding SGA pregnancies did attenuate the results (Supplemental Table 6). Results also did not
60	238	materially change after all other sensitivity analyses (data not shown). No major differences were

observed in confounders before and after multiple imputation (Supplemental Table 7) and there were
similar results when confounders were not imputed (data not shown).

Discussion

242 Main findings

We observed that living in a more deprived neighbourhood is associated with decreased fetal growth in the second and third trimester of pregnancy, and with higher odds of small for gestational age birth and preterm birth. Several pathways may explain the disadvantageous effects of living in a deprived neighbourhood on pregnancy.(19) First, it is proposed to be due to the accumulation of risk factors at the individual level (5) Examples are smoking and inadequate nutrition and lifestyle behaviours.(20) Neighbourhood deprivation then acts as a proxy for the increased prevalence of risk factors within the deprived neighbourhoods. Our findings are substantiated by earlier studies within the Generation R birth cohort, that demonstrate that living in a deprived neighbourhood is accompanied by the accumulation of individual level risk factors. These in turn were associated with adverse pregnancy outcomes.(5) However, we observe that even after correction for the individual level risk factors, the association between neighbourhood deprivation and impaired development and adverse pregnancy outcomes remained, emphasizing an isolated role for neighbourhood deprivation as a risk factor for pregnancy. The associations between neighbourhood deprivation and fetal growth and adverse pregnancy outcomes attenuated to non-significance in the population affected by a complication in a previous pregnancy. These complications, and the maternal constitution for the development of it, may thus outweigh the contribution of neighbourhood deprivation in the associations with fetal growth and adverse pregnancy outcomes. This may be due to the fact that past complications in pregnancy are strongly associated with both neighbourhood deprivation and fetal growth and adverse pregnancy outcomes.(21). A second pathway which may explain the disadvantageous effects of living in a deprived neighbourhood on adverse pregnancy outcomes is attributed to the lack of or suboptimal access to facilities such as the possibility to purchase healthy food nearby.(22) Third, living in a deprived neighbourhood is acknowledged as a source of chronic stress, and thereby acts as an independent risk factor for adverse health outcomes. (19, 23) Stress is

1 2		
- 3 4	266	associated with increased cortisol levels, and both prolonged or repeated cortisol exposure increases
5 6	267	the risk for impaired physical health.(24) Also with regard to pregnancy, stress is demonstrated to be
7 8	268	harmful. M since maternal stress during pregnancy is associated with preterm birth, lower birthweight
9 10	269	and the onset of preeclampsia and gestational diabetes.(25, 26)
11 12	270	Our data demonstrates that the associations between neighbourhood deprivation and fetal
13 14	271	growth become stronger over the course of pregnancy. This may be due to the fact that there are
15 16	272	different mechanisms by which external factors -such as environmental, nutritional and lifestyle
17 18 10	273	factors- affect the developing fetus over the different trimesters of pregnancy. In the first trimester of
20 21	274	pregnancy the embryo depends on the uterine glands and yolk sac for the provision of nutrients, while
22 23	275	in the subsequent periods of pregnancy there is an exchange of nutrients between the maternal and
24 25	276	fetal circulations across the placenta.(27) The more isolated source of nutrition in the first trimester
26 27	277	compared to the second and third trimester of pregnancy may decrease the sensitivity of first trimester
28 29	278	embryonic growth to external influences.
30 31	279	A previous study of our group, observed a negative association between neighbourhood
32 33	280	deprivation and first trimester growth. The larger embryos in deprived neighbourhoods were
34 35	281	hypothesized to be explained by strong unmeasured intrinsic and extrinsic factors, such as mental
36 37	282	stressors.(28) The difference in direction of effects between that study and our current findings, may
38 39 40	283	be due to the different source populations; the first study was conducted in a tertiary-hospital based
40 41 42	284	cohort, while the present study is performed within a population-based cohort.
43		
44	285	Strengths and limitations
45 46	286	Strengths of this study include the large number of participants and the availability of
47 48	287	extensive data which allowed us to adjust for a large number of potential confounders. Its population-
49 50	288	based design in a multi-ethnic population results in a good representation of the residents of the city of
51 52	289	Rotterdam. The presence of both residents from deprived and more affluent neighbourhoods in the
53 54	290	study population allowed us to investigate the effect of this exposure extensively. The choice of the
55 56	291	neighbourhood deprivation indicator is another strength of this study. To classify the degree of
57 58	292	neighbourhood deprivation often composite indexes are used, which take factors into account such as
60	293	the percentage of educated or employed residents, and income of residents within a specific

neighbourhood.(29) We selected the status scores of the Netherlands Institute for Social Research, because this index is comparable with international indices such as the Index of Multiple Deprivation and the Jarman score. (30, 31) The status scores are a continuous measure, which allows more accurate analyses compared to a dichotomous measure. Another strength of the study was that missing data of covariates was handled by applying multiple imputations. In comparison with complete-case analyses (which was conducted as a sensitivity analysis), this technique maintains the statistical power of the analyses. Lastly, we chose not to adjust for nutritional factors other than alcohol intake and folic acid supplement use, since alcohol intake and folic acid supplement use are strongly correlated with other lifestyle and nutritional habits.(32, 33)

Some limitations of this study also merit discussion. First, we adjusted the analyses for individual factors, to isolate a neighbourhood specific effect. However, we cannot rule out the presence of residual confounding caused by other individual factors that are strongly associated with fetal growth. Next, possible misclassification of neighbourhood deprivation may have occurred if women moved during pregnancy to a neighbourhood with a different status score from the one they moved out of. However, social mobility in pregnancy is limited and if women move, they generally tend to move to a neighbourhood with a comparable deprivation status.(34) Third, the power of the analyses on CRL are lower due to the availability of only one CRL measurement, instead of a repeated assessment of the CRL. A last disadvantage is that participants of cohort studies, even those in more deprived neighbourhoods, generally have a higher level of health awareness and are generally more healthy compared to those who do not participate.(8) This may reduce the generalizability of our findings to the general population.

⁸ 315 Future perspectives

In future studies, a potential power issue due to the small measurement differences in first
 trimester growth measurements may be prevented by using larger study sample sizes. Moreover more
 accurate measures of early fetal growth with higher quality ultrasound could increase the variability of
 the measurements which enables detection of very small differences. Additionally, animal studies may
 help unravel the underlying mechanisms through which neighbourhood deprivation affect pregnancy.
 For instance, by further investigating how maternal stress affects placental nutrient transport.

60

BMJ Open

3 4	322	In the Netherlands, in both the prenatal and postnatal setting, screening for non-medical risk
5	323	factors is starting to become part of daily medical practice.(35, 36) This allows early interventions in
7 8	324	order to prevent developmental problems of children in later life. However, we propose a shift of
9 10	325	attention towards an earlier window of opportunity: the preconception period and first trimester of
11 12	326	pregnancy. This periconception period provides the opportunity to optimize the conditions of
13 14 15	327	pregnancy and thereby decrease the risks of adverse outcomes and all their long-term
15 16 17	328	consequences.(37) For example, based on an early risk assessment, a pregnant woman living in a
17 18 19	329	deprived neighbourhood could be scheduled for extra ultrasounds and check-ups, and be assisted to
20 21	330	improve modifiable lifestyle risk factors.
22 23	331	Additionally, it is important to create more awareness among politicians, policymakers and
24 25	332	public health workers. They could help to embed neighbourhood deprivation in the context of health
26 27	333	promotion, by developing and promoting targeted preventive intervention programs.(38) These
28 29	334	programs could specifically focus on residents of deprived neighbourhoods. It is important to stimulate
30 31 32	335	these residents to diminish risk factors on the individual level, for instance to quit smoking and abstain
32 33 34	336	from alcohol. This could also help to narrow health inequalities between neighbourhoods and between
35 36	337	groups of different socioeconomic status.
37 38	338	In conclusion, our obtained insights on the association between neighbourhood deprivation
39 40	339	and fetal growth and prematurity emphasize the need for a comprehensive research, care and policy
41 42	340	approach from the preconception phase onwards, to mitigate the risk of adverse pregnancy outcomes
43 44	341	due to deprivation.
45 46	342	
47 48		
49		
50 51		
52		
53		
54		
55 56		
50 57		
58		
59		

343 Twitter Dionne Gootjes @dvgootjes

Acknowledgements The Generation R Study is conducted by the Erasmus Medical Centre in close
collaboration with the School of Law and the Faculty of Social Sciences at the Erasmus University,
Rotterdam, the Municipal Health Service, Rotterdam area and the Stichting Trombosedienst and
Artsenlaboratorium Rijnmond (Star-MDC), Rotterdam. We gratefully acknowledge the contribution of
children and their parents, general practitioners, hospitals, midwives and pharmacies in Rotterdam.

Author Contributions All authors made a substantive contribution to the manuscript. DG analyzed the data and wrote the article. AP, VJ, and ES contributed to the design of the paper, interpretation of the data, revisions and gave input at all stages of the study. All authors have approved the final version of the manuscript.

Funding: The Generation R Study was made possible by financial support from Erasmus MC, University Medical Centre Rotterdam, the Netherlands; the Netherlands Organization for Health Research and Development; the Netherlands Organization for Scientific Research; the Ministry of Health, Welfare and Sport; and the Ministry of Youth and Families. Prof. Dr. Vincent Jaddoe received additional grants from the Netherlands Organization for Health Research and Development (grants 90700303 and 916.10159, and VIDI 016.136.361) and a Consolidator Grant from the European Research Council (ERC-2014-CoG-64916).

4 362 **Competing interests**: None declared.

363 Patient and public involvement: Patients and/or the public were involved in the design, or conduct,
 364 or reporting, or dissemination plans of this research. Refer to the Methods section for further details.

⁰ 365 **Patient consent for publication**: Not required.

3 366 Ethics approval The study has been approved by the Medical Ethical Committee of the Erasmus

367 Medical Centre in Rotterdam on December 17th 2001 (MEC 198.782/2001/31). Written consent was
368 obtained from all participants.

- **Data availability statement** Data requests can be made to the secretariat of Generation R.
- 370 ORCID iDs
- ³ 371 Dionne Gootjes <u>https://orcid.org/0000-0002-9382-9031</u>
- Anke Posthumus <u>https://orcid.org/0000-0002-4882-3474</u>
- 8 373 Vincent Jaddoe <u>https://orcid.org/0000-0003-2939-0041</u>

1 2 3 4 5	374	Eric Steegers https://orcid.org/0000-0001-6658-9274
6 7 8 9 10		
12 13 14 15 16		
17 18 19 20 21		
22 23 24 25 26		
27 28 29 30 31 32		
33 34 35 36 37		
38 39 40 41 42		
43 44 45 46 47 48		
49 50 51 52 53		
54 55 56 57 58 59		

3 4	375	Tables and figures
5 6 7	376	Figure 1. Flowchart of the study population.
8 9 10	377	Figure 2. Associations of neighbourhood deprivation with fetal growth.
11 12	378	Table 1. Baseline characteristics of the study population, stratified for quartiles of the
13 14 15	379	neighbourhood status score.
16 17 18 19 20	380	Table 2. Associations between the neighbourhood status score and adverse pregnancy outcomes.
21 22	381	Supplemental material
23 24	382	Supplemental Table 1. Fetal growth and adverse pregnancy outcomes in the study population,
25 26 27	383	stratified for quartiles of the neighbourhood status score.
28 29	384	Supplemental Table 2. Regression coefficients of longitudinal associations between quartiles of
30 31 32	385	neighbourhood deprivation with fetal growth patterns.
33 34 25	386	Supplemental Table 3. P-value of interaction terms (neighbourhood deprivation * parity and
35 36 37	387	neighbourhood status score * complications in a previous pregnancy).
38 39 40	388	Supplemental Table 4. Associations between the neighbourhood SES and fetal growth and
40 41 42	389	adverse pregnancy outcomes, split for nulliparous women, multiparous women without a
43 44	390	complications in a previous pregnancy or multiparous women with a complications in a previous
45 46 47	391	pregnancy.
48 49	392	Supplemental Table 5. Sensitivity analysis with all available CRL measurements in the study
50 51 52	393	population.
53 54	394	Supplemental Table 6. Associations between the neighbourhood SES and fetal growth in a
55 56 57	395	selected cohort of non-SGA pregnancies.
58 59 60	396	Supplemental Table 7. Observed and expected values of covariates.

3 4	397	Supplemental Figure 1. Associations between the neighbourhood deprivation and fetal growth
5 6 7	398	parameters.
8	399	Supplemental Figure 2. Multilevel regression analysis of associations between neighbourhood
9 10	400	deprivation and first trimester and fetal growth measurements.
11 12 13	401	Supplemental 1. Multiple imputations for missing data of covariates
15 16 17 18	402	Supplemental 2. First trimester and fetal growth, measurement guidelines.
19 20 21 22 23		
24 25		
25 26		
27 28		
29		
30 31		
32 33		
34 25		
35 36		
37 38		
39		
40 41		
42 43		
44		
45 46		
47		
48 49		
50 51		
52		
53 54		
55 56		
50 57		
58 59		
60		

BMJ Open

Table 1. Baseline characteristics of the study population, stratified for quartiles of neighbourhood deprivation.

Maternal characteristics	Total study	Lowest deprivation	Second deprivation	Third deprivation	Highest	
	population	quartne	quarthe	quartne	deprivation	
	n – 8017	n = 2170	II - 2208	n – 2090	quartile	
					n = 2149	
Neighbourhood status score	-1.13 (1.39)	-2.96 (0.51)	-1.62 (0.31)	-0.51 (0.37)	0.61 (0.49)	
Age at intake (years)	29.6 (5.3)	28.1 (5.5)	28.7 (5.7)	30.2 (4.9)	31.6 (4.1)	
Pre-pregnancy body mass index (kg/m ²)	22.8 (18.4 - 32.2)	23.5 (18.0 - 33.6)	23.0 (18.1 - 32.5)	22.9 (18.2 - 32.0)	22.3 (18.5-30.1)	
Parity (nulliparous)	4796 (55.7)	1090 (50.2)	1273 (57.7)	1227 (58.7)	1205 (56.1)	
Educational level						
Lower/no	1101 (12.8%)	503 (23.2)	366 (16.5)	179 (8.5)	52 (2.4)	
Middle	4060 (47.1)	1153 (53.1)	1152 (52.2)	1007 (48.2)	747 (34.8)	
High	3456 (40.1)	514 (23.7)	690 (31.3)	904 (43.3)	1349 (62.8)	
Ethnicity						
Dutch and Western	4967 (57.6%)	636 (29.3)	1084 (49.1)	1426 (68.2)	1821 (84.7)	
Turkish and Moroccan	1464 (17.0%)	714 (32.9)	471 (21.3)	222 (10.6)	57 (2.7)	
African	1178 (13.7%)	519 (23.9)	370 (16.8)	211 (10.1)	78 (3.6)	
Asian	1008 (11.7%)	301 (13.9)	283 (12.8)	231 (11.1)	193 (9.0)	
Smoking						
Never smoked during pregnancy	6256 (72.6%)	1515 (69.8)	1523 (69.0)	1518 (72.6)	1700 (79.1)	
Smoked until pregnancy was known	735 (8.5%)	171 (7.9)	183 (8.3)	188 (9.0)	193 (9.0)	
Continued smoking in pregnancy	1626 (18.9%)	484 (22.3)	502 (22.7)	384 (18.4)	256 (11.9)	
Alcohol						
Never alcohol consumption in pregnancy	4351 (50.5%)	1436 (66.2)	1200 (54.4)	990 (47.4)	726 (33.8)	
Alcohol consumption until pregnancy was known	1149 (13.3%)	220 (10.1)	239 (10.8)	335 (16.0)	354 (16.5)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2								
3		Continued alcohol consumption in pregnancy	3117 (36.2%)	514 (23.7)	769 (34.8))	765 (36.6)	1069 (49.7)	
4 5		Folic acid supplement intake						<0.001
6 7		None	2751 (31.9%)	1141 (52.6)	843 (38.2)	534 (25.6)	233 (10.8)	
8		Start in first 10 weeks of pregnancy	2661 (30.9%)	594 (27.4)	703 (31.8)	650 (31.1)	714 (33.2)	
9 10		Start preconceptionally	3205 (37.2%)	435 (20.0)	662 (30.0)	906 (43.3)	1202 (55.9)	
11		Fetal sex (male)	4347 (50.4)	1063 (49.0)	1147 (51.9)	1066 (51.0)	1071 (49.8)	0.22
12 12	406	Data are represented as n (%), mean (SD) or med	ian with the 90% rang	e. Differences in bas	seline characteristics v	vere tested using AN	OVA, Kruskal-Wa	allis
13 14	407	tests and chi-square tests. Confounders are imput	ed. Non imputed perce	entages are valid per	centages.			
15 16								
16 17								
18								
19 20								
21								
22								
25 24								
25								
26 27								
28								
29								
30 31								
32								
33 34								
35								
36 27								
37 38								
39								
40 41								
42								21
43		For pe	eer review only - http://l	bmjopen.bmj.com/site	e/about/guidelines.xht	ml		
44 45								

1 2		
3 4	411	Differences in fetal growth rates for the lower three neighbourhood status score quartiles as compared
5	412	to the highest neighbourhood status score. Squares represent the lowest quartile of the neighbourhood
6 7	413	status score; circles represent the second quartile; and triangles the third quartile. Results are based on
8	414	repeated measurement regression models and reflect the differences in gestational-age-adjusted SDS
9 10	415	scores of (a) fetal head circumference, (b) weight, and (c) length growth for the three lower
11	416	neighbourhood status score compared to the highest neighbourhood status score (reference group
12 13	417	represented as zero line). The models were adjusted for maternal age, educational level, smoking,
14 15	418	alcohol use, folic acid supplement use, ethnicity, parity, pre-pregnancy body mass index and fetal sex.
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	419	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

420 Table 2. Association	s between the neighbourhood status sco	ore and adverse pregnancy outcomes.
---------------------------------	--	-------------------------------------

6 Study population	Model	Lowest deprivation	Second deprivation	Third deprivation	Highest deprivation	Trend	p-value for trend
n = 8617		quartile	quartile	quartile	quartile		
9		n = 2277	n = 2123	n = 2084	n = 2133		
10		β / OR (95% CI)	β / OR (95% CI)	β / OR (95% CI)		β / OR (95% CI)	
¹¹ ₁₂ Small for gestational age	Basic	1.80 (1.46 ; 2.22)	1.46 (1.17 ; 1.81)	1.31 (1.05 ; 1.64)	Reference	0.86 (0.81 ; 0.90)	<0.001
12 0 0	Adjusted	1.39 (1.09 ; 1.77)	1.14 (0.90 ; 1.44)	1.13 (0.90 ; 1.42)	Reference	0.91 (0.86 ; 0.97)	0.003
14 - Protorm birth	Basic	$1.60(1.21 \cdot 2.13)$	▲ 1.76 (1.33 · 2.32)	1 <i>4</i> 1 (1 05 · 1 89)	Rofaronco	0.88 (0.83 • 0.95)	<0.001
15 1 1 ctcr in on th 16	Adjusted	1.52 (1.11 ; 2.09)	1.65 (1.23 ; 2.22)	1.32 (0.97 ; 1.77)	Reference	0.89 (0.82 ; 0.96)	0.001

Abbreviations: β: beta; OR: odds ratio. Values are odds ratios with the 95% CI of the data in SD-score and are based on logistic regression models. Basic

model: by the use of SD scores it is automatically adjusted for gestational age. Adjusted model: basic model and additionally adjusted for maternal age,

educational level, smoking, alcohol use, folic acid supplement use, ethnicity, parity, pre-pregnancy body mass index and fetal sex. p-for trend analysis with the

neighbourhood deprivation as a continuous measure. Small size for gestational age (SGA) at birth was defined as a sex and gestational age adjusted

birthweight below the 10th percentile (<-1.40 SD-score) in the study cohort. Preterm birth (PTB) was defined as a gestational age of <37 weeks at delivery. sh onl

 426 References 427 1. Mackenbach JP, Cavelaars AE, Kunst AE, Groenhof F. Socioeconomic inequalities in 628 cardiovascular disease mortality; an international study. Eur Heart J. 2000;21(14):114-51. 429 2. Pickett KE, Pearl M. Multievel analyses of neighbourhood socioeconomic context and health 430 outcomes: a critical review. J Epidemiol Community Health. 2001;55(2):111-22. 431 3. Vos AA, Posthumus AG, Bonsel GJ, Steegers EA, Denktas S. Deprived neighborhoods and 432 adverse perinatal outcome: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 433 2014;93(8):727-40. 434 4. de Graaf JP, Ravelli AC, de Haan MA, Steegers EA, Bonsel GJ. Living in deprived urban districts 435 1. micreases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(5):473-81. 436 5. Timmermans S, Bonsel GJ, Steegers FA, Ellers PH, Raat H, Hofman A, Jaddoe VW, Risk factors and 438 outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34. 441 7. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171-4. 442 8. Kooljman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation 443 R Study: Reging and cohort update 2017. Fur J Epidemiol. 2016;31(2):1243-64. 444 9. National Institute for Public Health and the Environment. Sociaaleconomische status. 447 10. Blaas HG, Elk-Nes SH, Brenmes JB. The growth of the human embryo. A longitudinal totative: assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 454 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eliers PH, et al. Human 454 enbryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 455 2015;28(7):1753-61. 456 11. van Uitert EM, Skalt	1		
 426 References 427 1. Mackenbach JP, Cavelaars AE, Kunst AE, Groenhof F. Socioeconomic inequalities in cardiovascular disease mortality; an international study. Eur Heart J. 2000;21(14):1141-51. 428 2. Pickett KE, Pearl M. Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review. J Epidemiol Community Health. 2001;55(2):111-22. 431 3. Vos AA, Posthumus AG, Bonsel GJ, Steegers EA, Denktas S. Deprived neighborhoods and adverse perinatal outcome: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 432 0214;93(8):727-40. 434 4. de Graaf JP, Ravelli AC, de Haan MA, Steegers EA, Bonsel GJ. Living in deprived urban districts increases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(3):473-81. 435 5. Timmermans S, Bonsel GJ. Steegers FLA, Binse RP, Mackehach JP, Steyerberg EW, Raat H, 437 et al. Individual accumulation of heterogeneous risks explains perinatal inequalities within deprived neighbourhoods. Eur J Epidemiol. 2011;26(2):165-80. 439 6. Mook-Kanamori DO, Steegers EA, Ellers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and 0utcomes associated with first-trimester fetal growth restriction. JAMA. 2010;302(6):527-34. 441 7. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1993;31(16998):171-4. 442 8. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation 8 Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. 443 444 9. National Institute for Public Health and the Environment. Sociaaleconomische- status/regionaal-intermationaal/regionaal/mode-sociaaleconomische-status. 445 10. Blaas HG, Eik-Nes SH, Brennes JB. The growth of the human embryo. A longitudinal 446 biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 445 453 12. Hadlock FP, Harrist RB, Sharman RS, Dete	2		
 Mackenbach JP, Cavelaars AE, Kunst AE, Groenhof F. Socioeconomic inequalities in cardiovascular disease mortality; an international study. Eur Heart J. 2000;21(14):141-51. Pickett KE, Pearl M. Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review. J Epidemiol Community Health. 2001;55(2):111-22. Vos AA, Posthumus AG, Bonsel GJ, Steegers EA, Denktas S. Deprived neighborhoods and adverse perinatal outcome: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2014;93(8):727-40. de Graaf JP, Ravelli AC, de Haan MA, Steegers EA, Bonsel GJ. Living in deprived urban districts increases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(5):473-81. Timmermans S, Bonsel GJ, Steegers-Theunissen RP, Mackenbach JP, Steyerberg EW, Raat H, et al. Individual accumulation of heterogeneous risks explains perinatal inequalities within deprived neighbourhoods. Eur J Epidemiol. 2011;26(2):155-80. Mook-Kanamori DO, Steegers EA, Eilers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimseter fetal growth restriction. JAMA. 2010;303(6):527-34. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. National Institute for Public Health and the Environment. Sociaaleconomische status/regionaal-Internationaal/regionaal#node-sociaaleconomische status. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 54. Van Ultert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Huma embryon. Biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1985;151(3):333-7. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimati	3 ⊿	426	References
 cardiovascular disease mortality; an international study. Eur Heart J. 2000;21(14):1141-51. Pickett KE, Pearl M. Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review. J. Epidemiol Community Health. 2001;52(2):111-22. Wos AA, Posthumus AG, Bonsel GJ, Steegers EA, Denktas S. Deprived neighborhoods and adverse perinatal outcome: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2014;93(8):727-40. de Graaf JP, Ravelli AC, de Haan MA, Steegers EA, Bonsel GJ. Living in deprived urban districts increases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(5):473-81. Timmernans S, Bonsel GJ, Steegers Theunissen RP, Mackenbach JP, Steyerberg EW, Raat H, at al. Individual accumulation of heterogeneous risks explains perinatal inequalities within deprived neighbourhoods. Eur J Epidemiol. 2011;26(2):165-80. Moock-Kanamori DO, Steegers EA, Eilers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;30(6):527-34. Kooijman MN, Kruithof CJ, van Duijn CM, Duijis L, Franco OH, van IMH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 fAvailable from: https://www.volksgezondheidenzorg.into/onderwerp/sociaaleconomische- status/regionaal-internationaal/regionaalInode-sociaaleconomische-status. Mu Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth: and birthweight. Hum Reprod. 2013;28(7):1733-61. Webrupg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts fo	5	427	1. Mackenbach JP, Cavelaars AE, Kunst AE, Groenhof F. Socioeconomic inequalities in
 2. Pickett KE, Pearl M. Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review. J Epidemiol Community Health. 2001;55(2):111-22. 431 3. Vos AA, Posthumus AG, Bonsel GJ, Steegers EA, Denktas S. Deprived neighborhoods and adverse perinatal outcome: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2014;93(8):727-40. 434 d. de Graaf JP, Ravelli AC, de Haan MA, Steegers EA, Bonsel GJ. Living in deprived urban districts increases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(5):473-81. 435 increases perinatal negulation of heterogeneous risks explains perinatal inequalities within deprived 438 neighbourhoods. Eur J Epidemiol. 2011;26(2):165-80. 439 6. Mook-Kanamori DO, Steegers EA, Ellers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34. 441 7. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171-4. 442 8. Kooijman MN, Knuthof CJ, van Duijn CM, Duijts L, Franco CH, van IMH, et al. The Generation 443 R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. 444 9. National institute for Public Health and the Environment. Sociaaleconomische status 2017 445 IAvailable from: https://www.volksgecondheidenzorg.info/onderverg/sociaaleconomische status 2017 445 Status/regionaal-internationaal/regionaallinode-sociaaleconomische status. 446 Status/regionaal-internationaal/regionaallinode-sociaaleconomische status. 447 10. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 445 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koni	6	428	cardiovascular disease mortality; an international study. Eur Heart J. 2000;21(14):1141-51.
 autoomes: a critical review. J Epidemiol Community Health. 2001;55(2):111-22. Vos AA, Posthumus AG, Bonsel GJ, Steegers EA, Denktas S. Deprived neighborhoods and adverse perinatal outcome: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2014;93(8):727-40. de Graaf JP, Ravelli AC, de Haan MA, Steegers EA, Bonsel GJ. Living in deprived urban districts increases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(5):473-81. Timmermans S, Bonsel GJ, Steegers Theunissen RP, Mackenbach JP, Steyerberg EW, Raat H, et al. Individual accumulation of heterogeneous risks explains perinatal inequalities within deprived neighbourhoods. Eur J Epidemiol. 2011;26(2):136-80. Mook-Kanamori DO, Steegers EA, Elers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171-4. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 [Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische status/regionaal-internationaal/regionaal#node-sociaaleconomische-status D Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the huma membryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 54. Ju varburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and associations with fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. Ni Klasson A, Ericson A, Fryer IG, Karlberg J, Lawrence C, Kar	7	429	2. Pickett KE, Pearl M. Multilevel analyses of neighbourhood socioeconomic context and health
 3. Vos AA, Posthumus AG, Bonsel GJ, Steegers EA, Denktas S. Deprived neighborhoods and adverse perinatal outcome: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2014;93(8):727-40. 4. de Graaf JP, Ravelli AC, de Haan MA, Steegers EA, Bonsel GJ. Living in deprived urban districts increases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(5):473-81. 5. Timmernans S, Bonsel GJ, Steegers Theunisen RP, Mackenbach JP, Steyerberg EW, Raat H, et al. Individual accumulation of heterogeneous risks explains perinatal inequalities within deprived neighbourhoods. Eur J Epidemiol. 2011;26(2):165-80. 6. Mook-Kanamor DO, Steegers EA, Ellers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34. 7. Barker DJ. Fetal origins of coronary heart disease. BMI. 1995;311(6998):171-4. 8. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. 9. National Institute for Public Health and the Environment. Sociaaleconomische- status/regionaal-internationaal/regionaal#node-sociaaleconomische-status. 10. Blaas HG, Eik-Nes SH, Brennes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 54. 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2033;21(4):389-96. 14. Niklasson A,	8	430	outcomes: a critical review. J Epidemiol Community Health. 2001;55(2):111-22.
 adverse perinatal outcome: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2014;93(8):727-40. de Graaf JP, Ravelli AC, de Haan MA, Steegers EA, Bonsel GJ. Living in deprived urban districts increases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(5):473-81. Timmermans S, Bonsel GJ, Steegers-Theunissen RP, Mackenbach JP, Steyerberg EW, Raat H, et al. Individual accumulation of heterogeneous risks explains perinatal inequalities within deprived meighbourhoods. Eur J Epidemiol. 2011;26(2):165-80. Mook-Kanamori DD, Steegers EA, Ellers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;03(6):527-34. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171-4. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMN, et al. The Generation RStudy. edigin and cohor tupdate 2017. Eur J Epidemiol. 2016;31(12):1243-64. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 Katus/regional-internatialfinode-socialeconomische-status Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- S4. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1735-61. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurements-a prospective study. Am J Obstet Gynecol. S95;151(1):33-47. Niklasson A, Ericson A, Fryer IG, Karlberg J,	9	431	3. Vos AA, Posthumus AG, Bonsel GJ, Steegers EA, Denktas S. Deprived neighborhoods and
 2014;93(8):727-40. 433 2014;93(8):727-40. 434 4. de Graaf JP, Ravelli AC, de Haan MA, Steegers EA, Bonsel GJ. Living in deprived urban districts increases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(5):473-81. 5. Timmermans S, Bonsel GJ, Steegers-Theunissen RP, Mackenbach JP, Steyerberg EW, Raat H, et al. Individual accumulation of heterogeneous risks explains perinatal inequalities within deprived meighbourhoods. Eur J Epidemiol. 2011;26(2):165-80. 6. Mook-Kanamori DO, Steegers EA, Eilers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34. 441 7. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171-4. 8. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. 9. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 [Available from: https://www.volksgezondheidenzorg.info/onderwerg/sociaaleconomische-status. 10. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346-54. 11. van Ultert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dotster Synecol. 2008;31(4):388-96. 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paedita Scand. 1991;80(8-9):75-62. 15. Twisk JWR. Applied Longitudinal Data An	10	432	adverse perinatal outcome: a systematic review and meta-analysis. Acta Obstet Gynecol Scand.
 434 4. de Graaf JP, Ravelli AC, de Haan MA, Steegers EA, Bonsel GJ. Living in deprived urban districts increases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(5):473-81. 535 Timmermans S, Bonsel GJ, Steegers-Theunissen RP, Mackenbach JP, Steyerberg EW, Raat H, et al. Individual accumulation of heterogeneous risks explains perinatal inequalities within deprived neighbourhoods. Eur J Epidemiol. 2011;26(2):165-80. 439 6. Mook-Kanamori DO, Steegers EA, Eilers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34. 441 7. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171-4. 8. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation 443 R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. 9. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 [Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische- status/regionaal-internationaal/regionaal#node-sociaaleconomische-status 10. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 54. 453 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 453 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurements-a prospective study. Am J Obstet Gynecol. 455 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth:	11	433	2014;93(8):727-40.
 increases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(5):473-81. Timmermans S, Bonsel GJ, Steegers-Theunissen RP, Mackenbach JP, Steyerberg EW, Raat H, et al. Individual accumulation of heterogeneous risks explains perinatal inequalities within deprived neighbourhoods. Eur J Epidemiol. 2011;26(2):165-80. Mook-Kanamori DO, Steegers EA, Ellers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(698):171-4. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 [Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische- status/regionaal-Internationaal/regionaal#node-sociaaleconomische-status. U. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 1985;151(3):333-7. Hadlock KP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 1985;151(3):333-7. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth and birthweight. Hum Reprod. <l< td=""><td>12</td><td>434</td><td>4. de Graaf JP, Ravelli AC, de Haan MA, Steegers EA, Bonsel GJ. Living in deprived urban districts</td></l<>	12	434	4. de Graaf JP, Ravelli AC, de Haan MA, Steegers EA, Bonsel GJ. Living in deprived urban districts
 436 5. Timmermans S, Bonsel GJ, Steegers-Theunissen RP, Mackenbach JP, Steyerberg EW, Raat H, 437 et al. Individual accumulation of heterogeneous risks explains perinatal inequalities within deprived 438 neighbourhoods. Eur J Epidemiol. 2011;26(2):165-80. 439 6. Mook-Kanamori DO, Steegers EA, Eliers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and 440 outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34. 441 7. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171-4. 442 8. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van INH, et al. The Generation 443 R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. 9. National Institute for Public Health and the Environment. Sociaaleconomische- status/regionaal-internationaal/regionaal#node-sociaaleconomische-status. 447 10. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 448 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. <l< td=""><td>14</td><td>435</td><td>increases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(5):473-81.</td></l<>	14	435	increases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(5):473-81.
 et al. Individual accumulation of heterogeneous risks explains perinatal inequalities within deprived neighbourhoods. Eur J Epidemiol. 2011;26(2):165-80. Mook-Kanamori DO, Steegers EA, Eilers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34. R. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation RS Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 [Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische- status/regionaal-internationaal/regionaalHnode-sociaaleconomische-status. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 54. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. J985;151(3):333-7. Ster Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation and et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. Niklasson A, Fricson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(08-9):756-62. Nikikasson A, Fricson A, Fryer JG, Karlberg J, Lawrence C,	15	436	5. Timmermans S, Bonsel GJ, Steegers-Theunissen RP, Mackenbach JP, Steyerberg EW, Raat H,
 438 neighbourhoods. Eur J Epidemiol. 2011;26(2):165-80. 6. Mook-Kanamori DO, Steegers EA, Ellers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34. 441 7. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171-4. 8. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. 444 9. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 [Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische-status/regionaal-internationaal/regionaal#node-sociaaleconomische-status. 447 10. Blaas HG, Eik-Nes SH, Brennes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346-54. 450 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 453 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population-based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 459 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 459 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg	16	437	et al. Individual accumulation of heterogeneous risks explains perinatal inequalities within deprived
 Mook-Kanamori DO, Steegers EA, Eilers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171-4. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 [Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische- status/regionaal-internationaal/regionaal#Mode-sociaaleconomische-status. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 54. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. Yatasound dating of pregnancy and assessment of fetal growth. Am J Obstet Gynecol. 1985;151(3):333-7. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. String JA. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9)	17	438	neighbourhoods. Eur J Epidemiol. 2011;26(2):165-80.
 440 outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34. 441 7. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171-4. 442 8. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation 443 R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. 444 9. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 445 [Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische-status 446 status/regionaal-internationaal/regionaal#node-sociaaleconomische-status 447 10. Blaas HG, Eik-Nes SH, Bermes JB. The growth of the human embryo. A longitudinal 448 biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 54. 450 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human 451 embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 453 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use 454 of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 455 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for 457 ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population-based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 458 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish 466 reference standards for weight, length and head circumference at birth for given gestational age 461 (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epid	18	439	6. Mook-Kanamori DO, Steegers EA, Eilers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and
 441 7. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171-4. 8. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. 443 9. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 [Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische- status/regionaal-internationaal/regionaal#node-sociaaleconomische-status 446 status/regionaal-internationaal/regionaal#node-sociaaleconomische-status 447 10. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 449 54. 450 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 451 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 459 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 461 (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR, Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. Cambridge: Cambridge Univ	19	440	outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34.
 442 8. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. 9. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 [Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische- status/regionaal-internationaal/regionaal#node-sociaaleconomische-status. 445 I. Vanue K. S. S. B. Bernnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 54. 446 Status/regionael-internationaal/regionaal#node-sociaaleconomische-status. 447 10. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 54. 450 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 453 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 459 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 454 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and interobserver	20	441	7. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171-4.
 443 R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64. 9. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 [Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische- status/regionaal-internationaal/regionaal#node-sociaaleconomische-status. 446 status/regionaal-internationaal/regionaal#node-sociaaleconomische-status. 447 10. Blaas HG, Eik-Nes SH, Brennes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 54. 450 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 453 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. Cambridge: Cambridge University Press; 2013. 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 466 11. 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple im	21	442	8. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation
 444 9. National Institute for Public Health and the Environment. Sociaaleconomische status 2017 445 [Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische- status/regionaal-internationaal/regionaal#node-sociaaleconomische-status. 447 10. Blaas HG, Eik-Nes SH, Brennes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 448 450 450 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 453 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 455 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 459 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: notential and pitfalls. BMJ. 2009;338:52393. 469 18. DG Altman. Prac	22	443	R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64.
 445 [Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische- status/regionaal-internationaal/regionaal#node-sociaaleconomische-status 446 status/regionaal-internationaal/regionaal#node-sociaaleconomische-status 10. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 449 54. 450 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 451 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 455 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 459 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 466 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: noton, UK: Chapman & Hall; 1999. 470 19. de Grazá II & Stapeare EA. Borcen Ed. Lonorn, UK: Chapman & Ha	23	444	9. National Institute for Public Health and the Environment. Sociaaleconomische status 2017
 446 status/regionaal-internationaal/regionaal#node-sociaaleconomische-status 447 10. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal 448 biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 449 54. 450 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 453 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 455 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. Cambridge: Cambridge University Press; 2013. 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323-31. 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 469 18. DG Altman. Practical statistics for medical research: London, UK: Chapma & Hall; 1999. 4	25	445	[Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische-
 447 10. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 449 54. 450 11. van Ultert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 453 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 455 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 468 for missing data in epidemiological and clinical research: potential and piffalls. BMJ. 2009;338:b2393. 469 18. DG Altman. Practical statistics for medical research: London, UK: Chapm	26	446	status/regionaal-internationaal/regionaal#node-sociaaleconomische-status.
 448 biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346- 449 54. 450 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 453 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 455 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 466 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 468 for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 469 18. DG Altman. Practical statistics for medical research: London, UK: Chapman & Hall; 1999. 469 40 46 Grafe IP. Steerger EA. Ronsol GL Inouqualities in provinatel and matemal bachth Cruw Opin 	27	447	10. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal
 449 54. 450 11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human 451 embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 452 2013;28(7):1753-61. 453 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use 454 of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 455 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- 458 based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 468 for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 469 18. DG Altman. Practical statistics for medical research: noton, UK: Chapman & Hall; 1999. 470 19. de Graaf IP. Steereers EA. Incract Ed. Incraculities in parinatal and maternel health. Curre Onio 	28	448	biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346-
 450 451 451 451 451 451 452 2013;28(7):1753-61. 453 454 455 455 455 455 455 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use 455 455 455 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for 457 458 459 450 451 454 455 455 455 455 455 456 457 456 458 458 459 450 454 454 455 455 455 455 455 456 457 456 457 456 458 459 450 457 456 457 456 457 457 458 459 459 450 451 451 451 451 452 453 454 455 455 455 456 457 458 459 450 451 451 452 452 453 454 455 454 455 455 454 455 454 455 454 455 454 455 454 456 457 458 459 459 451 452 452 453 454 455	29	449	54.
 451 embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753-61. 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 1985;151(3):333-7. 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research. London, UK: Chapman & Hall; 1999. 469 18. DG Altman. Practical statistics for medical research. London, UK: Chapman & Hall; 1999. 	30	450	11. van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, et al. Human
 452 2013;28(7):1753-61. 453 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 455 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 459 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. 463 Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 469 18. DG Altman. Practical statistics for medical research. London, UK: Chapman & Hall; 1999. 469 467 17. Sterne JA, Betarger EA. Borgel GL Inogualities in perinatal and maternal health. Cure Onio 	31 22	451	embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod.
 453 12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research London, UK: Chapman & Hall; 1999. de Graaf JB. Steergers EA. Pancel GL Inequalities in parinatal and maternal headth. Curr Opin 	33	452	2013;28(7):1753-61.
 454 of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol. 455 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for 457 ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- 458 based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 459 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish 460 reference standards for weight, length and head circumference at birth for given gestational age 461 (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. 463 Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and 465 interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 466 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 468 for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 469 18. DG Altman. Practical statistics for medical research. London, UK: Chapman & Hall; 1999. 470 19. de Graaf IP. Steegers EA. Porcel GL Inequalities in partnarel health. Curre Opin 	34	453	12. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use
 455 1985;151(3):333-7. 456 13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 459 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. 463 Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 469 18. DG Altman. Practical statistics for medical research London, UK: Chapman & Hall; 1999. 470 19 	35	454	of head, body, and femur measurementsa prospective study. Am J Obstet Gynecol.
 456 457 458 457 458 457 458 457 459 459 459 459 44. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish 460 460 461 462 462 463 464 464 464 464 465 464 466 464 467 467 468 469 469 469 460 460 460 460 461 461 462 462 462 463 464 464 464 465 464 466 464 467 467 468 469 469 469 460 460 460 460 460 461 461 462 462 463 464 464 464 465 464 466 464 466 466 467 467 468 468 469 469 469 469 469 460 460 460 461 461 462 462 463 464 464 464 465 464 466 464 466 467 468 468 469 469 469 469 469 469 460 460 460 460 460 461 461 462 462 462 463 464 464 464 465 465 466 466 466 467 467 468 468 469 469 469 469 469 469 469 469 469 460 460 460 461 461 462 462 462 463<!--</td--><td>36</td><td>455</td><td>1985;151(3):333-7.</td>	36	455	1985;151(3):333-7.
 457 ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population- 458 based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 459 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish 460 reference standards for weight, length and head circumference at birth for given gestational age 461 (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. 463 Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and 465 interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 466 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 468 for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 469 18. DG Altman. Practical statistics for medical research London, UK: Chapman & Hall; 1999. 470 19. de Graaf IP. Steegers EA. Bonsel GL Inequalities in perinatal and maternal boolth. Curr Opin 	37	456	13. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for
 458 based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. 459 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish 460 reference standards for weight, length and head circumference at birth for given gestational age 461 (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. 463 Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and 465 interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 466 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 468 for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 469 18. DG Altman. Practical statistics for medical research. London, UK: Chapman & Hall; 1999. 470 19. de Graaf IP. Steegers EA. Poncel GL Inequalities in parimeter and maternal health. Curr Opin 	38	457	ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population-
 459 459 14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish 460 460 461 461 462 461 462 462 462 463 464 464 464 465 464 465 466 464 466 465 466 466 466 467 47 467 47 467 47 468 467 47 468 467 47 468 469 469 469 460 460 461 461 462 462 463 464 464 464 464 465 464 466 464 466 464 466 466 467 467 467 467 468 468 469 469 469 469 469 460 460 461 461 462 462 463 464 464 465 466 466 466 467 467 467 468 468 469 469 469 469 460 460 460 461 461 462 462 463 464 464 465 466 466 466 467 467 468 468 469 469 469 469 469 460 460 460 461 461 462 462 463 464 464 465 466 466 467 467 468 468 469 469 469 460 460 460 461 461 462 462 463 464 464 465 466 466 <	39	458	based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96.
 460 reference standards for weight, length and head circumference at birth for given gestational age 43 461 (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 44 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. 45 463 Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and 47 465 interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 46 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 468 for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 469 18. DG Altman. Practical statistics for medical research London, UK: Chapman & Hall; 1999. 470 19. de Graaf JP. Steegers EA. Bonsel GL Inequalities in porinatal and maternal health. Curr Opin 	40 41	459	14. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish
 461 (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. 462 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. 463 Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and 465 interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 466 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 468 for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 469 18. DG Altman. Practical statistics for medical research London, UK: Chapman & Hall; 1999. 470 19. de Graaf IP. Steegers EA. Bonsel GL Inequalities in porinatal and maternal health. Curr Opin 	41 42	460	reference standards for weight, length and head circumference at birth for given gestational age
 44 462 45 15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. 463 Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and 47 465 interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 466 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 468 for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 469 18. DG Altman. Practical statistics for medical research London, UK: Chapman & Hall; 1999. 470 19. de Graaf JP. Steegers EA. Bonsel GL Inequalities in porinatal and maternal health. Curr Opin 	43	461	(1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62.
 463 Cambridge: Cambridge University Press; 2013. 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and 474 65 interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 466 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 468 for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 469 18. DG Altman. Practical statistics for medical research London, UK: Chapman & Hall; 1999. 470 19. de Graaf JP. Steegers EA. Bonsel GL Inequalities in porinatal and maternal health. Curr Opin 	44	462	15. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed.
 46 464 16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and 47 465 interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 48 466 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 50 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 51 468 for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 52 469 18. DG Altman. Practical statistics for medical research London, UK: Chapman & Hall; 1999. 470 19 de Graaf JP. Steegers EA. Bonsel GL Inequalities in porinatal and maternal health. Curr Opin 	45	463	Cambridge: Cambridge University Press; 2013.
 47 465 interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323- 48 466 31. 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 50 468 for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 52 469 18. DG Altman. Practical statistics for medical research London, UK: Chapman & Hall; 1999. 470 19. de Graaf JP. Steegers EA. Bonsel GL Inequalities in perinatal and maternal health. Curr Opin 	46	464	16. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and
 48 466 467 50 467 17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation 51 468 52 469 18. DG Altman. Practical statistics for medical research. London, UK: Chapman & Hall; 1999. 470 40 40 419 420 431 440 440 441 441<	47	465	interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323-
 49 467 50 50 50 51 468 52 469 18. DG Altman. Practical statistics for medical research. London, UK: Chapman & Hall; 1999. 469 470 48 49 49 49 40 <li< td=""><td>48</td><td>466</td><td>31.</td></li<>	48	466	31.
 468 for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 52 469 18. DG Altman. Practical statistics for medical research London, UK: Chapman & Hall; 1999. 470 19 de Graaf JP. Steegers EA. Bonsel CL Jacqualities in perinatal and maternal health. Curr Opin 	49 50	467	17. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation
469 18. DG Altman. Practical statistics for medical research London, UK: Chapman & Hall; 1999.	50 51	468	for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.
F2 470 10 de Graaf ID Steegers EA Bonsel CL Inequalities in perinatal and maternal health Curr Onin	52	469	18. DG Altman. Practical statistics for medical research London, UK: Chapman & Hall; 1999.
25 470 13. UE OLAAL JE, SIEEBELS EA, DOUSELOJ. MEQUAMUES IN PERINALAI ANU MALEMAL MEALIN. CUIT OPIN	53	470	19. de Graaf JP, Steegers EA, Bonsel GJ. Inequalities in perinatal and maternal health. Curr Opin
54 471 Obstet Gynecol. 2013;25(2):98-108.	54	471	Obstet Gynecol. 2013;25(2):98-108.
55 472 20. Van Dijk MR, Borggreven NV, Willemsen SP, Koning AHJ, Steegers-Theunissen RPM, Koster	55	472	20. Van Dijk MR, Borggreven NV, Willemsen SP, Koning AHJ, Steegers-Theunissen RPM, Koster
⁵⁶ 473 MPH. Maternal Lifestyle Impairs Embryonic Growth: The Rotterdam Periconception Cohort. Reprod	56	473	MPH. Maternal Lifestyle Impairs Embryonic Growth: The Rotterdam Periconception Cohort. Reprod
⁵⁷ 474 Sci. 2018;25(6):916-22.	57	474	Sci. 2018;25(6):916-22.
58	58		
	59 60		

Page 27 of 50

BMJ Open

21. Posthumus AG, Birnie E, van Veen MJ, Steegers EA, Bonsel GJ. An antenatal prediction model for adverse birth outcomes in an urban population: The contribution of medical and non-medical risks. Midwifery. 2016;38:78-86. Agyemang C, Vrijkotte TG, Droomers M, van der Wal MF, Bonsel GJ, Stronks K. The effect of 22. neighbourhood income and deprivation on pregnancy outcomes in Amsterdam, The Netherlands. J Epidemiol Community Health. 2009;63(9):755-60. 23. Jokela M. Does neighbourhood deprivation cause poor health? Within-individual analysis of movers in a prospective cohort study. J Epidemiol Community Health. 2015;69(9):899-904. Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA. 24. 2007;298(14):1685-7. 25. Vehmeijer FOL, Guxens M, Duijts L, El Marroun H. Maternal psychological distress during pregnancy and childhood health outcomes: a narrative review. J Dev Orig Health Dis. 2019;10(3):274-85. 26. Henrichs J, Schenk JJ, Roza SJ, van den Berg MP, Schmidt HG, Steegers EA, et al. Maternal psychological distress and fetal growth trajectories: the Generation R Study. Psychol Med. 2010;40(4):633-43. 27. Burton GJ, Hempstock J, Jauniaux E. Nutrition of the human fetus during the first trimester--a review. Placenta. 2001;22 Suppl A:S70-7. 28. Gootjes DV, Koster MPH, Willemsen SP, Koning AHJ, Steegers EAP, Steegers-Theunissen RPM. The Impact of Neighbourhood Deprivation on Embryonic Growth Trajectories: Rotterdam Periconception Cohort. J Clin Med. 2019;8(11). Rajaratnam JK, Burke JG, O'Campo P. Maternal and child health and neighborhood context: 29. the selection and construction of area-level variables. Health Place. 2006;12(4):547-56. 30. Noble M, Wright G, Smith G, Dibben C. Measuring Multiple Deprivation at the Small-Area Level. Environment and Planning A: Economy and Space. 2006;38(1):169-85. Jarman B. Underprivileged areas: validation and distribution of scores. Br Med J (Clin Res Ed). 31. 1984;289(6458):1587-92. 32. Kang H-G, Joo HH, Choi KD, Lee D, Moon J. Complementarity in dietary supplements and foods: are supplement users vegetable eaters? Food Nutr Res. 2017;61(1):1361769-. 33. Kirk SF, Cade JE, Barrett JH, Conner M. Diet and lifestyle characteristics associated with dietary supplement use in women. Public Health Nutr. 1999;2(1):69-73. 34. Reitsma JB, Kardaun JW, Gevers E, de Bruin A, van der Wal J, Bonsel GJ. [Possibilities for anonymous follow-up studies of patients in Dutch national medical registrations using the Municipal Population Register: a pilot study] Mogelijkheden voor anoniem follow-uponderzoek van patienten in landelijke medische registraties met behulp van de Gemeentelijke Basisadministratie: een pilotonderzoek. Ned Tijdschr Geneeskd. 2003;147(46):2286-90. 35. Waelput AJM, Sijpkens MK, Lagendijk J, van Minde MRC, Raat H, Ernst-Smelt HE, et al. Geographical differences in perinatal health and child welfare in the Netherlands: rationale for the healthy pregnancy 4 all-2 program. BMC Pregnancy Childbirth. 2017;17(1):254. 36. Lagendijk J, Vos AA, Bertens LCM, Denktas S, Bonsel GJ, Steyerberg EW, et al. Antenatal non-medical risk assessment and care pathways to improve pregnancy outcomes: a cluster randomised controlled trial. Eur J Epidemiol. 2018;33(6):579-89. Steegers EAP, Barker ME, Steegers-Theunissen RPM, Williams MA. Societal Valorisation of 37. New Knowledge to Improve Perinatal Health: Time to Act. Paediatric and perinatal epidemiology. 2016;30(2):201-4. van Voorst SF, Vos AA, de Jong-Potjer LC, Waelput AJM, Steegers EAP, Denktas S. 38. Effectiveness of general preconception care accompanied by a recruitment approach: protocol of a community-based cohort study (the Healthy Pregnancy 4 All study). BMJ open. 2015;5(3):e006284-e.

1 Supplemental data

Supplemental Table 1. Fetal growth and adverse pregnancy outcomes in the study population, stratified for quartiles of neighbourhood deprivation.

	n	Study population n = 8617	n	Lowest deprivation quartile n = 2170	n	Second deprivation quartile n = 2208	n	Third deprivation quartile n = 2090	n	Highest deprivation quartile n = 2149	p-value ¹	p- value ²
Early pregnancy		Ċ	ファ									
CRL	1614	-0.05 (1.06)	287	0.03 (1.05)	362	-0.01 (1.07)	418	-0.01 (0.95)	547	0.07 (0.87)	0.81	0.63
НС	5646	-0.27 (1.39)	1359	-0.04 (0.99)	1440	-0.04 (1.04)	1361	-0.04 (1.10)	1486	-0.09 (1.06)	0.36	0.20
FL	4682	0.61 (0.88)	1162	-0.08 (0.99)	1233	-0.18 (1.00)	1107	-0.04 (0.98)	1180	-0.10 (1.00)	0.18	0.74
Mid pregnancy												
НС	8035	-0.02 (1.02)	1972	-0.06 (1.03)	2049	-0.04 (1.05)	1973	-0.01 (1.02)	2041	0.03 (0.98)	0.047	0.01
FL	8058	0.03 (1.03)	1985	0.06 (1.07)	2046	0.06 (1.08)	1970	0.04 (1.02)	2057	-0.01 (0.97)	0.12	0.03
AC	8052	0.01 (1.01)	1977	-0.04 (1.02)	2050	-0.04 (1.02)	1971	0.02 (1.00)	2054	0.11 (0.98)	<0.001	<0.001
EFW	8016	-0.10 (1.01)	1975	-0.12 (1.02)	2035	-0.12 (1.04)	1957	-0.09 (1.00)	2049	-0.06 (0.97)	0.22	0.08
Late pregnancy												
НС	8163	0.01 (1.00)	2029	-0.08 (1.00)	2067	-0.09 (1.02)	1984	0.06 (1.00)	2083	0.17 (0.96)	<0.001	<0.001
FL	8234	-0.01 (1.00)	2049	-0.04 (1.00)	2083	-0.01 (1.05)	2005	0.004 (1.00)	2097	0.02 (0.97)	0.28	0.06
AC	8212	0.01 (1.01)	2042	-0.10 (1.01)	2076	-0.07 (1.04)	1995	0.04 (1.01)	2099	0.14 (0.97)	<0.001	<0.001
EFW	8201	0.03 (1.02)	2042	-0.06 (1.01)	2073	-0.02 (1.04)	1993	0.07 (1.00)	2093	0.15 (1.00)	<0.001	<0.001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Birth

BMJ Open

Small for gestational age	824	854 (9.9%)	261	261 (12.2%)	220	225 (10.1%)	190	190 (9.2%)	153	153 (7.1%)	<0.001	<0.001
Preterm birth	460	460 (5.3%)	128	128 (5.9%)	142	142 (6.4%)	109	109 (5.2%)	81	81 (3.8%)	0.001	0.001

Abbreviations: SD: standard deviation. HC: head circumference. FL: femur length. AC: abdominal circumference. EFW: estimated fetal weight. Values

represent data in SD-score, mean (SD) or n (%).¹ Differences between groups were evaluated using one-way-ANOVA-tests for continuous variables and Chi-

.eters betw. square tests for proportions. ²Differences in growth parameters between the lowest and highest neighbourhood status score groups were tested were evaluated

using Student's t-tests. Percentages are valid percentages.

1 2 3 4 5	8 9	Supplemental Tab patterns.	le 2. Regression coefficie	ents of longitudinal associ	ations between quartil	es of neighbourhood dep	rivation with fetal grow	th				
6 7			Intercept	Slope	Intercept	Slope	Intercept	Slope				
8 9			Head circumference	Head circumference	Length	Length	Weight	Weight				
10 11			(SDS)	(SDS)	(SDS)	(SDS)	(SDS)	(SDS)				
12 13												
1Aeigh	bourl	nood deprivation										
10 1Quart	ile 1		0.225 (0.122; 0.328)	-0.010 (-0.013; -0.006)	0.270 (0.167; 0.373)	-0.012 (-0.016; -0.010)	0.229 (0.115; 0.3441)	-0.011 (-0.015; -0.008)				
17 1 Quart	ile 2		0.104 (0.004; 0.204)	-0.005 (-0.008; -0.001)	0.103 (0.003; 0.203)	-0.005 (-0.008; -0.001)	0.155 (0.043; 0.268)	-0.008 (-0.011; -0.005)				
2 Quart	ile 3		0.109 (0.009; 0.208)	-0.004 (-0.008; -0.001)	0.170 (0.071; 0.270)	-0.006 (-0.010; -0.003)	0.095 (-0.018; 0.208)	-0.005 (-0.008; -0.001)				
2 Quart 23	ile 4		Ref.	Ref.	Ref.	Ref.	Ref.	Ref.				
24	10	Values are regression	on coefficients obtained fr	om linear repeated measure	ement models and reflec	et the (gestational) age inde	ependent differences (inte	ercepts) and				
25 26	11	the gestational age dependent differences (slopes: change in growth characteristics SDS per week per quartile of the neighbourhood deprivation score,										
27	12	compared with the highest quartile of the neighbourhood deprivation score as the reference group, adjusted for maternal age, educational level, smoking,										
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	13	alcohol use, folic ac	vid supplement use, ethnic	ity, parity, pre-pregnancy b	body mass index and fet	al sex.)						
42 43 44 45			Fo	or peer review only - http://b	mjopen.bmj.com/site/ab	out/guidelines.xhtml						

in neighbourhood status score. Analyses with crown–rump length were based on subgroup analyses (n

22 = 1614). Estimates are from multiple imputed data. Squares show basic model; circles show the

adjusted model: basic model and additionally adjusted for maternal age, educational level, smoking,

24 alcohol use, folic acid supplement use, ethnicity, parity, pre-pregnancy body mass index and fetal sex.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Study population		
n = 8617		
	Parity	Complications in a previous pregnancy
	p-value for trend	p-value for trend
Early pregnancy		
CRL	0.44	0.36
НС	0.25	0.24
FL	0.52	0.91
Mid pregnancy	6	
HC	0.15	0.20
FL	0.13	0.20
AC	0.73	0.81
EFW	0.27	0.34
Late pregnancy	· L	•
НС	0.64	0.62
FL	0.58	0.51
AC	0.66	0.88
EFW	0.82	0.99
Birth		
SGA	0.95	0.85
PTB	0.17	0.03

Abbreviations: β: beta; CRL: crown-rump length; HC: head circumference; FL: femur length; AC:
abdominal circumference; EFW: estimated fetal weight. Values are based on the adjusted linear and
logistic regression models.

multiparous women without a complications in a previous pregnancy or multiparous women with a complications in a previous pregnancy.

6 7	Study population	Nulliparous		Multiparous, no complie	cations previous pregnancy	Multiparous, complic	ations previous pregnancy
, 8 9	n = 8617	N = 4739		N = 3166		N = 606	
10 11		Trend		Trend		Trend	
12 13		β/OR (95% CI)	p-value for trend	β/OR (95% CI)	p-value for trend	β/OR (95% CI)	p-value for trend
14 15	Early pregnancy						
16 17	CRL	0.02 (-0.04 ; 0.08)	0.42	-0.01 (-0.10 ; 0.07)	0.74	0.02 (-0.19 ; 0.22)	0.88
18 19	НС	0.004 (-0.03 ; 0.04)	0.84	-0.01 (-0.05 ; 0.04)	0.73	-0.04 (-0.15 ; 0.07)	0.45
20 21	FL	0.03 (-0.01 ; 0.07)	0.09	0.04 (-0.01 ; 0.09)	0.09	-0.04 (-0.15 ; 0.07)	0.50
22	Mid pregnancy						
24 25 26	НС	0.02 (-0.02 ; 0.05)	0.32	0.02 (-0.02 ; 0.06)	0.30	-0.11 (-0.19 ; - 0.03)	0.01
27 28 29	FL	0.01 (-0.02 ; 0.04)	0.66	-0.01 (-0.05 ; 0.03)	0.59	-0.06 (-0.15 ; 0.02)	0.14
30 31	AC	0.03 (0.002 ; 0.06)	0.03	0.05 (0.01 ; 0.09)	0.01	-0.02 (-0.11 ; 0.07)	0.66
32 33	EFW	0.02 (-0.01 ; 0.05)	0.12	0.03 (-0.01 ; 0.07)	0.18	-0.04 (-0.13 ; 0.04)	0.32
34 35	Late pregnancy						
36 37	НС	0.04 (0.01 ; 0.07)	0.004	0.03 (-0.003 ; 0.07)	0.07	0.03 (-0.05 ; 0.11)	0.50
38 39	FL	0.02 (-0.01 ; 0.05)	0.10	-0.003 (-0.04 ; 0.03)	0.89	0.03 (-0.05 ; 0.11)	0.45
BMJ Open

2 3 4	AC	0.03 (0.002 ; 0.06)	0.04	0.04 (0.01 ; 0.08)	0.03	0.07 (-0.01 ; 0.16)	0.10
5 6	EFW	0.03 (0.01 ; 0.06)	0.02	0.04 (0.001 ; 0.08)	0.048	0.07 (-0.02 ; 0.16)	0.11
7 8	Birth						
9 10	SGA	0.90 (0.82 ; 0.99)	0.03	0.96 (0.82 ; 1.12)	0.60	0.88 (0.63 ; 1.23)	0.46
11 12	РТВ	0.91 (0.81 ; 1.03)	0.15	0.73 (0.58 ; 0.93)	0.01	0.89 (0.66 ; 1.21)	0.46
13	22 411				4 40 11 1		. 1 . 1.

Abbreviations: β: beta; CRL: crown-rump length; HC: head circumference; FL: femur length; AC: abdominal circumference; EFW: estimated fetal weight.

Values are regression coefficients with the 95% CI of the data in SD-score and are based on adjusted linear and logistic regression models. Adjusted model:

adjusted for maternal age, educational level, smoking, alcohol use, folic acid supplement use, ethnicity, parity, pre-pregnancy body mass index and fetal sex.

p-for trend analysis with the neighbourhood deprivation as a continuous measure.

JOUS IIICC.

37 deprivation and first trimester and fetal growth measurements.

vue, folic acid supplement use, ethnicity, parity, pre-pregnancy body mass index and fetal sex.

/1	Su	ipplemental	Table 5.	Sensitivity anal	ysis with all availa	ble CRL measuremen	its in the study popula	ation.					
72	a.	All CRL mea	asurement	t in the study po	pulation, stratified f	for quartiles of the nei	ghbourhood status sco	ore.					
n		Study	n	Lowest	n	Second n	Third	n	Highest	p-value ¹	Mean dif	ference	p-valu
	p	population		deprivation	de	privation	deprivation		deprivation		(95%	CI) ²	
		n = 8617		quartile	•	quartile	quartile		quartile				
				n = 2277	п	n = 2123	n = 2084		n = 2133				
161	4		287	0.03 (1.05)	362 -0.	.01 (1.07) 418	-0.01 (0.95)	547	0.07 (0.87)	0.56	-0.03 (-0.1	7 ; 0.10)	0.61
73					<u> </u>								
7/													
/ 4													
75													
76													
76 77	b.	All CRL mea	surement	in the study pop	oulation and the ass	ociations between qua	rtiles of the neighbour	hood sta	itus score.				
76 77	b	All CRL mea	surement	in the study pop	Dulation and the asso	ociations between qua	rtiles of the neighbour	[.] hood sta	itus score. ighest deprivation	T	rend	p-valu	e for tren
76 77	b	All CRL mea	surement	in the study pop Model	Dulation and the asso Lowest deprivation quartile	ociations between qua n Second deprivatio quartile	rtiles of the neighbour on Third deprivati quartile	[.] hood sta	itus score. ighest deprivation quartile	Т	rend	p-valu	e for tren
76 77	b	All CRL mea n	surement	in the study pop Model	Dulation and the asso Lowest deprivatio quartile n = 300	ociations between qua n Second deprivatio quartile n = 373	rtiles of the neighbour on Third deprivati quartile n = 399	[.] hood sta	itus score. ighest deprivation quartile n = 542	T	rend	p-valu	e for tren
76 77	b	All CRL mea	surement	in the study pop Model	Dulation and the asso Lowest deprivatio quartile n = 300 β (95% CI)	ociations between qua n Second deprivatio quartile n = 373 β (95% CI)	rtiles of the neighbour on Third deprivati quartile n = 399 β (95% CI)	chood sta	itus score. ighest deprivation quartile n = 542	 β (9:	rend 5% CI)	p-valu	e for tren
76 77 	b. RL	All CRL mea n 1614	surement	in the study pop Model Basic	Dulation and the asso Lowest deprivation quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10)	ociations between qua n Second deprivatio quartile n = 373 β (95% CI)) -0.08 (-0.21 ; 0.05	rtiles of the neighbour on Third deprivati quartile n = 399 β (95% CI) 5) -0.08 (-0.20 ; 0.0	rhood sta on H	ighest deprivation quartile n = 542 <i>Reference</i>	β (9 : 0.01 (-0	rend 5% CI) 0.02 ; 0.05)	p-valu	e for tren
76 77 CI	b. RL	All CRL mea n 1614	surement	in the study pop Model Basic Adjusted	Dulation and the asso Lowest deprivatio quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ociations between qua n Second deprivatio quartile n = 373 β (95% CI)) -0.08 (-0.21 ; 0.05 -0.04 (-0.17 ; 0.10	rtiles of the neighbour on Third deprivati quartile n = 399 β (95% CI) 5) -0.08 (-0.20 ; 0.0 9) -0.06 (-0.19 ; 0.0	rhood sta on H 05) 06)	itus score. ighest deprivation quartile n = 542 Reference Reference	β (99 0.01 (-0 0.004 (-0	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-valu	e for tren 0.48 0.85
76 77 CI 78	b. RL	All CRL mea n 1614	surement	in the study pop Model Basic Adjusted	Deviation and the assert Lowest deprivation quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ociations between qua n Second deprivation quartile n = 373 β (95% CI)) -0.08 (-0.21; 0.05 -0.04 (-0.17; 0.10)	rtiles of the neighbour on Third deprivati quartile n = 399 β (95% CI) 5) -0.08 (-0.20 ; 0.0 0) -0.06 (-0.19 ; 0.0	chood sta on H 05) 06)	itus score. ighest deprivation quartile n = 542 Reference Reference	β (99 0.01 (-0 0.004 (-4	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-valu	e for tren 0.48 0.85
76 77 CI 78 79	b. RL	All CRL mea n 1614	surement	in the study pop Model Basic Adjusted	Delation and the assert Lowest deprivation quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ociations between qua n Second deprivation quartile n = 373 β (95% CI) -0.08 (-0.21; 0.05 -0.04 (-0.17; 0.10)	rtiles of the neighbour on Third deprivati quartile n = 399 β (95% CI) 5) -0.08 (-0.20 ; 0.0 0) -0.06 (-0.19 ; 0.0	chood sta on H ()5) ()6)	ntus score. ighest deprivation quartile n = 542 Reference Reference	β (99 0.01 (-0 0.004 (-0	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-valu	e for tren 0.48 0.85
76 77 CI 78 79	b.	All CRL mea n 1614	surement	in the study pop Model Basic Adjusted	Dulation and the asso Lowest deprivatio quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ociations between qua n Second deprivatio quartile n = 373 β (95% CI)) -0.08 (-0.21 ; 0.05 -0.04 (-0.17 ; 0.10	rtiles of the neighbour on Third deprivati quartile n = 399 β (95% CI) 5) -0.08 (-0.20 ; 0.0 0) -0.06 (-0.19 ; 0.0	rhood sta on H 05) 06)	atus score. ighest deprivation quartile n = 542 Reference Reference	β (99 0.01 (-0 0.004 (-1	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-valu	e for tren 0.48 0.85
76 77 CI 78 79	b.	All CRL mea n 1614	surement	in the study pop Model Basic Adjusted	Dulation and the asso Lowest deprivatio quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ociations between qua n Second deprivatio quartile n = 373 β (95% CI)) -0.08 (-0.21 ; 0.05 -0.04 (-0.17 ; 0.10	rtiles of the neighbour on Third deprivati quartile n = 399 β (95% CI) 5) -0.08 (-0.20 ; 0.0 0) -0.06 (-0.19 ; 0.0	rhood sta on H 05) 06)	atus score. ighest deprivation quartile n = 542 Reference Reference	β (99 0.01 (-0 0.004 (-0	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-valu	e for tren 0.48 0.85
76 77 CI 78 79	b.	All CRL mea n 1614	surement	in the study pop Model Basic Adjusted	Deviation and the assert Lowest deprivation quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ociations between qua n Second deprivation quartile n = 373 β (95% CI)) -0.08 (-0.21; 0.05 -0.04 (-0.17; 0.10) only - http://bmioneon	rtiles of the neighbour on Third deprivati quartile n = 399 β (95% CI) β -0.08 (-0.20; 0.0 β) -0.06 (-0.19; 0.0 β) -0.06 (-0.19; 0.0)	rhood sta on H 05) 06)	itus score. ighest deprivation quartile n = 542 Reference Reference	β (99 0.01 (-0 0.004 (-0	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-valu	e for tren
76 77 CI 78 79	b.	All CRL mea n 1614	surement	in the study pop Model Basic Adjusted	Deviation and the assert Lowest deprivation quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ociations between qua n Second deprivation quartile n = 373 β (95% CI)) -0.08 (-0.21; 0.05 -0.04 (-0.17; 0.10) only - http://bmjopen.	rtiles of the neighbour on Third deprivati quartile n = 399 $\beta (95\% CI)$ $\beta (-0.20; 0.00)$ -0.06 (-0.19; 0.00) bmj.com/site/about/g	rhood sta on H 05) 06) uidelines	atus score. ighest deprivation quartile n = 542 Reference Reference	β (99 0.01 (-0 0.004 (-4	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-valu	e for tren

	n	Model	Lowest deprivation	Second deprivation	Third deprivation	Highest deprivation	Trend	p-value for trend
			quartile	quartile	quartile	quartile		
			n = 2268	n = 2118	n = 2081	n = 2131		
			β (95% CI)	β (95% CI)	β (95% CI)		β (95% CI)	
CF	RL 1143	Adjusted	-0.06 (-0.23 ; 0.12)	0.02 (-0.14 ; 0.17)	-0.06 (-0.21 ; 0.09)	Reference	0.01 (-0.04 ; 0.05)	0.80
81								
82								
52								
83	d. The associatio	n between the neighbo	ourhood deprivation stat	us score and all CRL m	easurement in the stud	ly population in a select	ed cohort of non-SGA	
84	pregnancies.							
			I awast dampination	Second deprivation	Third deprivation	Highest deprivation	Trend	p-value for trend
	n	Model	Lowest deprivation	Second deprivation	i in a acprivation	inghese aspiriation	110114	p value for theme
	n	Model	quartile	quartile	quartile	quartile		p turine for them
_	n	Model	quartile n = 2268	quartile n = 2118	quartile n = 2081	quartile n = 2131		b
	n	Model	cowest deprivation quartile n = 2268 β (95% CI)	quartile n = 2118 β (95% CI)	quartile n = 2081 β (95% CI)	quartile n = 2131	β (95% CI)	p
	n CRL 434	Basic	cowest deprivation quartile n = 2268 β (95% CI) 0.05 (-0.26 ; 0.35)	quartile n = 2118 β (95% CI) 0.10 (-0.17 ; 0.37)	quartile n = 2081 β (95% CI) -0.05 (-0.31 ; 0.21)	quartile n = 2131 <i>Reference</i>	β (95% CI) -0.01 (-0.09 ; 0.06)	0.73
	n CRL 434	Model Basic Adjusted	const deprivation quartile n = 2268 β (95% CI) 0.05 (-0.26 ; 0.35) 0.07 (-0.30 ; 0.43)	quartile n = 2118 β (95% CI) 0.10 (-0.17 ; 0.37) 0.09 (-0.19 ; 0.38)	quartile n = 2081 β (95% CI) -0.05 (-0.31 ; 0.21) -0.06 (-0.33 ; 0.21)	quartile n = 2131 Reference Reference	β (95% CI) -0.01 (-0.09 ; 0.06) -0.02 (-0.11 ; 0.08)	0.73
85	n CRL 434 Abbreviations: f	Model Basic Adjusted 3: beta; CRL: crown-r	Lowest deprivation quartile n = 2268 β (95% CI) 0.05 (-0.26 ; 0.35) 0.07 (-0.30 ; 0.43) rump length. Values are		$ quartile n = 2081 $ $ \beta (95\% \text{ CI}) -0.05 (-0.31; 0.21) -0.06 (-0.33; 0.21) s with the 95% CI of t$	quartile n = 2131 Reference Reference	β (95% CI) -0.01 (-0.09 ; 0.06) -0.02 (-0.11 ; 0.08) d are based on linear	0.73
35	n CRL 434 Abbreviations: f regression mode	Model Basic Adjusted 3: beta; CRL: crown-r els. Basic model: by th	Lowest deprivationquartilen = 2268β (95% CI)0.05 (-0.26 ; 0.35)0.07 (-0.30 ; 0.43)rump length. Values arene use of SD scores it is	$quartile$ $n = 2118$ $\beta (95\% CI)$ $0.10 (-0.17 ; 0.37)$ $0.09 (-0.19 ; 0.38)$ regression coefficients automatically adjusted	$ quartile n = 2081 $ $ \beta (95\% \text{ CI}) -0.05 (-0.31; 0.21) -0.06 (-0.33; 0.21) s with the 95% CI of t t d for gestational age. I$	quartile n = 2131 Reference Reference he data in SD-score and Fully adjusted model: b	β (95% CI) -0.01 (-0.09 ; 0.06) -0.02 (-0.11 ; 0.08) d are based on linear asic model and additio	0.73 0.75
35 36	n CRL 434 Abbreviations: f regression mode adjusted for mat	Model Basic Adjusted 3: beta; CRL: crown-r els. Basic model: by the gernal age educationa	Lowest deprivationquartilen = 2268β (95% CI)0.05 (-0.26 ; 0.35)0.07 (-0.30 ; 0.43)rump length. Values arene use of SD scores it is1 level smoking alcoho	quartile n = 2118 β (95% CI) 0.10 (-0.17; 0.37) 0.09 (-0.19; 0.38) regression coefficients automatically adjusted	quartile n = 2081 β (95% CI) -0.05 (-0.31; 0.21) -0.06 (-0.33; 0.21) s with the 95% CI of t d for gestational age. I	quartile n = 2131 <i>Reference</i> <i>Reference</i> the data in SD-score and Fully adjusted model: b parity, pre-pregnancy bo	β (95% CI) -0.01 (-0.09 ; 0.06) -0.02 (-0.11 ; 0.08) d are based on linear pasic model and additional additional additional and ferror additional additionadditional additionadditionadditional addit	0.73 0.75 onally tal sex
35 86 37	n CRL 434 Abbreviations: f regression mode adjusted for mat	Model Basic Adjusted B: beta; CRL: crown-r els. Basic model: by the rernal age, educationa	Lowest deprivationquartilen = 2268 β (95% CI)0.05 (-0.26 ; 0.35)0.07 (-0.30 ; 0.43)rump length. Values arene use of SD scores it is1 level, smoking, alcohowhood deprivation as a	$quartile$ $n = 2118$ $\beta (95\% CI)$ $0.10 (-0.17 ; 0.37)$ $0.09 (-0.19 ; 0.38)$ regression coefficients automatically adjusted automatica	quartile n = 2081 β (95% CI) -0.05 (-0.31; 0.21) -0.06 (-0.33; 0.21) s with the 95% CI of t d for gestational age. I ement use, ethnicity, p	quartile n = 2131 Reference Reference he data in SD-score and Fully adjusted model: b parity, pre-pregnancy bo	$\beta (95\% \text{ CI})$ -0.01 (-0.09 ; 0.06) -0.02 (-0.11 ; 0.08) d are based on linear asic model and additional additional additional and additional and additional ad	0.73 0.75 onally tal sex.
35 86 37 88	n CRL 434 Abbreviations: f regression mode adjusted for mat p-for trend analy	Model Basic Adjusted 3: beta; CRL: crown-r els. Basic model: by the rernal age, educationa ysis with the neighbou	Lowest deprivationquartilen = 2268β (95% CI)0.05 (-0.26 ; 0.35)0.07 (-0.30 ; 0.43)rump length. Values arene use of SD scores it is1 level, smoking, alcohourhood deprivation as a	$quartile$ $n = 2118$ $\beta (95\% CI)$ $0.10 (-0.17 ; 0.37)$ $0.09 (-0.19 ; 0.38)$ regression coefficients automatically adjusted of use, folic acid supple continuous measure. ¹	quartile n = 2081 β (95% CI) -0.05 (-0.31; 0.21) -0.06 (-0.33; 0.21) s with the 95% CI of t d for gestational age. I ement use, ethnicity, p Differences between g	quartile n = 2131 Reference Reference the data in SD-score and Fully adjusted model: b parity, pre-pregnancy bo groups were evaluated p	β (95% CI) -0.01 (-0.09 ; 0.06) -0.02 (-0.11 ; 0.08) d are based on linear pasic model and additional ody mass index and fe using one-way-ANOV	0.73 0.75 onally tal sex. VA-tests

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

1

91

Model Second deprivation Third deprivation **Highest deprivation** Trend **Study population** Lowest deprivation quartile quartile quartile quartile **n** = 7710 n = 2268n = 2118n = 2081n = 2131 β (95% CI) β (95% CI) p-value for trend β (95% CI) β (95% CI) Early pregnancy CRL 0.05(-0.26; 0.35)-0.01 (-0.09 ; 0.06) 0.73 Basic 0.10 (-0.17; 0.37) -0.05 (-0.31; 0.21) Reference Adjusted 0.07(-0.30; 0.43)0.09 (-0.19; 0.38) -0.06(-0.33; 0.21)Reference -0.02 (-0.11; 0.08) 0.75 HC Basic -0.38 (-0.71 ; -0.04) -0.37(-0.69; -0.06)-0.07(-0.37; 0.23)Reference 0.12 (0.04 ; 0.21) 0.004 0.09(-0.01; 0.19)0.09 Adjusted -0.22(-0.60; 0.17)-0.32 (-0.65 ; 0.01) -0.06(-0.36; 0.25)Reference FL Basic -0.19(-0.53; 0.15)-0.33 (-0.63 ; -0.03) -0.11(-0.40; 0.18)Reference 0.08 (-0.002 ; 0.16) 0.06 0.07 -0.13 (-0.44 ; 0.18) 0.10 (-0.01 ; 0.20) Adjusted -0.24 (-0.66; 0.18) -0.36 (-0.69 ; -0.03) Reference Mid pregnancy HC -0.07 (-0.13 ; -0.001) 0.02 Basic -0.05 (-0.12; 0.01) -0.03 (-0.10; 0.04) Reference 0.02 (0.003 ; 0.04) Reference Adjusted -0.02 (-0.10; 0.05) -0.03 (-0.09 ; 0.04) -0.02(-0.09; 0.05)0.01 (-0.01 ; 0.03) 0.40 FL Basic 0.10 (0.045; 0.17) 0.10 (0.03 ; 0.16) 0.08 (0.01 ; 0.15) Reference -0.02 (-0.05 ; -0.01) 0.001 0.02(-0.05; 0.10)-0.01 (-0.03 ; 0.01) 0.42 Adjusted 0.05(-0.03; 0.11)0.04 (-0.03 ; 0.11) Reference AC Basic -0.12(-0.18; -0.05)-0.13 (-0.20 ; -0.07) -0.07 (-0.13 ; -0.01) Reference 0.04 (0.02; 0.05)< 0.001

Supplemental Table 6. Associations between the neighbourhood status score and fetal growth in a selected cohort of non-SGA pregnancies.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		Adjusted	-0.09 (-0.16 ; -0.01)	-0.11 (-0.18 ; -0.04)	-0.06 (-0.12 ; 0.01)	Reference	0.03 (0.01 ; 0.05)	0.01
	EFW	Basic	-0.03 (-0.08 ; 0.05)	-0.03 (-0.09 ; 0.04)	0.001 (-0.07 ; 0.06)	Reference	0.01 (-0.01 ; 0.02)	0.77
		Adjusted	-0.04 (-0.12 ; 0.03)	-0.04 (-0.11 ; 0.03)	-0.01 (-0.08 ; 0.05)	Reference	0.01 (-0.01 ; 0.03)	0.19
-	Late pregnancy		•					
	HC	Basic	-0.22 (-0.29 ; -0.16)	-0.24 (-0.31 ; -0.18)	-0.09 (-0.16 ; -0.03)	Reference	0.06 (0.04 ; 0.08)	<0.001
		Adjusted	-0.13 (-0.20 ; -0.06)	-0.18 (-0.24 ; -0.11)	-0.06 (-0.12 ; -0.001)	Reference	0.03 (0.01 ; 0.05)	<0.001
	FL	Basic	-0.02 (-0.09 ; 0.04)	0.01 (-0.05 ; 0.07)	0.01 (-0.05 ; 0.08)	Reference	0.001 (-0.02 ; 0.02)	0.90
		Adjusted	-0.08 (-0.15 ; -0.01)	-0.01 (-0.08 ; 0.05)	-0.01 (-0.07 ; 0.06)	Reference	0.01 (-0.01 ; 0.03)	0.20
	AC	Basic	-0.20 (-0.27 ; -0.14)	-0.18 (-0.24 ; -0.12)	-0.07 (-0.13 ; -0.01)	Reference	0.06 (0.04 ; 0.07)	<0.001
		Adjusted	-0.15 (-0.22 ; -0.08)	-0.13 (-0.19 ; -0.06)	-0.05 (-0.12 ; 0.01)	Reference	0.04 (0.02 ; 0.06)	0.02
	EFW	Basic	-0.18 (-0.20 ; -0.12)	-0.14 (-0.20 ; -0.08)	-0.05 (-0.11 ; 0.01)	Reference	0.05 (0.03 ; 0.06)	<0.001
		Adjusted	-0.16 (-0.23 ; -0.08)	-0.11 (-0.17 ; -0.04)	-0.05 (-0.11 ; 0.02)	Reference	0.04 (0.02 ; 0.06)	<0.001

Abbreviations: SGA: small for gestational age, HC: head circumference, FL: femur length, AC: abdominal circumference, EFW: estimated fetal weight.
Values are regression coefficients with the 95% CI of the data in SD-score and are based on linear regression models. Basic model: by the use of SD scores it
is automatically adjusted for gestational age. Fully adjusted model: basic model and additionally adjusted for maternal age, educational level, smoking, alcohol
use, folic acid supplement use, ethnicity, parity, pre-pregnancy body mass index and fetal sex. p-for trend analysis with the neighbourhood deprivation as a
continuous measure.

Supplemental Table 7. Observed and expected values of covariates.

	Observed	Even a stad
	Observed	Expected
Age at intake (years)	29.6 (5.3)	29.6 (5.3)
Prepregnancy body mass index (kg/m ²)	22.8 (18.4 - 32.2)	22.6 (18.6 – 32
Parity (nulliparous)	4796 (55.7)	4739 (55.7)
Fetal sex (boy)	4347 (50.4)	4346 (50.4)
Educational level		
Lower/no education	1101 (12.8)	916 (11.7)
Middle	4060 (47.1)	3638 (46.4)
High	3456 (40.1)	3282 (41.9)
Ethnicity		
Dutch and Western	4967 (57.6)	4793 (58.8)
Turkish and Moroccan	1464 (17.0)	1330 (16.3)
African	1178 (13.7)	1076 (13.2)
Asian	1008 (11.7)	946 (11.6)
Smoking		
Never smoked during pregnancy	6256 (72.6)	5472 (72.8)
Smoked until pregnancy was known	735 (8.5)	644 (8.6)
Continued smoking in pregnancy	1626 (18.9)	1403 (18.7)
Alcohol		
Never alcohol consumption in pregnancy	4351 (50.5)	3692 (49.8)
Alcohol consumption until pregnancy was known	1149 (13.3)	999 (13.5)
Continued alcohol consumption in pregnancy	3117 (36.2)	2728 (36.8)
Folic acid supplement use		
None	2751 (31.9)	1877 (29.4)
Start in first 10 weeks of pregnancy	2661 (30.9)	1981 (31.1)
Start preconceptional	3205 (37.2)	2518 (39.5)

displayed as valid percentages.

BMJ Open

Supplemental 1. Multiple imputations for missing data of covariates.

102 We imputed missing data of the covariates using multiple imputations (17). The percentages of

103 missing values for the confounders within the population for analysis were lower than 20%. For the

104 multiple imputation, we the Markov chain Monte Carlo approach. In the imputation model, we

- 105 included all confounders, plus maternal age, ethnicity, parity and prepregnancy BMI. Furthermore, we
- additionally added the studied determinants and outcomes in the imputation model as prediction
- 107 variables only; they were not imputed themselves. Five imputed datasets were created and analyzed

to beet terien only

108 together.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

110 Supplemental 2. First trimester and fetal growth, measurement guidelines.

CRL: crown-rump length (39)

113 CRL is measured as the largest dimension of embryo, excluding the yolk sac and extremities. A

114 midline sagittal section of the whole embryo or fetus should be obtained, ideally with the embryo or

- fetus oriented horizontally on the screen. An image should be magnified sufficiently to fill most of the
- 116 width of the ultrasound screen, so that the measurement line between crown and rump is at about 90°
- to the ultrasound beam.

- **118** <u>Caliper placement</u>: measure the fetus in a neutral position (i.e. neither flexed nor hyperextended). The
- 119 end points of crown and rump should be defined clearly.

123 HC: Head circumference (40)

124 As described for the BPD, ensuring that the circumference placement markers correspond to the

technique described on the reference chart.

<u>Caliper placement</u>: If the ultrasound equipment has ellipse measurement capacity, then the HC can be
 measured directly by placing the ellipse around the outside of the skull bone echoes.

1									
2 3	129	AC: abdominal circumference (40)							
4 5	130	- Transverse section of the fetal abdomen (as circular as possible);							
6	131	- umbilical vein at the level of the portal sinus;							
/ 8	132	- stomach bubble visualized;							
9 10	133	- kidneys should not be visible.							
10	134	Caliper placement: The AC is measured at the outer surface of the skin line, either directly with ellipse							
12 13	135	calipers or calculated from linear measurements made perpendicular to each other, usually the							
14	136	anteroposterior abdominal diameter and transverse abdominal diameter.							
16 17 18 19 20 21 22 23 24 25 26 27 28	137 138	AC Stomach 1 Spine Umbilical vein Umbilical vein							
29 30	139	FL: femur length (40)							
31	140	The FL is imaged optimally with both ends of the ossified metaphysis clearly visible. The longest							
32 33	141	axis of the ossified diaphysis is measured. The same technique as that used to establish the reference							
34 35	142	chart should be used with regard to the angle between the femur and the insonating ultrasound beams.							
36	143	An angle of insonation between 45° and 90° is typical.							
37 38	144	Caliper placement: Each caliper is placed at the ends of the ossified diaphysis without including the							
39 40	145	distal femoral epiphysis if it is visible							
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	146 147	• FL • J · · · · · · · · · · · · · · · · · · ·							

Reporting checklist for cohort study.

Based on the STROBE cohort guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below. Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation. Upload your completed checklist as an extra file when you submit to a journal. In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them as: von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Page Reporting Item Number

Title and abstract

Title

<u>#1a</u> Indicate the study's design with a commonly used term in the
 1
 title or the abstract

1 2	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	2
3 4 5			of what was done and what was found	
6 7 8	Introduction			
9 10 11	Background /	<u>#2</u>	Explain the scientific background and rationale for the	4
12 13	rationale		investigation being reported	
14 15 16	Objectives	<u>#3</u>	State specific objectives, including any prespecified	4
17 18 19			hypotheses	
20 21 22	Methods			
23 24 25	Study design	<u>#4</u>	Present key elements of study design early in the paper	4, 5
26 27 28	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	4, 5
29 30			periods of recruitment, exposure, follow-up, and data	
31 32 33			collection	
34 35	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	4, 5
36 37 38			selection of participants. Describe methods of follow-up.	
39 40	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and number of	4 ,5
41 42 43			exposed and unexposed	
44 45 46	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	5, 6
47 48			confounders, and effect modifiers. Give diagnostic criteria, if	
49 50 51			applicable	
52 53	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details	4, 5, 6
55 56	measurement		of methods of assessment (measurement). Describe	
57 58			comparability of assessment methods if there is more than	
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1			one group. Give information separately for for exposed and	
2 3			unexposed groups if applicable.	
4 5 6 7	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	5, 6, 8
8 9 10	Study size	<u>#10</u>	Explain how the study size was arrived at	4, 5
11 12 13	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	7, 8
14 15	variables		analyses. If applicable, describe which groupings were	
16 17			chosen, and why	
18 19			O,	
20 21	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to	
22 23	methods		control for confounding	
24 25	6, 8			
26 27				
28 29	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	7, 8
30 31 22	methods		interactions	
33 34	Statistical	<u>#12c</u>	Explain how missing data were addressed	7, 8
35 36	methods			
37 38				
39 40	Statistical	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	7, 8
41 42	methods			
43 44	Statistical	<u>#12e</u>	Describe any sensitivity analyses	
45 46 47	methods			
47				
49 50 51	7, 8			
52 53	Results			
54 55				
56 57	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	9
58 59			numbers potentially eligible, examined for eligibility,	
60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 48 of 50

BMJ Open

1			confirmed eligible, included in the study, completing follow-	
2 3			up, and analysed. Give information separately for for	
4 5 6 7			exposed and unexposed groups if applicable.	
7 8 9 10	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	9
11 12 13	Participants	<u>#13c</u>	Consider use of a flow diagram	
14 15 16	9			
17 18	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	9
19 20			clinical, social) and information on exposures and potential	
21 22 22			confounders. Give information separately for exposed and	
23 24 25 26			unexposed groups if applicable.	
27 28	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each	
29 30 31			variable of interest	
32 33 34	9			
35 36 37	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount)	
38 39 40	9			
41 42 43	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures	
44 45			over time. Give information separately for exposed and	
46 47 48			unexposed groups if applicable.	
49 50 51	9, 10			
52 53	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-	9, 10
54 55 56 57			adjusted estimates and their precision (eg, 95% confidence	
58 59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1			interval). Make clear which confounders were adjusted for	
2 3 4			and why they were included	
5 6 7	Main results	<u>#16b</u>	Report category boundaries when continuous variables were	9, 10
8 9			categorized	
10 11 12	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into	
13 14 15			absolute risk for a meaningful time period	
16 17 18	9, 10			
19 20	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of subgroups and	10, 11
21 22 23			interactions, and sensitivity analyses	
24 25 26 27	Discussion			
28 29 30	Key results	<u>#18</u>	Summarise key results with reference to study objectives	11
31 32	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources	12, 13
33 34			of potential bias or imprecision. Discuss both direction and	
36 37			magnitude of any potential bias.	
38 39 40	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	13, 14
40 41 42			limitations, multiplicity of analyses, results from similar	
43 44			studies, and other relevant evidence.	
45 46 47	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	13
48 49 50			results	
50 51 52 53 54 55	Other Information			
56 57 58 59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	15
3 4			present study and, if applicable, for the original study on	
5 6 7			which the present article is based	
8 9 10	The STROBE	checklist is o	distributed under the terms of the Creative Commons Attribution Lice	ense
11 12	CC-BY. This cl	hecklist was	completed on 14. January 2021 using https://www.goodreports.org	<u>/</u> , a tool
13 14	made by the <u>E</u>	QUATOR N	etwork in collaboration with Penelope.ai	
15 16 17 18 19 20 21 22 23 24 25 26 27 28 90 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58				
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

The association between neighbourhood deprivation, fetal growth, small-for-gestational age and preterm birth: a population-based prospective cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-049075.R1
Article Type:	Original research
Date Submitted by the Author:	25-Sep-2021
Complete List of Authors:	Gootjes, Dionne; Erasmus MC, Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine; Erasmus MC, Generation R Study Group Posthumus, Anke G; Erasmus MC, Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine; Erasmus MC, Generation R Study Group Jaddoe, Vincent; Erasmus MC, Department of Paediatrics; Erasmus MC, Generation R Study Group Steegers, E.A.P.; Erasmus MC, Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine; Erasmus MC, Generation R Study Group
Primary Subject Heading :	Obstetrics and gynaecology
Secondary Subject Heading:	Epidemiology, Obstetrics and gynaecology, Public health
Keywords:	SOCIAL MEDICINE, PUBLIC HEALTH, PREVENTIVE MEDICINE, Ultrasonography < OBSTETRICS, Prenatal diagnosis < OBSTETRICS, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3		The approximation between neighbourhood denvication fotal growth small for
4	T	The association between heighbourhood deprivation, letal growth, sman-lor-
5 6	2	gestational age and preterm birth: a population-based prospective cohort
7	3	study.
8 9	4	D.V. Gootjes ^{1,3} , A.G. Posthumus ^{1,3} , V.W.V Jaddoe ^{2,3} , E.A.P. Steegers ^{1,3}
10		
11	5	¹ Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine,
13	6	² Department of Paediatrics, ³ Generation R Study Group, all: Erasmus University Medical Centre,
14 15	7	Rotterdam, The Netherlands.
16	8	
17 18	9	
19	10	The authors declare no conflict of interest.
20 21		
22	11	
23	12	Corresponding author
24 25	13	Correspondence to Dionne V. Gootjes
26	14	Wytemaweg 80, 3015 CN Rotterdam
27 28	15	d.gootjes@erasmusmc.nl
29 20	16	Telephone: +3110 703 04 52 +316 307 252 47
30 31	17	
32	18	
33 34	19	Key words: fetal, neighborhood/place, deprivation, pregnancy, socio-economic
35		
36 37	20	Word count: 4362
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 ⊿o		
50		
51 52		
52 53		
54		
55 56		
57		
58 59		
60		

Page 3 of 59

BMJ Open

1		
2 3	21	Abstract
4 5 6	22	Objectives: To study the associations between neighbourhood deprivation and fetal growth, including
7 8	23	growth in the first trimester, and adverse pregnancy outcomes.
9 10 11	24	Design: Prospective cohort study.
12 13 14	25	Setting: The Netherlands, Rotterdam.
15 16 17	26	Participants: 8617 live singleton births from the Generation R cohort study.
18 19 20	27	Exposition: Living in a deprived neighbourhood.
21 22 23	28	Main outcome measures: Fetal growth trajectories of head circumference, weight and length.
24 25 26	29	Secondary outcomes measures: Small-for-gestational age (SGA) and preterm birth (PTB)).
27 28 29	30	Results: Neighbourhood deprivation was not associated with first trimester growth. However, a higher
30 21	31	neighbourhood status score (less deprivation), was associated with increased fetal growth in the
32 33	32	second and third trimester (e.g. estimated fetal weight (adjusted regression coefficient 0.04 (95% CI
34 35	33	0.02 ; 0.06). Less deprivation was also associated with a decreased odd of SGA (aOR 0.91 (95% CI
36 37	34	0.86 ; 0.97, p-value 0.01)) and PTB (aOR 0.89 (95% CI 0.82 ; 0.96, p-value 0.01)).
38 39 40	35	Conclusions: We found an association between neighbourhood deprivation and fetal growth in the
40 41 42	36	second and third trimester pregnancy, but not with first trimester growth. Less neighbourhood
43 44	37	deprivation is associated with lower odds of adverse pregnancy outcomes. The associations remained
45 46	38	after adjustment for individual level risk factors. This supports the hypothesis that living in a deprived
47 48	39	neighbourhood acts as an independent risk factor for fetal growth and adverse pregnancy outcomes,
49 50 51 52 53	40	above and beyond individual risk factors.
54 55 56		

41 Article Summary

42 Strengths and limitations of this study

- This study is performed within in a large, multi-ethnic cohort.
 - The Generation R study population is not completely representative of the Dutch population.
- Associations were adjusted for a wide range of relevant individual level risk factors, which
 - allows the isolation of a neighbourhood specific effect best as possible.

or of the text of text

1

2
3
Δ
5
2
6
7
8
9
10
11
11
12
13
14
15
16
17
10
10
19
20
21
22
23
21
24
25
26
27
28
29
20
21
31
32
33
34
35
36
20
3/
38
39
40
41
42
<u>4</u> २
7.7 //
44
45
46
47
48
49
50
50
51
52
53
54
55
56
50
5/
58
59

60

Introduction

A low individual socioeconomic status (SES) is associated with adverse health outcomes.(1)
Additionally, there is accumulating evidence that the socioeconomic status of the neighbourhood in
which a person lives is also associated with health outcomes.(2) This is also the case for pregnancy:
both individual SES and living in a deprived neighbourhood are acknowledged risk factors for adverse
pregnancy outcomes.(3-5)

Recent evidence shows that other factors, such as maternal nutrition and lifestyle, already 53 affect pregnancy from the first trimester of pregnancy onwards.(6-9) Gaining a better understanding of 54 55 modifiable factors that influence pregnancy from the earliest phase onwards is important. First, since 56 impaired development during the first trimester of pregnancy is associated with adverse pregnancy 57 outcomes.(6) Second, in line with the DOHaD-paradigm (Developmental Origin of Health and Disease), impaired development in pregnancy and adverse pregnancy outcomes are associated with an 58 increased risk of non-communicable diseases in adult life like cardiovascular disease.(10) If impaired 59 early fetal development could be prevented or recognized, this would enable the prevention of both 60 61 short-term and long-term adverse outcomes.

Living in a deprived neighbourhood is known to be a risk factor for adverse health outcomes, 62 above and beyond the association with individual risk factors such as inadequate nutrition and lifestyle 63 behaviors. Living in a deprived neighbourhood may lead to exposure to a suboptimal environment, 64 with higher rates of air pollution, less access to facilities such as a green environment to walk in, less 65 health care facilities close, and little possibility to purchase healthy food nearby. Lastly, living in a 66 deprived neighbourhood is acknowledged as a source of chronic stress, which is associated with 67 68 increased cortisol levels, and thereby acts as an independent risk factor for adverse health outcomes.(11, 12) It is however unknown whether living in a deprived neighbourhood is also 69 70 associated with adverse pregnancy outcomes and (early) fetal development. Therefore, the aim of this study was to investigate the associations between neighbourhood deprivation, fetal growth including 71 72 growth in the first trimester, and adverse pregnancy outcomes.

73 Methods

74 Design

This study was embedded in the Generation R (Rotterdam) Study, a population-based prospective cohort study.(13) Pregnant women living in the area of Rotterdam, the Netherlands, with an expected delivery date between April 2002 and January 2006, were invited to participate in this study. The 9778 mothers enrolled in the study gave birth to 9749 live born children. Of these mothers, 91% (n=8879) were prenatally enrolled in the study, giving birth to 8976 children. Our aim was to investigate growth trajectories and outcomes of ongoing singleton pregnancies. We excluded the following pregnancies: twin pregnancies, terminated pregnancies, intra-uterine deaths and pregnancies without information on area of residence or ultrasound data (Figure 1). The study protocol was approved by the Medical Ethical Committee of Erasmus Medical Centre, Rotterdam (MEC 198.782/ 2001/31). Written informed consent was obtained from all participants. Patient and public involvement statement This research was done without patient involvement. Patients were not invited to comment on

the study design and were not consulted to develop patient relevant outcomes or interpret the results.
Patients were not invited to contribute to the writing or editing of this document for readability or

89 accuracy.

90 Materials

91 Neighbourhood deprivation

We used area-based status scores as a proxy for neighbourhood deprivation, which were made available by the Netherlands Institute for Social Research.(14) The scores are matched on four-digit postcodes and are based on mean household income, proportion of population with low income, proportion of population with low educational level, and proportion of population without paid work. The scores are determined every 4 years, and a more negative score represents a lower socioeconomic status. The status scores used in this study were calculated in 2002 and 2006. The correlations between the status scores in 2002 and 2006 were very high: r = 0.97. To assign the status scores in the best possible way, pregnancies in 2002 and 2003 were allocated with the status score of 2002. For

BMJ Open

pregnancies in 2005 and 2006, the status score of 2006 was assigned. For pregnancies in 2004, the
average score of 2002 and 2006 was assigned.

8	102	Pregnancy dating
9	103	Gestational age is the most important determinant of fetal growth, so precise dating of the
10		
12	104	pregnancy is important. It has long been assumed that embryonic growth in the first trimester of
13 14	105	pregnancy is universal. This is the rationale behind the current practice of pregnancy dating using the
15 16	106	crown-rump length (CRL), if the gestational age is less than 12 weeks and 5 days and the CRL
17 18 19	107	measurement is smaller than 65 mm.(15) However, study findings suggest that first trimester growth is
20 21	108	not uniform.(16) Therefore, in our analyses with CRL measurements as the outcome of interest,
22 22 23	109	pregnancy dating was not based on the CRL, but on the known and reliable last menstrual period
24 25	110	(LMP) in case of a regular menstrual cycle (28 ± 4 days).(6) All other cases were excluded for that
26 27	111	particular analyses of CRL. The LMP was obtained from the referral letter and confirmed at
28 29	112	enrolment. Additional information on regularity and cycle duration was obtained through
30 31	113	questionnaires. When the gestational age was more than 12 weeks and 5 days, or the biparietal
32 33 34	114	diameter (BPD) was larger than 23 mm, pregnancy dating was performed using the BPD.
35 36	115	Growth parameters and adverse pregnancy outcomes
35 36 37	115 116	Growth parameters and adverse pregnancy outcomes The aim of the study was to focus on fetal outcomes, in terms of growth and development. The
35 36 37 38 39	115 116 117	Growth parameters and adverse pregnancy outcomes The aim of the study was to focus on fetal outcomes, in terms of growth and development. The selected outcomes were carefully chosen from the 'Big 4 conditions', which are specifically defined
35 36 37 38 39 40 41 42	115 116 117 118	Growth parameters and adverse pregnancy outcomes The aim of the study was to focus on fetal outcomes, in terms of growth and development. The selected outcomes were carefully chosen from the 'Big 4 conditions', which are specifically defined conditions that precede perinatal mortality in 85 % of all cases, namely: small for gestational age
35 36 37 38 39 40 41 42 43 44	115 116 117 118 119	Growth parameters and adverse pregnancy outcomes The aim of the study was to focus on fetal outcomes, in terms of growth and development. The selected outcomes were carefully chosen from the 'Big 4 conditions', which are specifically defined conditions that precede perinatal mortality in 85 % of all cases, namely: small for gestational age (birth weight < 10th percentile for gestational age), preterm birth (birth < 37 weeks of gestation),
35 36 37 38 39 40 41 42 43 44 45 46	115 116 117 118 119 120	Growth parameters and adverse pregnancy outcomes The aim of the study was to focus on fetal outcomes, in terms of growth and development. The selected outcomes were carefully chosen from the 'Big 4 conditions', which are specifically defined conditions that precede perinatal mortality in 85 % of all cases, namely: small for gestational age (birth weight < 10th percentile for gestational age), preterm birth (birth < 37 weeks of gestation), congenital disorders, and/or low Apgar score (<7 after 5 min).(17, 18) Due to the low numbers of
35 36 37 38 39 40 41 42 43 44 45 46 47 48	115 116 117 118 119 120 121	Growth parameters and adverse pregnancy outcomes The aim of the study was to focus on fetal outcomes, in terms of growth and development. The selected outcomes were carefully chosen from the 'Big 4 conditions', which are specifically defined conditions that precede perinatal mortality in 85 % of all cases, namely: small for gestational age (birth weight < 10th percentile for gestational age), preterm birth (birth < 37 weeks of gestation), congenital disorders, and/or low Apgar score (<7 after 5 min).(17, 18) Due to the low numbers of cases with congenital disorders within the Generation R population, and susceptibility for Apgar score
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	115 116 117 118 119 120 121 122	Growth parameters and adverse pregnancy outcomes The aim of the study was to focus on fetal outcomes, in terms of growth and development. The selected outcomes were carefully chosen from the 'Big 4 conditions', which are specifically defined conditions that precede perinatal mortality in 85 % of all cases, namely: small for gestational age (birth weight < 10th percentile for gestational age), preterm birth (birth < 37 weeks of gestation), congenital disorders, and/or low Apgar score (<7 after 5 min).(17, 18) Due to the low numbers of cases with congenital disorders within the Generation R population, and susceptibility for Apgar score to be affected by the course of delivery which may confound the effect of neighbourhood deprivation
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	115 116 117 118 119 120 121 122 123	Growth parameters and adverse pregnancy outcomes The aim of the study was to focus on fetal outcomes, in terms of growth and development. The selected outcomes were carefully chosen from the 'Big 4 conditions', which are specifically defined conditions that precede perinatal mortality in 85 % of all cases, namely: small for gestational age (birth weight < 10th percentile for gestational age), preterm birth (birth < 37 weeks of gestation), congenital disorders, and/or low Apgar score (<7 after 5 min).(17, 18) Due to the low numbers of cases with congenital disorders within the Generation R population, and susceptibility for Apgar score to be affected by the course of delivery which may confound the effect of neighbourhood deprivation during pregnancy, we selected the other 2 major morbidity factors as outcome for this study.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54	115 116 117 118 119 120 121 122 123 124	Growth parameters and adverse pregnancy outcomes The aim of the study was to focus on fetal outcomes, in terms of growth and development. The selected outcomes were carefully chosen from the 'Big 4 conditions', which are specifically defined conditions that precede perinatal mortality in 85 % of all cases, namely: small for gestational age (birth weight < 10th percentile for gestational age), preterm birth (birth < 37 weeks of gestation), congenital disorders, and/or low Apgar score (<7 after 5 min).(17, 18) Due to the low numbers of cases with congenital disorders within the Generation R population, and susceptibility for Apgar score to be affected by the course of delivery which may confound the effect of neighbourhood deprivation during pregnancy, we selected the other 2 major morbidity factors as outcome for this study. Ultrasound assessments were carried out during visits to one of the research centres, and took
35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56	115 116 117 118 119 120 121 122 123 124 125	Growth parameters and adverse pregnancy outcomes The aim of the study was to focus on fetal outcomes, in terms of growth and development. The selected outcomes were carefully chosen from the 'Big 4 conditions', which are specifically defined conditions that precede perinatal mortality in 85 % of all cases, namely: small for gestational age (birth weight < 10th percentile for gestational age), preterm birth (birth < 37 weeks of gestation), congenital disorders, and/or low Apgar score (<7 after 5 min).(17, 18) Due to the low numbers of cases with congenital disorders within the Generation R population, and susceptibility for Apgar score to be affected by the course of delivery which may confound the effect of neighbourhood deprivation during pregnancy, we selected the other 2 major morbidity factors as outcome for this study. Ultrasound assessments were carried out during visits to one of the research centres, and took place in early- (median 13.2 weeks of gestation), mid- (median 20.5 weeks of gestation) and late
35 36 37 38 39 40 41 42 43 44 45 467 48 50 51 52 54 55 56 57 58	115 116 117 118 119 120 121 122 123 124 125 126	Growth parameters and adverse pregnancy outcomes The aim of the study was to focus on fetal outcomes, in terms of growth and development. The selected outcomes were carefully chosen from the 'Big 4 conditions', which are specifically defined conditions that precede perinatal mortality in 85 % of all cases, namely: small for gestational age (birth weight < 10th percentile for gestational age), preterm birth (birth < 37 weeks of gestation), congenital disorders, and/or low Apgar score (<7 after 5 min).(17, 18) Due to the low numbers of cases with congenital disorders within the Generation R population, and susceptibility for Apgar score to be affected by the course of delivery which may confound the effect of neighbourhood deprivation during pregnancy, we selected the other 2 major morbidity factors as outcome for this study. Ultrasound assessments were carried out during visits to one of the research centres, and took place in early- (median 13.2 weeks of gestation), mid- (median 20.5 weeks of gestation) and late (median 30.3 weeks of gestation) pregnancy. Growth parameters included the CRL, head

and birthweight. EFW was calculated using the Hadlock formula with parameters AC, HC and FL (in cm): EFW = 10^(1.326 - 0.00326*AC*FL + 0.0107*HC + 0.0438*AC + 0.158*FL) (Supplemental 1. First trimester and fetal growth, measurement guidelines).(19) Gestational age adjusted standard deviation scores (SDS) were constructed for all growth measurements.(20) The SDS for birthweight were constructed using growth standards from Niklasson et al., which were adjusted for gestational age at the time of birth and sex of the neonate.(21) Measurements were performed using uniform ultrasound procedures and were executed with the Aloka® model SSD-1700 (Tokyo, Japan) or the ATL-Philips Model HDI 5000 (Seattle, WA, USA). Reproducibility of these measurements was assessed and described previously.(22, 23)

Small size for gestational age (SGA) at birth was defined as a sex and gestational age adjusted
birth weight below the 10th percentile (<-1.40 SDS) in the study cohort. Preterm birth (PTB) was
defined as a gestational age of <37 weeks at delivery.

Covariates

Information on maternal age, education level, ethnicity, and maternal folic acid supplement
use was obtained at enrolment.(13) All study materials such as questionnaires, newsletters, website,
and information folders are available in three languages (Dutch, English, and Turkish). Furthermore,
staff from different ethnic backgrounds was available and verbally translated these materials into
Arabic, French and Portuguese. As such, the study staff was able to communicate with all participants.

Ethnicity of participating mothers was defined according to the classification of Statistics Netherlands, and was categorized into Dutch and other Western (European, American, and Oceanian); Turkish and Moroccan; African (Cape Verdean, other African, Surinamese-Creole, and Dutch Antillean); and Asian (Indonesian, other Asian, and Surinamese-Hindu) according to the largest ethnic groups in our study population and similarities in skin colour and cultural background. In sensitivity analyses, the following classification was used: Dutch, European, Turkish, Moroccan, African, Dutch Antillean, Cape Verdean, Indonesian, Surinamese-Creole, Surinamese-Hindu, Surinameseunspecified, American Western, American non Western, Asia Western, Asia non Western and Oceanian.(13) Information about smoking, alcohol consumption, and caffeine intake was assessed by

BMJ Open

questionnaires in each trimester. Maternal pre-pregnancy body mass index was calculated from the reported height (cm) and weight (kg) in the questionnaires. Information about pregnancy complications, mode of delivery and childhood sex, gestational age, and weight and length at birth was obtained from medical records.(20, 21) Complications in a previous pregnancy were defined as: gestational diabetes, pre-eclampsia, thrombosis in arm or leg, pulmonary embolism, solutio placentae, premature rupture of membranes, contractions before 37 weeks of pregnancy or pregnancy induced hypertension. We selected potential confounding variables based on their associations with the outcomes of interest, in order to isolate a neighbourhood specific effect.

Statistical analysis

First, we examined differences between quartiles of neighbourhood deprivation for maternal characteristics, first trimester growth and fetal growth and adverse pregnancy outcomes. Second, we examined the associations of neighbourhood deprivation with fetal growth patterns using unbalanced repeated measurement regression models.(24) We included neighbourhood deprivation in these models as intercept and as interaction term with gestational age to estimate fetal growth rates over time.(24) Third, we assessed the associations of neighbourhood deprivation with the risks of adverse pregnancy outcomes using multiple logistic regression models. In the basic model, the crude association between neighbourhood deprivation and the outcomes of interest were investigated. The adjusted model was adjusted for maternal age, maternal educational level, smoking, alcohol use, folic acid supplement use, ethnicity, parity, pre-pregnancy BMI and fetal sex. We tested interaction between neighbourhood deprivation and complications in previous pregnancy in the regression models. Fourth, we examined the associations of neighbourhood deprivation with fetal growth in gestational-ageadjusted SDS in each pregnancy period using linear regression models with the same adjustment models. We performed several sensitivity analyses: in the first, we performed multilevel regression analysis in order to adjust for potential clustering between the different neighbourhoods. In the second, we repeated the analyses with all 1614 available CRL measurements, compared to the analyses with only CRL measurements below the 12 weeks of gestational age (GA).(6, 22) A third sensitivity analysis was performed to determine to which extent the inclusion of pregnancies with an impaired fetal development due to placental dysfunction influenced our results. Therefore we performed

analyses excluding SGA born babies. Fourth, analyses were additionally adjusted for the household
income. Also, we repeated the analyses with the different classification of ethnicity, described in the
'Covariates' section. Lastly, we checked whether the presence of maternal hypertensive disorders
affected the analyses on SGA.

Our main outcome was the fetal growth, in terms of head circumference, length and weight. Post-hoc power for 0.1 SD difference in fetal growth with an alpha of 0.05 for a study group of 8000 (this study population 8617) participants is 99.4%. We used multiple imputation for missing values of covariates according to Markov Chain Monte Carlo method (details given in Supplemental 2).(25) The percentage of missing data was <10%, except for smoking (12.7%), alcohol use (13.8%) and folic acid supplement use (25.9%). Five imputed datasets were created and pooled for analyses. A sensitivity analysis was performed to observe differences in observed and expected values of confounders before and after imputation. Tests for trend were based on regression models with neighbourhood deprivation as a continuous variable. We checked whether the regression models were linear using scatterplots of the dependent variable plotted against the independent variable. (26) Residuals were normally distributed as assessed by visual inspection of a normal probability plot. We tested for multicollinearity using the tolerance statistic. As tolerance was >0.20 for all variables in our models, there were no problems of multicollinearity. The repeated measurement analysis was performed using the Statistical Analysis System version 9.3 (SAS, Institute Inc., Cary, NC, USA), including the Proc Mixed module for unbalanced repeated measurements. All other analyses were performed using the Statistical Package of Social Sciences version 21.0 for Windows (IBM Corp., Armonk, NY, USA).

Results

A total of 8976 pregnancies were included in the Generation R study. In total, we included 8617 pregnancies for analyses (**Figure 1**). **Table 1** depicts the baseline characteristics of both the total 8617 study population and the population stratified according to the quartiles of neighbourhood deprivation. 878 Women in the total study population were on average 29.6 years old with a median BMI of 22.8 879 kg/m². Stratification of the population in deprivation quartiles revealed that 2170 women (25.2%)

Page 11 of 59

BMJ Open

lived in a neighbourhood with the most deprivation, i.e. lowest status score, and 2149 (24.9%) lived in the least deprived neighbourhoods, i.e. the highest status score. When comparing women in the most deprived neighbourhoods to those in the least deprived neighbourhoods, less women were highly educated (23.7% vs. 62.8% (p<0.001)), more women continued smoking in pregnancy (22.3% vs. 11.9% (p<0.001)) and less women used any folic acid supplements (20.0% vs. 49.7% respectively (p<0.001)) (**Table 1**). In **Supplemental Table 1** the fetal growth parameters and adverse pregnancy outcomes stratified by quartile of neighbourhood deprivation are presented. Overall, growth parameters are smaller in the most deprived neighbourhoods compared to the least deprived neighbourhoods (e.g. -0.07 SD vs. 0.15 SD, EFW in the third trimester of pregnancy, respectively). Neighbourhood deprivation and fetal growth Figure 2 gives the results of the longitudinal analyses on the association between quartiles of neighbourhood deprivation and fetal head circumference, length, and weight growth patterns from mid-pregnancy onwards. It shows that compared to the least deprived neighbourhoods, in the more deprived neighbourhoods fetal head circumferences, length and weight are smaller (for all measures, the gestational age dependent effect of neighbourhood deprivation on fetal growth was significant value<0.05). Regression coefficients for gestational age-independent and gestational age-dependent effects are given in Supplemental Table 2. The associations of neighbourhood deprivation with first trimester and second and third trimester fetal growth based on regular linear regression models are given in Supplemental Figure 1. In both the basic and adjusted analyses, a positive association between neighbourhood deprivation and AC was present (difference in AC in the adjusted model, 0.03 SDS [95% CI 0.01, 0.05, P-value 0.002] per 1 unit increase in neighbourhood status score). In the third trimester of pregnancy a positive association was found for the HC, AC and EFW (adjusted model difference of 0.04 SDS [95% CI 0.02, 0.05, P-value < 0.001], 0.04 SDS [95% CI 0.03, 0.06, P-value < 0.001] and 0.04 SDS [95% CI 0.03, 0.06, P-value <0.001] per 1 unit increase in neighbourhood status score, respectively). Overall, there is a dose-response like association between neighbourhood deprivation and fetal growth, with stronger associations in the most deprived neighbourhoods compared to the least deprived

neighbourhoods.

Page 12 of 59

BMJ Open

Effect modification analyses showed significant interaction between neighbourhood deprivation and complications in previous pregnancies for PTB (Supplemental Table 3). The associations between neighbourhood deprivation and fetal growth and adverse pregnancy outcomes were non-significant in the group with a complication in a previous pregnancy (e.g. HC in late pregnancy attenuates from 0.06 SDS [95%CI 0.05, 0.08, P-value < 0.001] to 0.03 SDS [95%CI -0.05, 0.11, P-value 0.50] per 1 unit increase in neighbourhood status score) (Supplemental Table 4). Neighbourhood deprivation and adverse pregnancy outcomes Results of the regression analysis between neighbourhood deprivation and adverse pregnancy outcomes are presented in Table 2. Living in a more affluent neighbourhood was inversely associated with the odds of delivering a SGA neonate (adjusted model, OR 0.91 [95% CI 0.86, 0.97, P-value 0.01], independent of maternal sociodemographic or lifestyle factors. Moreover, it was inversely and independently associated with the odds of PTB (adjusted model, OR 0.89 [95% CI 0.82, 0.96, P-value 0.01]. The adverse pregnancy outcomes were most prevalent in the neighbourhood with the lowest deprivation status compared to the neighbourhood with the highest social status (SGA: 12.2% vs. 7.1%, PTB: 5.9% vs. 3.8%) (Supplemental Table 1). Sensitivity analyses The first sensitivity analyses revealed largely similar associations after performing multilevel analyses (Supplemental Figure 2). Second, the results of the associations between neighbourhood deprivation and CRL did not change after including all CRL measurements, in comparison to only the CRL measurements below 12 weeks GA (Supplemental Table 5). The third sensitivity analyses excluding SGA pregnancies did attenuate the results (Supplemental Table 6).). Results also did not materially change after other sensitivity analyses in which we additionally adjusted for the household income or adjusted with a different classification of ethnicity (Supplemental Table 7 and 8). Results did not materially change for SGA analyses, when adjusting for maternal hypertension in pregnancy (Supplemental Table 9). No major differences were observed in confounders before and after multiple imputation (Supplemental Table 10).

BMJ Open

2		
3 4	265	Discussion
5	266	Main findings
6 7	267	We observed that living in a more deprived neighbourhood is associated with decreased fetal
8 9 10	268	growth in the second and third trimester of pregnancy, and with higher odds of small for gestational
10 11 12	269	age birth and preterm birth.
13 14 15 16	270 271	Strengths and limitations Strengths of this study include the large number of participants and the availability of
17 18	272	extensive data which allowed us to adjust for a large number of potential confounders. Its population-
19 20	273	based design in a multi-ethnic population results in a good representation of the residents of the city of
21 22	274	Rotterdam. The presence of both residents from deprived and more affluent neighbourhoods in the
23 24	275	study population allowed us to investigate the effect of this exposure extensively. The choice of the
25 26	276	neighbourhood deprivation indicator is another strength of this study. To classify the degree of
27	277	neighbourhood deprivation, often composite indexes are used which take factors into account such as
29 30 21	278	the percentage of educated or employed residents, and income of residents within a specific
32 33	279	neighbourhood.(27) We selected the status scores of the Netherlands Institute for Social Research,
34 35	280	because this index is comparable with international indices such as the Index of Multiple Deprivation
36 37	281	and the Jarman score.(28, 29) The status scores are a continuous measure, which allows more accurate
38 39	282	analyses compared to a dichotomous measure. Another strength of the study was that missing data of
40 41	283	covariates was handled by applying multiple imputations. In comparison with complete-case analyses
42 43	284	(which was conducted as a sensitivity analysis), this technique maintains the statistical power of the
44 45	285	analyses.
46 47	286	Some limitations of this study also merit discussion. First, this data with regard to residency
48 49 50	287	and pregnancy are over 15 years old, since the Generation R study is an ongoing birth cohort. The
50 51 52	288	methods of measuring fetal growth are according to standardized measurement methods, that are being
52 53 54	289	used still. No doubt, there is the possibility that the status of different neighbourhoods are changed
55 56	290	until now. However, no large differences are to be expected. Additionally, both exposure data
57 58	291	(neighbourhood deprivation) and outcome data (fetal growth and pregnancy outcomes) are determined
59 60	292	in short succession. Second, we did not use nutritional data from semi quantitative self-administrated

food frequency questionnaires, since this FFQ is only validated pregnant women with Dutch ethnic background, which would have diminished the power and external validity of the study. We chose not to adjust for nutritional factors other than alcohol intake and folic acid supplement use, since alcohol intake and folic acid supplement use are strongly correlated with other lifestyle and nutritional habits.(30, 31) Third, we adjusted the analyses for individual factors, to isolate a neighbourhood specific effect. However, we cannot rule out the presence of residual confounding caused by other individual factors that are strongly associated with fetal growth. Next, possible misclassification of neighbourhood deprivation may have occurred if women moved during pregnancy to a neighbourhood with a different status score from the one they moved out of. However, social mobility in pregnancy is limited and if women move, they generally tend to move to a neighbourhood with a comparable deprivation status.(32) Also, income of undeclared work is not taken into account in the area based classification of neighbourhood status scores, while 13% of Dutch residents do or did any form of undeclared work.(33)

Sixth, the power of the analyses on CRL are lower due to the availability of only one CRL measurement, instead of a repeated assessment of the CRL. A last disadvantage is that participants of cohort studies, even those in more deprived neighbourhoods, generally have a higher level of health awareness and are generally more healthy compared to those who do not participate.(13) This may reduce the generalizability of our findings to the general population.

Several pathways may explain the disadvantageous effects of living in a deprived neighbourhood on pregnancy.(34) First, it is proposed to be due to the accumulation of risk factors at the individual level.(5) Examples are smoking and inadequate nutrition and lifestyle behaviours.(9) Neighbourhood deprivation then acts as a proxy for the increased prevalence of risk factors within the deprived neighbourhoods. Our findings are substantiated by earlier studies within the Generation R birth cohort, that demonstrate that living in a deprived neighbourhood is accompanied by the accumulation of individual level risk factors. These in turn were associated with adverse pregnancy outcomes.(5) However, we observe that even after correction for the individual level risk factors, the association between neighbourhood deprivation and impaired development and adverse pregnancy outcomes remained, emphasizing an isolated role for neighbourhood deprivation as a risk factor for

Page 15 of 59

BMJ Open

pregnancy. The associations between neighbourhood deprivation and fetal growth and adverse pregnancy outcomes attenuated to non-significance in the population affected by a complication in a previous pregnancy. These complications, and the maternal constitution for the development of it, may thus outweigh the contribution of neighbourhood deprivation in the associations with fetal growth and adverse pregnancy outcomes. This may be due to the fact that past complications in pregnancy are strongly associated with both neighbourhood deprivation and fetal growth and adverse pregnancy outcomes.(35). A second pathway which may explain the disadvantageous effects of living in a deprived neighbourhood on adverse pregnancy outcomes is attributed to the lack of or suboptimal access to facilities such as the possibility to purchase healthy food nearby.(36) Third, living in a deprived neighbourhood is acknowledged as a source of chronic stress, and thereby acts as an independent risk factor for adverse health outcomes.(34, 37) Stress is associated with increased cortisol levels, and both prolonged or repeated cortisol exposure increases the risk for impaired physical health.(38) Also with regard to pregnancy, stress is demonstrated to be harmful since maternal stress during pregnancy is associated with preterm birth, lower birthweight and the onset of preeclampsia and gestational diabetes.(12, 39)

Our data demonstrates that the associations between neighbourhood deprivation and fetal growth become stronger over the course of pregnancy. This may be due to the fact that there are different mechanisms by which external factors -such as environmental, nutritional and lifestyle factors- affect the developing fetus over the different trimesters of pregnancy. In the first trimester of pregnancy the embryo depends on the uterine glands and yolk sac for the provision of nutrients, while in the subsequent periods of pregnancy there is an exchange of nutrients between the maternal and fetal circulations across the placenta.(40) The more isolated source of nutrition in the first trimester compared to the second and third trimester of pregnancy may decrease the sensitivity of first trimester embryonic growth to external influences.

A previous study of our group, observed a negative association between neighbourhood
deprivation and first trimester growth. The larger embryos in deprived neighbourhoods were
hypothesized to be explained by strong unmeasured intrinsic and extrinsic factors, such as mental
stressors.(41) The difference in direction of effects between that study and our current findings, may

be due to the different source populations; the first study was conducted in a tertiary-hospital basedcohort, while the present study is performed within a population-based cohort.

Future perspectives

In future studies, a potential power issue due to the small measurement differences in first trimester growth measurements may be prevented by using larger study sample sizes. Moreover more accurate measures of early fetal growth with higher quality ultrasound could increase the variability of the measurements which enables detection of very small differences. Additionally, animal studies may help unravel the underlying mechanisms through which neighbourhood deprivation affect pregnancy. For instance, by further investigating how maternal stress affects placental nutrient transport. Moreover, additional research on the pathways between neighbourhood deprivation and fetal growth and pregnancy outcomes could be performed.

Although the magnitude of our findings is somewhat small, the results of this study suggest an isolated risk for living in a deprived neighbourhood. This emphasizes the importance of policies that promote healthier neighbourhoods. This could be achieved by targeted population-level interventions. A review has demonstrated many area-based initiatives that have been implemented in deprived areas across Western-Europe already.(42) Initiatives may consist of interventions that aim to tackle the various problems in deprived areas, with regard to the psychical (more walkable neighbourhoods, increasing green environments, reducing air pollution and the reduction of litter.) and social domain (lowering crime rates, vandalism).(43) Small effects of these interventions may be expected in terms of differences in fetal growth and birthweight. Though some very small individual effects may still have clinical and public health relevance, e.g. when they affect a large segment of the population, or when a small effect has long term implications, as is the case with birthweight.

In the Netherlands, in both the prenatal and postnatal setting, screening for non-medical risk factors is starting to become part of daily medical practice. (44, 45) This allows early interventions in order to prevent developmental problems of children in later life. However, we propose a shift of attention towards an earlier window of opportunity: the preconception period and first trimester of pregnancy. This periconception period provides the opportunity to optimize the conditions of

BMJ Open

pregnancy and thereby decrease the risks of adverse outcomes and all their long-term

consequences.(46)

Additionally, it is important to create more awareness among politicians, policymakers and public health workers. They could help to embed neighbourhood deprivation in the context of health promotion, by developing and promoting targeted preventive intervention programs.(47) These programs could specifically focus on residents of deprived neighbourhoods. It is important to stimulate these residents to diminish risk factors on the individual level, for instance to quit smoking and abstain from alcohol. This could also help to narrow health inequalities between neighbourhoods and between groups of different socioeconomic status.

Conclusion

In conclusion, we observed a negative association between neighbourhood deprivation, fetal growth and prematurity. This emphasizes the need for a comprehensive research, care and policy approach from the preconception phase onwards, to mitigate the risk of adverse pregnancy outcomes Z. CZ ONI due to deprivation.

3
4
5
6
0
/
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
2/
24
25
26
27
28
29
30
31
32
22
רכ זע
34
35
36
37
38
39
40
41
12
42 42
45
44
45
46
47
48
49
50
51
57
52 52
53
54
55
56
57
58
59
60

390 Twitter Dionne Gootjes @dvgootjes

391

1 2

Acknowledgements The Generation R Study is conducted by the Erasmus Medical Centre in close
 collaboration with the School of Law and the Faculty of Social Sciences at the Erasmus University,
 Rotterdam, the Municipal Health Service, Rotterdam area and the Stichting Trombosedienst and
 Artsenlaboratorium Rijnmond (Star-MDC), Rotterdam. We gratefully acknowledge the contribution of
 children and their parents, general practitioners, hospitals, midwives and pharmacies in Rotterdam.
 Author Contributions All authors made a substantive contribution to the manuscript. DG analyzed
 the data and wrote the article. AP, VL and ES contributed to the design of the paper interpretation of

the data and wrote the article. AP, VJ, and ES contributed to the design of the paper, interpretation of
the data, revisions and gave input at all stages of the study. All authors have approved the final version
of the manuscript.

Funding: The Generation R Study was made possible by financial support from Erasmus MC,
University Medical Centre Rotterdam, the Netherlands; the Netherlands Organization for Health
Research and Development; the Netherlands Organization for Scientific Research; the Ministry of
Health, Welfare and Sport; and the Ministry of Youth and Families. Prof. Dr. Vincent Jaddoe received
additional grants from the Netherlands Organization for Health Research and Development (grants
90700303 and 916.10159, and VIDI 016.136.361) and a Consolidator Grant from the European

408 Research Council (ERC-2014-CoG-64916).

409 **Competing interests**: None declared.

410 **Patient and public involvement:** This research was done without patient involvement.

0 411 **Patient consent for publication**: Not required.

412 Ethics approval The study has been approved by the Medical Ethical Committee of the Erasmus
 413 Medical Centre in Rotterdam on December 17th 2001 (MEC 198.782/2001/31). Written consent was
 414 obtained from all participants.

Data availability statement Data requests can be made to the secretariat of Generation R.
2 3 4	416	ORCID iDs
5 6 7	417	Dionne Gootjes https://orcid.org/0000-0002-9382-9031
8 9 10	418	Anke Posthumus https://orcid.org/0000-0002-4882-3474
11 12 13	419	Vincent Jaddoe https://orcid.org/0000-0003-2939-0041
14 15 16	420	Eric Steegers https://orcid.org/0000-0001-6658-9274
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 30 31 32 33 43 5 36 37 38 9 40 41 42 43 44 50 51 52 53 54 55		
56 57 58 59		
60		

421 Tables and figures

- 422 Figure 1. Flowchart of the study population.
- 423 Figure 2. Associations of neighbourhood deprivation with fetal growth.
- 424 Table 1. Baseline characteristics of the study population, stratified for quartiles of the

425 neighbourhood status score.

426 Table 2. Associations between the neighbourhood status score and adverse pregnancy outcomes.

to beet teries only

1		
2 3 4	427	Supplemental material
5 6 7	428	Supplemental Table 1. Fetal growth and adverse pregnancy outcomes in the study population,
7 8 9	429	stratified for quartiles of the neighbourhood status score.
10 11	430	Supplemental Table 2. Regression coefficients of longitudinal associations between quartiles of
12 13 14	431	neighbourhood deprivation with fetal growth patterns.
15 16	432	Supplemental Table 3. P-value of interaction terms (neighbourhood deprivation * parity and
17 18 19	433	neighbourhood status score * complications in a previous pregnancy).
20 21	434	Supplemental Table 4. Associations between the neighbourhood SES and fetal growth and
22 23 24	435	adverse pregnancy outcomes, split for nulliparous women, multiparous women without a
25 26	436	complications in a previous pregnancy or multiparous women with a complications in a previous
27 28 29	437	pregnancy.
30 31	438	Supplemental Table 5. Sensitivity analysis with all available CRL measurements in the study
32 33 34	439	population.
35 36	440	Supplemental Table 6. Associations between the neighbourhood SES and fetal growth in a
37 38 20	441	selected cohort of non-SGA pregnancies.
39 40 41	442	Supplemental Table 7. Associations between the neighbourhood status score and fetal growth,
42 43	443	additionally adjusted for household income.
45 46	444	Supplemental Table 8. Associations between the neighbourhood status score and fetal growth,
47 48 40	445	adjusted for different classification of ethnicity.
50 51	446	Supplemental Table 9. Associations between the neighbourhood status score and SGA pregnancies,
52 53	447	adjusted for maternal hypertension.
54 55 56	448	Supplemental Table 10. Observed and expected values of covariates.
57 58	449	Supplemental Figure 1. Associations between the neighbourhood deprivation and fetal growth
59 60	450	parameters.

1	
2 3	451
4	151
5 6	452
7	453
8 9	
10	454
11 12	
12	455
14	
15 16	
17	
18 19	
20	
21	
22	
24	
25 26	
27	
28 29	
30	
31	
32 33	
34	
35 36	
37	
38	
39 40	
41	
42 43	
44	
45 46	
40 47	
48 40	
49 50	
51	
52 53	
54	
55 56	
50 57	
58	
59	

451	Supplemental Figure 2	. Multilevel regression	analysis of associations	between neighbourhood
		0		0

452 deprivation and first trimester and fetal growth measurements.

453 Supplemental 1. First trimester and fetal growth, measurement guidelines.

454 Supplemental 2. Multiple imputations for missing data of covariates

to beet teries only

6

456	Table 1. Baseline characteristics of the study population, stratified for quartiles of neighbourhood
457	deprivation.

7 8 Maternal characteristics	Total study	Lowest	Second	Third	Highest	p-value
9	population	deprivation	deprivation	deprivation	deprivation	
10	n = 8617	quartile	quartile	quartile	quartile	
12		n = 2170	n = 2208	n = 2090	n = 2149	
¹³ Neighbourhood status score	-1.13 (1.39)	-2.96 (0.51)	-1.62 (0.31)	-0.51 (0.37)	0.61 (0.49)	<0.001
14 1Åge at intake	29.6 (5.3)	28.1 (5.5)	28.7 (5.7)	30.2 (4.9)	31.6 (4.1)	<0.001
$16 \leq 18 \text{ years}$	83 (1.0%)	33 (1.5 %)	35 (1.6%)	12 (0.6%)	3 (0.1%)	
$\frac{17}{18}$ >18 and ≤ 35 years	7256 (84.2%)	1888 (87.0%)	1867 (84.6%)	1760	1741 (81.0%)	
19 >35 years	1278 (14.8%)	249 (11.5%)	306 (13.8%)	(84.2%)	405 (18.9%)	
20				318		
22				(15.2%)		
23 Pre-pregnancy body mass	22.8 (18.4 –	23.5 (18.0 - 33.6)	23.0 (18.1 - 32.5)	22.9 (18.2 –	22.3 (18.5–	<0.001
24 2igndex	32.2)	122 (5.6%)	139 (6.3%)	32.0)	30.1)	
$^{26} \leq 18.5 \text{ kg/m}^2$	492 (5.7%)	1233 (56.8%)	1343 (60.8%)	118 (5.6%)	112 (5.2%)	
$^{27}_{28}$ >18.5 and $\leq 25 \text{ kg/m}^2$	5436 (63.0%)	815 (37.6%)	726 (32.9%)	1315	1546 (71.9%)	
29 >25 kg/m ²	2689 (31.3%)			(62.9%)	491 (22.8%)	
30				657		
32				(31.4%)		
33 Parity (nulliparous)	4796 (55.7)	1090 (50.2)	1273 (57.7)	1227 (58.7)	1205 (56.1)	<0.001
35 ducational level						<0.001
36 Lower/no	1101 (12.8%)	503 (23.2)	366 (16.5)	179 (8.5)	52 (2.4)	
37 38 Middle	4060 (47.1)	1153 (53.1)	1152 (52.2)	1007 (48.2)	747 (34.8)	
39 _{High}	3456 (40.1)	514 (23.7)	690 (31.3)	904 (43.3)	1349 (62.8)	
40 ⊿⊊thnicity						<0.001
42 Dutch and Western	4967 (57.6%)	636 (29.3)	1084 (49.1)	1426 (68.2)	1821 (84.7)	
43 Turkish and Moroccan	1464 (17.0%)	714 (32.9)	471 (21.3)	222 (10.6)	57 (2.7)	
44 45 African	1178 (13.7%)	519 (23.9)	370 (16.8)	211 (10.1)	78 (3.6)	
46 Asian	1008 (11.7%)	301 (13.9)	283 (12.8)	231 (11.1)	193 (9.0)	
47 4§moking						<0.001
49 Never smoked during	6256 (72.6%)	1515 (69.8)	1523 (69.0)	1518 (72.6)	1700 (79.1)	
50 51 pregnancy	735 (8.5%)	171 (7.9)	183 (8.3)	188 (9.0)	193 (9.0)	
52 Smoked until pregnancy	1626 (18.9%)	484 (22.3)	502 (22.7)	384 (18.4)	256 (11.9)	
53 54 was known						
55 Continued smoking in						
56 pregnancy						
57 58 lcohol						<0.001

 $_{60}^{50}$ Never alcohol consumption in $_{60}^{60}$

BMJ	Open
-----	------

1 2								
3pregnancy			4351 (50.5%)	1436 (66.2)	1200 (54.4)	990 (47.4)	726 (33.8)	
4 5	Alcohol	consumption until	1149 (13.3%)	220 (10.1)	239 (10.8)	335 (16.0)	354 (16.5)	
6	pregnanc	ey was known	3117 (36.2%)	514 (23.7)	769 (34.8))	765 (36.6)	1069 (49.7)	
7 8	Continue	ed alcohol						
9	consump	tion in pregnancy						
1 0	lic acid su	pplement intake						<0.001
12	None		2751 (31.9%)	1141 (52.6)	843 (38.2)	534 (25.6)	233 (10.8)	
13	Start in f	irst 10 weeks of	2661 (30.9%)	594 (27.4)	703 (31.8)	650 (31.1)	714 (33.2)	
14 15	pregnanc	су	3205 (37.2%)	435 (20.0)	662 (30.0)	906 (43.3)	1202 (55.9)	
16	Start pree	conceptionally						
17 19 19	pertension	n						0.11
19	Pregnan	ncy induced	311 (3.6%)	69 (3.2%)	80 (3.6%)	74 (3.5%)	88 (4.1%)	
20	hyperten	ision	142 (1.6%)	54 (2.5%)	36 (1.6%)	29 (1.4%)	23 (1.1%)	
21 22	Pre-eclar	mpsia	29 (0.3%)	4 (0.2%)	9 (0.4%)	8 (0.4%)	8 (0.4%)	
23	HELLP							
24 2Ge	stational o	diabetes	89 (1.0%)	21 (1.0%)	32 (1.4%)	24 (1.1%)	12 (0.6%)	0.03
26 Bi	th weight							<0.01
27" 28	<2500	orams	431 (5.0%)	118 (5.4%)	135 (6.1%)	110 (5.3%	68 (3.2%)	-0.01
29	>2500	grams and <4000	7017 (81.4%)	1815 (83.6%)	1786 (80.9%)	1683	1733 (80.6%)	
30	orams	grams and <u>-</u> +000	1169 (13.6%)	237 (11.0%)	287 (13.0%)	(80.5%	348 (16 2%)	
31 32		grams	1109 (15.070)	237 (11.070)	287 (15.070)	207	548 (10.270)	
33	24000	granis				(14.2%)		
34 355-	stational	nga at daliya n y				(14.270)		0.01
36		age at delivery	402 (5 79/)	124 (6 29/)	152 (6.09/)	117 (5 60/)	20 (4 10/)	0.01
37 20	<37 we	eeks gestational	492 (3.770)	1027 (80.2%)	1047 (88 20/)	117 (3.0%)	89 (4.176) 1054 (00.0)	
39	age		1097 (89.5%)	1937 (89.3%)	1947 (88.2%)	(88.00/)	1934 (90.9)	
40	.37-42	weeks gestational	428 (5.0%)	99 (4.5%)	109 (4.9%)	(88.9%)	106 (5.0%)	
41 42	age	1 4 4 1				114 (5.5%)		
43	>42 we	eeks gestational						
44 45	age			1.50 (5.10/)	1.40 (6.70()		1.50 (0.00()	0.10
400 46	mplicatio	ns in a previous	606 (7.0%)	153 (7.1%)	149 (6.7%)	132 (6.3%)	172 (8.0%)	0.13
4 ^{pre}	gnancy							
48et	tal sex (m	ale)	4347 (50.4)	1063 (49.0)	1147 (51.9)	1066 (51.0)	1071 (49.8)	0.22
50	458	Data are represe	ented as n (%), me	ean (SD) or median	with the 90% range	e. Differences in	n baseline	
51 52	459	characteristics were tested using ANOVA, Kruskal-Wallis tests and chi-square tests. Confounders are						
53	460	imputed. Non in	nputed percentage	es are valid percenta	ages.			
54								
55 56								
57								

 BMJ Open

461 T	Table 2. Associations between	the neighbourhood status s	score and adverse pregnancy	y outcomes.
-------	-------------------------------	----------------------------	-----------------------------	-------------

6 Study population	Model		Lowest deprivation		Second deprivation		Third deprivation		Highest deprivation
n = 8617			quartile		quartile		quartile		quartile
9			n = 2277		n = 2123		n = 2084		n = 2133
10			β / OR (95% CI)		β / OR (95% CI)		β / OR (95% CI)		
11									
12									
¹³ Small for gestational age	Basic	261	1.80 (1.46 ; 2.22)	220	1.46 (1.17 ; 1.81)	190	1.31 (1.05 ; 1.64)	153	Reference
14		(11.5%)		(10.4%)		(9.1%)		(7.2%)	
15	Adjusted		1.39 (1.09 ; 1.77)		1.14 (0.90 ; 1.44)	. ,	1.13 (0.90 ; 1.42)		Reference
16	0								U
¹⁷ Preterm birth	Basic	129	1.60 (1.21 ; 2.13)	142	1.76 (1.33 ; 2.32)	109	1.41 (1.05 ; 1.89)	81	Reference
18		(5.6%)		(6.7%)		(5.2%)		(3.8%)	U
19	Adjusted	()	1.52 (1.11 ; 2.09)		1.65 (1.23 ; 2.22)	· · /	1.32 (0.97 ; 1.77)	· /	Reference
20 462 Abbreviations: β	B: beta; OR: o	dds ratio. Va	lues are odds ratios with	the 95% CI of	the data in SD-score an	d are based	on logistic regression i	nodels. Bas	ic

463 model: by the use of SD scores it is automatically adjusted for gestational age. Adjusted model: basic model and additionally adjusted for maternal age,

464 educational level, smoking, alcohol use, folic acid supplement use, ethnicity, parity, pre-pregnancy body mass index and fetal sex. p-for trend analysis with the

25 465 neighbourhood deprivation as a continuous measure. Small size for gestational age (SGA) at birth was defined as a sex and gestational age adjusted

birthweight below the 10th percentile (<-1.40 SD-score) in the study cohort. Preterm birth (PTB) was defined as a gestational age of <37 weeks at delivery.

1		
2		
5 4	467	References
5	468	1. Mackenbach JP, Cavelaars AE, Kunst AE, Groenhof F. Socioeconomic inequalities in
6	469	cardiovascular disease mortality; an international study. Eur Heart J. 2000;21(14):1141-51.
7	470	2. Pickett KE, Pearl M. Multilevel analyses of neighbourhood socioeconomic context and health
8	471	outcomes: a critical review. J Epidemiol Community Health. 2001;55(2):111-22.
9	472	3. Vos AA, Posthumus AG, Bonsel GJ, Steegers EA, Denktas S. Deprived neighborhoods and
10 11	473	adverse perinatal outcome: a systematic review and meta-analysis. Acta Obstet Gynecol Scand.
12	474	2014;93(8):727-40.
13	475	4. de Graaf JP, Ravelli AC, de Haan MA, Steegers EA, Bonsel GJ. Living in deprived urban districts
14	476	increases perinatal health inequalities. J Matern Fetal Neonatal Med. 2013;26(5):473-81.
15	477	5. Timmermans S, Bonsel GJ, Steegers-Theunissen RP, Mackenbach JP, Steyerberg EW, Raat H,
16	478	et al. Individual accumulation of heterogeneous risks explains perinatal inequalities within deprived
17	479	neighbourhoods. Eur J Epidemiol. 2011;26(2):165-80.
18	480	6. Mook-Kanamori DO, Steegers EA, Eilers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and
19 20	481	outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527-34.
20	482	7. Ashworth CJ, Toma LM, Hunter MG. Nutritional effects on oocyte and embryo development
22	483	in mammals: implications for reproductive efficiency and environmental sustainability. Philos Trans R
23	484	Soc Lond B Biol Sci. 2009;364(1534):3351-61.
24	485	8. Cetin I, Berti C, Calabrese S. Role of micronutrients in the periconceptional period. Hum
25	486	Reprod Update. 2010;16(1):80-95.
26	487	9. Van Dijk MR, Borggreven NV, Willemsen SP, Koning AHJ, Steegers-Theunissen RPM, Koster
2/	488	MPH. Maternal Lifestyle Impairs Embryonic Growth: The Rotterdam Periconception Cohort. Reprod
28 20	489	Sci. 2018;25(6):916-22.
30	490	10. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171-4.
31	491	11. Rutter DR, Quine L. Inequalities in pregnancy outcome: a review of psychosocial and
32	492	behavioural mediators. Soc Sci Med. 1990;30(5):553-68.
33	493	12. Vehmeijer FOL, Guxens M, Duijts L, El Marroun H. Maternal psychological distress during
34	494	pregnancy and childhood health outcomes: a narrative review. J Dev Orig Health Dis. 2019;10(3):274-
35	495	85.
30 27	496	13. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IMH, et al. The Generation
37 38	497	R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243-64.
39	498	14. National Institute for Public Health and the Environment. Sociaaleconomische status 2017
40	499	[Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische-
41	500	status/regionaal-internationaal/regionaal#node-sociaaleconomische-status
42	501	15. Blaas HG, Eik-Nes SH, Bremnes JB. The growth of the human embryo. A longitudinal
43	502	biometric assessment from 7 to 12 weeks of gestation. Ultrasound Obstet Gynecol. 1998;12(5):346-
44 45	503	54.
45 46	504	16. Van Ultert EIVI, Exalto N, Burton GJ, Willemsen SP, Koning AH, Ellers PH, et al. Human
40	505	embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod.
48	506	2013;28(7):1753-61.
49	507	17. Van der Kooy J, Poeran J, de Graat JP, Birnie E, Denktas S, Steegers EAP, et al. Planned nome
50	508	compared with planned hospital births in the Netherlands. Intrapartum and early neonatal death in
51	509	10w-fisk pregnancies. Obsiel Gynecol. 2011;118(5):1037-40.
52	510	18. Poerall J, Borsboolli GJ, de Gradi JP, Birnie E, Steegers EA, Bonser GJ. Population attributable
53 54	511	Child Health I. 2015:10(4):764-75
54 55	512	Unite Reduct J. 2013,13(4).704-73.
56	515 517	13. Indulous FF, Indulisi ND, Sudmindi NS, Deter KL, Pdrk SK. Estimation of read weight with the use
57	514 515	1085-151/3)-322-7
58	212	1.202,121(2).222-7.
59		
60		

Page 27 of 59

BMJ Open

20. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population-based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388-96. Niklasson A, Ericson A, Fryer JG, Karlberg J, Lawrence C, Karlberg P. An update of the Swedish 21. reference standards for weight, length and head circumference at birth for given gestational age (1977-1981). Acta Paediatr Scand. 1991;80(8-9):756-62. Verburg BO, Mulder PG, Hofman A, Jaddoe VW, Witteman JC, Steegers EA. Intra- and 22. interobserver reproducibility study of early fetal growth parameters. Prenat Diagn. 2008;28(4):323-31. 23. Gaillard R, de Ridder MA, Verburg BO, Witteman JC, Mackenbach JP, Moll HA, et al. Individually customised fetal weight charts derived from ultrasound measurements: the Generation R Study. Eur J Epidemiol. 2011;26(12):919-26. Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2 ed. 24. Cambridge: Cambridge University Press; 2013. 25. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 26. DG Altman. Practical statistics for medical research. . London, UK: Chapman & Hall; 1999. Rajaratnam JK, Burke JG, O'Campo P. Maternal and child health and neighborhood context: 27. the selection and construction of area-level variables. Health Place. 2006;12(4):547-56. 28. Noble M, Wright G, Smith G, Dibben C. Measuring Multiple Deprivation at the Small-Area Level. Environment and Planning A: Economy and Space. 2006;38(1):169-85. 29. Jarman B. Underprivileged areas: validation and distribution of scores. Br Med J (Clin Res Ed). 1984;289(6458):1587-92. 30. Kang H-G, Joo HH, Choi KD, Lee D, Moon J. Complementarity in dietary supplements and foods: are supplement users vegetable eaters? Food Nutr Res. 2017;61(1):1361769-. Kirk SF, Cade JE, Barrett JH, Conner M. Diet and lifestyle characteristics associated with 31. dietary supplement use in women. Public Health Nutr. 1999;2(1):69-73. 32. Reitsma JB, Kardaun JW, Gevers E, de Bruin A, van der Wal J, Bonsel GJ. [Possibilities for anonymous follow-up studies of patients in Dutch national medical registrations using the Municipal Population Register: a pilot study] Mogelijkheden voor anoniem follow-uponderzoek van patienten in landelijke medische registraties met behulp van de Gemeentelijke Basisadministratie: een pilotonderzoek. Ned Tijdschr Geneeskd. 2003;147(46):2286-90. 33. Winden de M, Zuurbier. Een onderzoek naar zwartwerk onder uitkeringsgerechtigden en de totale bevolking in 2010. Voorburg/Heerlen.: 2011. 34. de Graaf JP, Steegers EA, Bonsel GJ. Inequalities in perinatal and maternal health. Curr Opin Obstet Gynecol. 2013;25(2):98-108. 35. Posthumus AG, Birnie E, van Veen MJ, Steegers EA, Bonsel GJ. An antenatal prediction model for adverse birth outcomes in an urban population: The contribution of medical and non-medical risks. Midwifery. 2016;38:78-86. 36. Agyemang C, Vrijkotte TG, Droomers M, van der Wal MF, Bonsel GJ, Stronks K. The effect of neighbourhood income and deprivation on pregnancy outcomes in Amsterdam, The Netherlands. J Epidemiol Community Health. 2009;63(9):755-60. Jokela M. Does neighbourhood deprivation cause poor health? Within-individual analysis of 37. movers in a prospective cohort study. J Epidemiol Community Health. 2015;69(9):899-904. 38. Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA. 2007;298(14):1685-7. Henrichs J, Schenk JJ, Roza SJ, van den Berg MP, Schmidt HG, Steegers EA, et al. Maternal 39. psychological distress and fetal growth trajectories: the Generation R Study. Psychol Med. 2010;40(4):633-43.

2		
3	566	40. Burton GJ. Hempstock J. Jauniaux F. Nutrition of the human fetus during the first trimestera
4	567	review Placenta 2001:22 Suppl A:S70-7
5	568	41 Gooties DV Koster MPH Willemsen SP Koning ΔΗΙ Steegers FΔP Steegers-Theunissen RPM
6	569	The Impact of Neighbourhood Deprivation on Embryonic Growth Trajectories: Rotterdam
7	570	Periconception Cohort 1 Clin Med 2010-9(11)
8	570	Atkinson Urban Decign and Planning Volume 161 2008 n 115 22
9	5/1	 42. Atkinson. Orban Design and Planning. Volume 161 2008. β. 115-22. 43. Kramen D. Harting L. Konst A.F. Hadamster diagethe impact of angle based intermentions on angle
10	572	43. Kramer D, Harting J, Kunst AE. Understanding the impact of area-based interventions on area
11	5/3	safety in deprived areas: realist evaluation of a neighbour nuisance intervention in Arnhem, the
1Z 12	574	Netherlands. BMC Public Health. 2016;16:291.
15	575	44. Waelput AJM, Sijpkens MK, Lagendijk J, van Minde MRC, Raat H, Ernst-Smelt HE, et al.
15	576	Geographical differences in perinatal health and child welfare in the Netherlands: rationale for the
16	577	healthy pregnancy 4 all-2 program. BMC Pregnancy Childbirth. 2017;17(1):254.
17	578	45. Lagendijk J, Vos AA, Bertens LCM, Denktas S, Bonsel GJ, Steyerberg EW, et al. Antenatal non-
18	579	medical risk assessment and care pathways to improve pregnancy outcomes: a cluster randomised
19	580	controlled trial. Eur J Epidemiol. 2018;33(6):579-89.
20	581	46. Steegers EAP, Barker ME, Steegers-Theunissen RPM, Williams MA. Societal Valorisation of
21	582	New Knowledge to Improve Perinatal Health: Time to Act. Paediatric and perinatal epidemiology.
22	583	2016:30(2):201-4.
23	584	47. van Voorst SE. Vos AA. de Jong-Potier LC. Waelput AIM. Steegers FAP. Denktas S.
24	585	Effectiveness of general preconception care accompanied by a recruitment approach: protocol of a
25	586	community-based cohort study (the Healthy Pregnancy 4 All study) BMI open 2015;5(3):e006284-e
26	500	community based conort study (the reality regnancy 4 An study). Divis open. 2015,5(5).000204 C.
27	587	
28		
29		
20 21		
37		
32		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
40 47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

3	
Δ	
- 5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

for peer terier only

Figure 2. Associations of neighbourhood deprivation with fetal growth.

Differences in fetal growth rates for the lower three neighbourhood status score quartiles as compared to the highest neighbourhood status score. Squares represent the lowest quartile of the neighbourhood status score; circles represent the second quartile; and triangles the third quartile. Results are based on repeated measurement regression models and reflect the differences in gestational-age-adjusted SDS scores of (a) fetal head circumference, (b) weight, and (c) length growth for the three lower neighbourhood status score compared to the highest neighbourhood status score (reference group represented as zero line). The models were adjusted for maternal age, educational level, smoking, alcohol use, folic acid supplement use, ethnicity, parity, pre-pregnancy body mass index and fetal sex.

1 Supplemental data

Supplemental Table 1. Fetal growth and adverse pregnancy outcomes in the study population, stratified for quartiles of neighbourhood deprivation.

	n	Study population n = 8617	n	Lowest deprivation quartile n = 2170	n	Second deprivation quartile n = 2208	n	Third deprivation quartile n = 2090	n	Highest deprivation quartile n = 2149	p-value ¹	p- value ²
Early pregnancy		C	11									
CRL	1614	-0.05 (1.06)	287	0.03 (1.05)	362	-0.01 (1.07)	418	-0.01 (0.95)	547	0.07 (0.87)	0.81	0.63
НС	5646	-0.27 (1.39)	1359	-0.04 (0.99)	1440	-0.04 (1.04)	1361	-0.04 (1.10)	1486	-0.09 (1.06)	0.36	0.20
FL	4682	0.61 (0.88)	1162	-0.08 (0.99)	1233	-0.18 (1.00)	1107	-0.04 (0.98)	1180	-0.10 (1.00)	0.18	0.74
Mid pregnancy												
НС	8035	-0.02 (1.02)	1972	-0.06 (1.03)	2049	-0.04 (1.05)	1973	-0.01 (1.02)	2041	0.03 (0.98)	0.047	0.01
FL	8058	0.03 (1.03)	1985	0.06 (1.07)	2046	0.06 (1.08)	1970	0.04 (1.02)	2057	-0.01 (0.97)	0.12	0.03
AC	8052	0.01 (1.01)	1977	-0.04 (1.02)	2050	-0.04 (1.02)	1971	0.02 (1.00)	2054	0.11 (0.98)	<0.001	<0.001
EFW	8016	-0.10 (1.01)	1975	-0.12 (1.02)	2035	-0.12 (1.04)	1957	-0.09 (1.00)	2049	-0.06 (0.97)	0.22	0.08
Late pregnancy												
НС	8163	0.01 (1.00)	2029	-0.08 (1.00)	2067	-0.09 (1.02)	1984	0.06 (1.00)	2083	0.17 (0.96)	<0.001	<0.001
FL	8234	-0.01 (1.00)	2049	-0.04 (1.00)	2083	-0.01 (1.05)	2005	0.004 (1.00)	2097	0.02 (0.97)	0.28	0.06
AC	8212	0.01 (1.01)	2042	-0.10 (1.01)	2076	-0.07 (1.04)	1995	0.04 (1.01)	2099	0.14 (0.97)	<0.001	<0.001
EFW	8201	0.03 (1.02)	2042	-0.06 (1.01)	2073	-0.02 (1.04)	1993	0.07 (1.00)	2093	0.15 (1.00)	<0.001	<0.001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Birth

BMJ Open

Small for gestational age	824	854 (9.9%)	261	261 (12.2%)	220	225 (10.1%)	190	190 (9.2%)	153	153 (7.1%)	<0.001	<0.001
Preterm birth	460	460 (5.3%)	128	128 (5.9%)	142	142 (6.4%)	109	109 (5.2%)	81	81 (3.8%)	0.001	0.001

Abbreviations: SD: standard deviation. HC: head circumference. FL: femur length. AC: abdominal circumference. EFW: estimated fetal weight. Values

represent data in SD-score, mean (SD) or n (%).¹ Differences between groups were evaluated using one-way-ANOVA-tests for continuous variables and Chi-

eters betwe. Jes. square tests for proportions. ²Differences in growth parameters between the lowest and highest neighbourhood status score groups were tested were evaluated

using Student's t-tests. Percentages are valid percentages.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 8 4 9 5	Su pa	upplemental Tab atterns.	le 2. Regression coefficie	nts of longitudinal associ	ations between quartil	es of neighbourhood depi	rivation with fetal grow	th
6 7			Intercept	Slope	Intercept	Slope	Intercept	Slope
8 9			Head circumference	Head circumference	Length	Length	Weight	Weight
10 11			(SDS)	(505)	(SDS)	(SDS)	(SDS)	(SDS)
12 13								
14 eighbou	urhoo	d deprivation		Sr.				
1 Quartile	1		0.225 (0.122; 0.328)	-0.010 (-0.013; -0.006)	0.270 (0.167; 0.373)	-0.012 (-0.016; -0.010)	0.229 (0.115; 0.3441)	-0.011 (-0.015; -0.008)
17 1 Quartile	2		0.104 (0.004; 0.204)	-0.005 (-0.008; -0.001)	0.103 (0.003; 0.203)	-0.005 (-0.008; -0.001)	0.155 (0.043; 0.268)	-0.008 (-0.011; -0.005)
2 Quartile	3		0.109 (0.009; 0.208)	-0.004 (-0.008; -0.001)	0.170 (0.071; 0.270)	-0.006 (-0.010; -0.003)	0.095 (-0.018; 0.208)	-0.005 (-0.008; -0.001)
2 Quartile	4		Ref.	Ref.	Ref.	Ref.	Ref.	Ref.
24 10	Va	alues are regression	on coefficients obtained from	om linear repeated measure	ement models and reflect	et the (gestational) age inde	ependent differences (inte	ercepts) and
25 26 11	th	e gestational age	dependent differences (slo	pes: change in growth char	racteristics SDS per wee	k per quartile of the neight	bourhood deprivation sco	ore,
²⁷ 12	co	ompared with the l	nighest quartile of the neig	shbourhood deprivation sco	ore as the reference grou	p, adjusted for maternal ag	ge, educational level, smo	oking,
28 29 13 30 31 32 33 34 35 36 37 38 39 40 41	al	cohol use, folic ac	id supplement use, ethnic	ity, parity, pre-pregnancy b	body mass index and fet	al sex.)		
42 43 44 45			Fc	or peer review only - http://b	mjopen.bmj.com/site/abo	out/guidelines.xhtml		

21 in neighbourhood status score. Analyses with crown–rump length were based on subgroup analyses (n

22 = 1614). Estimates are from multiple imputed data. Squares show basic model; circles show the

adjusted model: basic model and additionally adjusted for maternal age, educational level, smoking,

24 alcohol use, folic acid supplement use, ethnicity, parity, pre-pregnancy body mass index and fetal sex.

Study population		
n = 8617		
	Parity	Complications in a previous pregnan
	p-value for trend	p-value for trend
Early pregnancy		
CRL	0.44	0.36
НС	0.25	0.24
FL	0.52	0.91
Mid pregnancy	6	
НС	0.15	0.20
FL	0.13	0.20
AC	0.73	0.81
EFW	0.27	0.34
Late pregnancy		¢ 0
НС	0.64	0.62
FL	0.58	0.51
AC	0.66	0.88
EFW	0.82	0.99
Birth		
SGA	0.95	0.85
PTB	0.17	0.03

Abbreviations: β: beta; CRL: crown-rump length; HC: head circumference; FL: femur length; AC:
abdominal circumference; EFW: estimated fetal weight. Values are based on the adjusted linear and
logistic regression models.

30	Supplemental Table	Associations between the neighbourhood status score and fetal growth and adverse pregnancy outcomes, split for nulliparous women,
----	--------------------	---

multiparous women without a complications in a previous pregnancy or multiparous women with a complications in a previous pregnancy.

Study population	Nulliparous		Multiparous, no com	plications previous pregnancy	Multiparous, complications previous pregnanc			
n = 8617	N = 4739		N = 3166		N = 606			
	Trend		Trend		Trend			
	β/OR (95% CI)	p-value for trend	β/OR (95% CI)	p-value for trend	β/OR (95% CI)	p-value for trend		
Early pregnancy		r r						
CRL	0.02 (-0.04 ; 0.08)	0.42	-0.01 (-0.10 ; 0.07)	0.74	0.02 (-0.19 ; 0.22)	0.88		
HC	0.004 (-0.03 ; 0.04)	0.84	-0.01 (-0.05 ; 0.04)	0.73	-0.04 (-0.15 ; 0.07)	0.45		
FL	0.03 (-0.01 ; 0.07)	0.09	0.04 (-0.01 ; 0.09)	0.09	-0.04 (-0.15 ; 0.07)	0.50		
Mid pregnancy				10.				
НС	0.02 (-0.02 ; 0.05)	0.32	0.02 (-0.02 ; 0.06)	0.30	-0.11 (-0.19 ; - 0.03)	0.01		
FL	0.01 (-0.02 ; 0.04)	0.66	-0.01 (-0.05 ; 0.03)	0.59	-0.06 (-0.15 ; 0.02)	0.14		
AC	0.03 (0.002 ; 0.06)	0.03	0.05 (0.01 ; 0.09)	0.01	-0.02 (-0.11 ; 0.07)	0.66		
EFW	0.02 (-0.01 ; 0.05)	0.12	0.03 (-0.01 ; 0.07)	0.18	-0.04 (-0.13 ; 0.04)	0.32		
Late pregnancy								
HC	0.04 (0.01 ; 0.07)	0.004	0.03 (-0.003 ; 0.07)	0.07	0.03 (-0.05 ; 0.11)	0.50		
FL	0.02 (-0.01 ; 0.05)	0.10	-0.003 (-0.04 ; 0.03)	0.89	0.03 (-0.05 ; 0.11)	0.45		
	Study population n = 8617 Early pregnancy CRL HC FL Mid pregnancy HC FL AC EFW Late pregnancy HC FL	Study populationNulliparous N = 4739 $n = 8617$ N = 4739Trend $\beta/OR (95\% CI)$ Early pregnancyCRL $0.02 (-0.04; 0.08)$ HC $0.004 (-0.03; 0.04)$ FL $0.03 (-0.01; 0.07)$ Mid pregnancyHCHC $0.02 (-0.02; 0.05)$ FL $0.01 (-0.02; 0.04)$ AC $0.03 (0.002; 0.06)$ EFW $0.02 (-0.01; 0.05)$ Late pregnancyHC $0.04 (0.01; 0.07)$ FL $0.02 (-0.01; 0.05)$	Study population Nulliparous N = 4739 Trend $\beta/OR (95\% CI)$ p-value for trend Early pregnancy CRL 0.02 (-0.04 ; 0.08) 0.42 HC 0.004 (-0.03 ; 0.04) 0.84 FL 0.03 (-0.01 ; 0.07) 0.09 Mid pregnancy Image: CRL 0.02 (-0.02 ; 0.05) 0.32 FL 0.01 (-0.02 ; 0.04) 0.66 AC 0.03 (0.002 ; 0.06) 0.03 EFW 0.02 (-0.01 ; 0.05) 0.12 Late pregnancy Image: HC 0.04 (0.01 ; 0.07) 0.004 FL 0.02 (-0.01 ; 0.05) 0.10	Study population Nulliparous Multiparous, no comp n = 8617 N = 4739 N = 3166 Trend Trend β/OR (95% CI) p-value for trend β/OR (95% CI) Early pregnancy CRL 0.02 (- 0.04 ; 0.08) 0.42 - 0.01 (- 0.10 ; 0.07) HC 0.004 (- 0.03 ; 0.04) 0.84 - 0.01 (- 0.05 ; 0.04) FL 0.03 (- 0.01 ; 0.07) 0.09 0.04 (- 0.01 ; 0.09) Mid pregnancy Image: Composite the second secon	Study population Nulliparous Multiparous, no complications previous pregnancy n = 8617 N = 4739 Multiparous, no complications previous pregnancy Trend Trend Ø/OR (95% CI) p-value for trend Ø/OR (95% CI) p-value for trend Early pregnancy CRL $0.02 (-0.04 ; 0.08)$ 0.42 $-0.01 (-0.10 ; 0.07)$ 0.74 HC $0.004 (-0.03 ; 0.04)$ 0.84 $-0.01 (-0.05 ; 0.04)$ 0.73 FL $0.03 (-0.01 ; 0.07)$ 0.09 $0.04 (-0.01 ; 0.09)$ 0.09 Mid pregnancy HC $0.02 (-0.02 ; 0.05)$ 0.32 $0.02 (-0.02 ; 0.06)$ 0.30 FL $0.01 (-0.02 ; 0.04)$ 0.66 $-0.01 (-0.05 ; 0.03)$ 0.59 AC $0.03 (0.002 ; 0.06)$ 0.03 $0.05 (0.01 ; 0.09)$ 0.01 EFW $0.02 (-0.01 ; 0.05)$ 0.12 $0.03 (-0.01 ; 0.07)$ 0.18 Late pregnancy HC $0.04 (0.01 ; 0.07)$ 0.004 $0.03 (-0.04 ; 0.03)$ 0.89	Multiparous Multiparous, no complications previous pregnancy Multiparous, complications previous pregnancy Multiparous, complications previous pregnancy n = 8617 N = 4739 N = 3166 N = 606 Trend Trend Trend Trend $\beta/OR (95\% CI)$ p-value for trend $\beta/OR (95\% CI)$ p-value for trend $\beta/OR (95\% CI)$ Early pregnancy CRL 0.02 (-0.04 ; 0.08) 0.42 -0.01 (-0.05 ; 0.04) 0.74 0.02 (-0.19 ; 0.22) HC 0.03 (-0.01 ; 0.07) 0.04 -0.01 (-0.05 ; 0.04) 0.73 -0.04 (-0.15 ; 0.07) Midtiparous, no complications previous pregnancy Multiparous, no complications previous pregnancy -0.02 (-0.19 ; 0.22) HC 0.02 (-0.04 ; 0.08) 0.42 -0.01 (-0.05 ; 0.04) 0.73 -0.04 (-0.15 ; 0.07) Midt pregnancy HC 0.03 (-0.01 ; 0.07) 0.32 0.02 (-0.02 ; 0.06) 0.30 -0.01 (-0.05 ; 0.02) -0.02 (-0.11 ; 0.07) -0.04 (-0.15 ; 0.02) -0.02 (-0.11 ; 0.07) -0.02 (-0.11 ; 0.07) -0.02 (-0.11 ; 0.07) -0.03 (-0.01 ; 0.07) 0.03 (-0.02 (-0.11 ; 0.07) -0.04 (-0.13 ; 0.04) HC		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

2							
3	AC	0.03 (0.002 ; 0.06)	0.04	0.04 (0.01 ; 0.08)	0.03	0.07 (-0.01 ; 0.16)	0.10
4							
5	EFW	0.03 (0.01 ; 0.06)	0.02	0.04 (0.001 ; 0.08)	0.048	0.07 (-0.02 ; 0.16)	0.11
6							
7	Birth						
8							
9	SGA	0.90 (0.82; 0.99)	0.03	0.96 (0.82; 1.12)	0.60	0.88 (0.63 ; 1.23)	0.46
10							
11	PTB	0.91 (0.81; 1.03)	0.15	0.73 (0.58 ; 0.93)	0.01	0.89 (0.66 ; 1.21)	0.46
12							
13 -							

Abbreviations: β: beta; CRL: crown-rump length; HC: head circumference; FL: femur length; AC: abdominal circumference; EFW: estimated fetal weight.

Values are regression coefficients with the 95% CI of the data in SD-score and are based on adjusted linear and logistic regression models. Adjusted model:

adjusted for maternal age, educational level, smoking, alcohol use, folic acid supplement use, ethnicity, parity, pre-pregnancy body mass index and fetal sex.

p-for trend analysis with the neighbourhood deprivation as a continuous measure.

neasure.

37 deprivation and first trimester and fetal growth measurements.

1 2

71	S	upplemental	Table 5.	Sensitivity anal	ysis with all availab	le CRL measurements	in the study popul	ation.					
72	a	a. All CRL me	asuremen	t in the study pop	pulation, stratified fo	r quartiles of the neighl	oourhood status sco	ore.					
n	l	Study	n	Lowest	n Se	econd n	Third	n	Highest	p-value ¹	Mean diffe	erence	p-val
	J	population		deprivation	dep	rivation	deprivation		deprivation		(95% ($(\mathbf{I})^2$	
		n = 8617		quartile	գւ	ıartile	quartile		quartile				
				n = 2277	n:	= 2123	n = 2084		n = 2133				
161	14		287	0.03 (1.05)	362 -0.0	1 (1.07) 418	-0.01 (0.95)	547	0.07 (0.87)	0.56	-0.03 (-0.17	; 0.10)	0.6
73					-	N							
74													
75													
76													
77	b.	. All CRL mea	surement	t in the study pop	oulation and the asso	ciations between quartil	es of the neighbour	rhood sta	tus score.				
77	b.	. All CRL mea	surement	t in the study pop	Dulation and the asso	ciations between quartil Second deprivation	es of the neighbour Third deprivati	rhood sta	tus score. ighest deprivation	Т	rend	p-value	e for tre
77	b.	. All CRL mea	surement	t in the study pop	oulation and the asso Lowest deprivation quartile	ciations between quartil Second deprivation quartile	es of the neighbour Third deprivati quartile	rhood sta	tus score. ighest deprivation quartile	T	rend	p-value	e for tre
77	b.	. All CRL mean	surement	in the study pop	Dulation and the asso Lowest deprivation quartile n = 300	ciations between quartil Second deprivation quartile n = 373	es of the neighbour Third deprivati quartile n = 399	rhood sta	tus score. ighest deprivation quartile n = 542	T	rend	p-value	e for tre
77	b.	. All CRL mea	asurement	in the study pop Model	Dulation and the association Lowest deprivation quartile n = 300 β (95% CI)	ciations between quartil Second deprivation quartile n = 373 β (95% CI)	es of the neighbour Third deprivati quartile n = 399 β (95% CI)	rhood sta	tus score. ighest deprivation quartile n = 542	 β (9	rend 5% CI)	p-value	e for tre
77 C	b. 	. All CRL mea n 1614	surement	t in the study pop Model Basic	Dulation and the association Lowest deprivation quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10)	ciations between quartil Second deprivation quartile n = 373 β (95% CI) -0.08 (-0.21 ; 0.05)	es of the neighbour Third deprivati quartile n = 399 β (95% CI) -0.08 (-0.20 ; 0.0	rhood sta	tus score. ighest deprivation quartile n = 542 Reference	Τ β (9 : 0.01 (-0	rend 5% CI) 0.02 ; 0.05)	p-value	e for tre
77 	b. ZRL	. All CRL mea n 1614	surement	t in the study pop Model Basic Adjusted	Deviation and the association Lowest deprivation quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ciations between quartil Second deprivation quartile n = 373 β (95% CI) -0.08 (-0.21 ; 0.05) -0.04 (-0.17 ; 0.10)	es of the neighbour Third deprivati quartile n = 399 β (95% CI) -0.08 (-0.20 ; 0.0 -0.06 (-0.19 ; 0.0	rhood sta on Hi 05) 06)	tus score. ighest deprivation quartile n = 542 Reference Reference	β (9) 0.01 (-0 0.004 (-	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-value	e for tro
77 C	b. ZRL	. All CRL mea n 1614	surement	t in the study pop Model Basic Adjusted	Deviation and the association Lowest deprivation quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ciations between quartil Second deprivation quartile n = 373 β (95% CI) -0.08 (-0.21 ; 0.05) -0.04 (-0.17 ; 0.10)	es of the neighbour Third deprivati quartile n = 399 β (95% CI) -0.08 (-0.20 ; 0.0 -0.06 (-0.19 ; 0.0	rhood sta on H 05) 06)	tus score. ighest deprivation quartile n = 542 Reference Reference	β (9) 0.01 (-(0.004 (-	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-value	2 for tr 0.48
77 C 78 79	b.	• All CRL mea n 1614	surement	t in the study pop Model Basic Adjusted	Deviation and the association Lowest deprivation quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ciations between quartil Second deprivation quartile n = 373 β (95% CI) -0.08 (-0.21 ; 0.05) -0.04 (-0.17 ; 0.10)	es of the neighbour Third deprivati quartile n = 399 β (95% CI) -0.08 (-0.20 ; 0.0 -0.06 (-0.19 ; 0.0	rhood sta on H i 05) 06)	tus score. ighest deprivation quartile n = 542 Reference Reference	β (9: 0.01 (-(0.004 (-	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-value	e for tro
77 C 78 79	b. CRL	. All CRL mea n 1614	surement	a in the study pop Model Basic Adjusted	Deviation and the association Lowest deprivation quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ciations between quartil Second deprivation quartile n = 373 β (95% CI) -0.08 (-0.21 ; 0.05) -0.04 (-0.17 ; 0.10)	es of the neighbour Third deprivati quartile n = 399 β (95% CI) -0.08 (-0.20 ; 0.0 -0.06 (-0.19 ; 0.0	rhood sta on H () () () () () () () () () () () () ()	tus score. ighest deprivation quartile n = 542 Reference Reference	β (9 : 0.01 (-0 0.004 (-	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-value	2 for tr 0.48
77 C 78 79	b.	. All CRL mea n 1614	surement	t in the study pop Model Basic Adjusted	Deviation and the association Lowest deprivation quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ciations between quartil Second deprivation quartile n = 373 β (95% CI) -0.08 (-0.21 ; 0.05) -0.04 (-0.17 ; 0.10)	es of the neighbour Third deprivati quartile n = 399 β (95% CI) -0.08 (-0.20 ; 0.0 -0.06 (-0.19 ; 0.0	rhood sta on H 05) 06)	tus score. ighest deprivation quartile n = 542 Reference Reference	β (9 : 0.01 (-0 0.004 (-	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-value	2 for tr).48).85
77 C 78 79	b. RL	. All CRL mea n 1614	surement	a in the study pop Model Basic Adjusted	Deviation and the association Quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ciations between quartil Second deprivation quartile n = 373 β (95% CI) -0.08 (-0.21 ; 0.05) -0.04 (-0.17 ; 0.10)	es of the neighbour Third deprivati quartile n = 399 β (95% CI) -0.08 (-0.20 ; 0.0 -0.06 (-0.19 ; 0.0 j.com/site/about/g	nhood sta	tus score. ighest deprivation quartile n = 542 Reference Reference	β (9) 0.01 (-0 0.004 (-	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-value	2 for tro 0.48 0.85
77 C 78 79	b. CRL	. All CRL mea n 1614	surement	t in the study pop Model Basic Adjusted	Deviation and the association Quartile n = 300 β (95% CI) -0.03 (-0.17 ; 0.10) 0.02 (-0.15 ; 0.16)	ciations between quartil Second deprivation quartile n = 373 β (95% CI) -0.08 (-0.21 ; 0.05) -0.04 (-0.17 ; 0.10)	es of the neighbour Third deprivati quartile n = 399 β (95% CI) -0.08 (-0.20 ; 0.0 -0.06 (-0.19 ; 0.0 j.com/site/about/g	rhood sta on Hi 05) 06) uidelines.	tus score. ighest deprivation quartile n = 542 Reference Reference	β (9: 0.01 (-0 0.004 (-	rend 5% CI) 0.02 ; 0.05) 0.04 ; 0.04)	p-value	2.48).85

 BMJ Open

	n	Model	Lowest deprivation	Second deprivation	Third deprivation	Highest deprivation	Trend	p-value for trend
			quartile	quartile	quartile	quartile		
			n = 2268	n = 2118	n = 2081	n = 2131		
			β (95% CI)	β (95% CI)	β (95% CI)		β (95% CI)	
C	RL 1143	Adjusted	-0.06 (-0.23 ; 0.12)	0.02 (-0.14 ; 0.17)	-0.06 (-0.21 ; 0.09)	Reference	0.01 (-0.04 ; 0.05)	0.80
81			Ur.					
82								
83 84	d. The associa	tion between the neighbo	ourhood deprivation statu	is score and all CRL m	easurement in the stud	y population in a selecte	ed cohort of non-SGA	
04	pregnancies.			r k				
	n	Model	Lowest deprivation	Second deprivation	Third deprivation	Highest deprivation	Trend	p-value for tren
			quartile	quartile	quartile	quartile		
			n = 2268	n = 2118	n = 2081	n = 2131		
			β (95% CI)	β (95% CI)	β (95% CI)		β (95% CI)	
		Basic	0.05 (-0.26; 0.35)	0.10 (-0.17 ; 0.37)	-0.05 (-0.31 ; 0.21)	Reference	-0.01 (-0.09 ; 0.06)	0.73
	CRL 434	Dusie						
	CRL 434	Adjusted	0.07 (-0.30 ; 0.43)	0.09 (-0.19 ; 0.38)	-0.06 (-0.33 ; 0.21)	Reference	-0.02 (-0.11 ; 0.08)	0.75
85	CRL 434 Abbreviation	Adjusted s: β: beta; CRL: crown-1	0.07 (-0.30 ; 0.43) rump length. Values are	0.09 (-0.19 ; 0.38) regression coefficients	-0.06 (-0.33 ; 0.21)	Reference ne data in SD-score and	-0.02 (-0.11 ; 0.08)	0.75
85 86	CRL 434 Abbreviation regression me	Adjusted s: β: beta; CRL: crown-1 odels. Basic model: by th	0.07 (-0.30 ; 0.43) rump length. Values are he use of SD scores it is	0.09 (-0.19 ; 0.38) regression coefficients automatically adjusted	-0.06 (-0.33 ; 0.21) with the 95% CI of the for gestational age. F	Reference ne data in SD-score and fully adjusted model: b	-0.02 (-0.11 ; 0.08) d are based on linear asic model and additio	0.75
85 86 87	CRL 434 Abbreviation regression me adjusted for r	Adjusted s: β: beta; CRL: crown-1 odels. Basic model: by the naternal age, educationa	0.07 (-0.30 ; 0.43) rump length. Values are he use of SD scores it is I level, smoking, alcoho	0.09 (-0.19 ; 0.38) regression coefficients automatically adjusted l use, folic acid supple	-0.06 (-0.33 ; 0.21) with the 95% CI of the for gestational age. For ment use, ethnicity, particular of the second	Reference ne data in SD-score and fully adjusted model: b arity, pre-pregnancy bo	-0.02 (-0.11 ; 0.08) d are based on linear asic model and addition by mass index and fe	0.75 onally tal sex.
85 86 87 88	CRL 434 Abbreviation regression me adjusted for r p-for trend ar	Adjusted s: β: beta; CRL: crown-1 odels. Basic model: by the naternal age, educationationationationationationationation	0.07 (-0.30 ; 0.43) rump length. Values are he use of SD scores it is il level, smoking, alcoho urhood deprivation as a	0.09 (-0.19 ; 0.38) regression coefficients automatically adjusted l use, folic acid supple continuous measure. ¹	-0.06 (-0.33 ; 0.21) with the 95% CI of the for gestational age. For ment use, ethnicity, produced between generational set with the set of the format of the set of	Reference ne data in SD-score and fully adjusted model: b arity, pre-pregnancy bo groups were evaluated u	-0.02 (-0.11 ; 0.08) d are based on linear asic model and addition ody mass index and fe using one-way-ANOV	0.75 onally tal sex. VA-tests
85 86 87 88 89	CRL 434 Abbreviation regression mo adjusted for r p-for trend ar for continuou	Adjusted s: β: beta; CRL: crown-1 odels. Basic model: by the naternal age, educationated analysis with the neighbor as variables. ² Differences	0.07 (-0.30 ; 0.43) rump length. Values are he use of SD scores it is al level, smoking, alcoho urhood deprivation as a o s in growth parameters h	0.09 (-0.19 ; 0.38) regression coefficients automatically adjusted l use, folic acid supple continuous measure. ¹]	-0.06 (-0.33 ; 0.21) with the 95% CI of the for gestational age. For ment use, ethnicity, participation of the provided states of the pro	Reference ne data in SD-score and fully adjusted model: b arity, pre-pregnancy bo groups were evaluated u od status score groups y	-0.02 (-0.11 ; 0.08) d are based on linear asic model and addition ody mass index and fe using one-way-ANOV were tested were evalu	0.75 onally tal sex. /A-tests nated
85 86 87 88 89 90	CRL 434 Abbreviation regression mo adjusted for r p-for trend ar for continuou using Studen	Adjusted s: β: beta; CRL: crown-1 odels. Basic model: by the naternal age, educational nalysis with the neighbor is variables. ² Differences	0.07 (-0.30 ; 0.43) rump length. Values are he use of SD scores it is al level, smoking, alcoho urhood deprivation as a o s in growth parameters b	0.09 (-0.19 ; 0.38) regression coefficients automatically adjusted I use, folic acid supple continuous measure. ¹] etween the lowest and	-0.06 (-0.33 ; 0.21) with the 95% CI of the for gestational age. For ment use, ethnicity, participation of the provided set of	Reference ne data in SD-score and fully adjusted model: be arity, pre-pregnancy be groups were evaluated u od status score groups w	-0.02 (-0.11 ; 0.08) d are based on linear asic model and addition ody mass index and fe using one-way-ANOV were tested were evalu	0.75 onally tal sex. /A-tests nated

Study population	Model	Lowest deprivation quartile	Second deprivation quartile	Third deprivation quartile	Highest deprivation quartile	Trend	
n = 7710		n = 2268	n = 2118	n = 2081	n = 2131		
		β (95% CI)	β (95% CI)	β (95% CI)		β (95% CI)	p-value for trend
Early pregnancy							
CRL	Basic	0.05 (-0.26 ; 0.35)	0.10 (-0.17 ; 0.37)	-0.05 (-0.31 ; 0.21)	Reference	-0.01 (-0.09 ; 0.06)	0.73
	Adjusted	0.07 (-0.30 ; 0.43)	0.09 (-0.19 ; 0.38)	-0.06 (-0.33 ; 0.21)	Reference	-0.02 (-0.11 ; 0.08)	0.75
НС	Basic	-0.38 (-0.71 ; -0.04)	-0.37 (-0.69 ; -0.06)	-0.07 (-0.37 ; 0.23)	Reference	0.12 (0.04 ; 0.21)	0.004
	Adjusted	-0.22 (-0.60 ; 0.17)	-0.32 (-0.65 ; 0.01)	-0.06 (-0.36 ; 0.25)	Reference	0.09 (-0.01 ; 0.19)	0.09
FL	Basic	-0.19 (-0.53 ; 0.15)	-0.33 (-0.63 ; -0.03)	-0.11 (-0.40 ; 0.18)	Reference	0.08 (-0.002; 0.16)	0.06
	Adjusted	-0.24 (-0.66 ; 0.18)	-0.36 (-0.69 ; -0.03)	-0.13 (-0.44 ; 0.18)	Reference	0.10 (-0.01 ; 0.20)	0.07
Mid pregnancy					0		
HC	Basic	-0.07 (-0.13 ; -0.001)	-0.05 (-0.12 ; 0.01)	-0.03 (-0.10 ; 0.04)	Reference	0.02 (0.003 ; 0.04)	0.02
	Adjusted	-0.02 (-0.10 ; 0.05)	-0.03 (-0.09 ; 0.04)	-0.02 (-0.09 ; 0.05)	Reference	0.01 (-0.01 ; 0.03)	0.40
FL	Basic	0.10 (0.045 ; 0.17)	0.10 (0.03 ; 0.16)	0.08 (0.01 ; 0.15)	Reference	-0.02 (-0.05 ; -0.01)	0.001
	Adjusted	0.02 (-0.05 ; 0.10)	0.05 (-0.03 ; 0.11)	0.04 (-0.03 ; 0.11)	Reference	-0.01 (-0.03 ; 0.01)	0.42
AC	Basic	-0.12 (-0.18 ; -0.05)	-0.13 (-0.20 ; -0.07)	-0.07 (-0.13 ; -0.01)	Reference	0.04 (0.02 ; 0.05)	<0.001

Supplemental Table 6. Associations between the neighbourhood status score and fetal growth in a selected cohort of non-SGA pregnancies.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Adjusted	-0.09 (-0.16 ; -0.01)	-0.11 (-0.18 ; -0.04)	-0.06 (-0.12 ; 0.01)	Reference	0.03 (0.01 ; 0.05)	0.01
EFW	Basic	-0.03 (-0.08 ; 0.05)	-0.03 (-0.09 ; 0.04)	0.001 (-0.07 ; 0.06)	Reference	0.01 (-0.01 ; 0.02)	0.77
	Adjusted	-0.04 (-0.12 ; 0.03)	-0.04 (-0.11 ; 0.03)	-0.01 (-0.08 ; 0.05)	Reference	0.01 (-0.01 ; 0.03)	0.19
Late pregnancy							
HC	Basic	-0.22 (-0.29 ; -0.16)	-0.24 (-0.31 ; -0.18)	-0.09 (-0.16 ; -0.03)	Reference	0.06 (0.04 ; 0.08)	<0.001
	Adjusted	-0.13 (-0.20 ; -0.06)	-0.18 (-0.24 ; -0.11)	-0.06 (-0.12 ; -0.001)	Reference	0.03 (0.01 ; 0.05)	<0.001
FL	Basic	-0.02 (-0.09 ; 0.04)	0.01 (-0.05 ; 0.07)	0.01 (-0.05 ; 0.08)	Reference	0.001 (-0.02 ; 0.02)	0.90
	Adjusted	-0.08 (-0.15 ; -0.01)	-0.01 (-0.08 ; 0.05)	-0.01 (-0.07 ; 0.06)	Reference	0.01 (-0.01 ; 0.03)	0.20
AC	Basic	-0.20 (-0.27 ; -0.14)	-0.18 (-0.24 ; -0.12)	-0.07 (-0.13 ; -0.01)	Reference	0.06 (0.04 ; 0.07)	<0.001
	Adjusted	-0.15 (-0.22 ; -0.08)	-0.13 (-0.19 ; -0.06)	-0.05 (-0.12 ; 0.01)	Reference	0.04 (0.02 ; 0.06)	0.02
EFW	Basic	-0.18 (-0.20 ; -0.12)	-0.14 (-0.20 ; -0.08)	-0.05 (-0.11 ; 0.01)	Reference	0.05 (0.03 ; 0.06)	<0.001
	Adjusted	-0.16 (-0.23 ; -0.08)	-0.11 (-0.17 ; -0.04)	-0.05 (-0.11 ; 0.02)	Reference	0.04 (0.02 ; 0.06)	<0.001

Abbreviations: SGA: small for gestational age, HC: head circumference, FL: femur length, AC: abdominal circumference, EFW: estimated fetal weight.
Values are regression coefficients with the 95% CI of the data in SD-score and are based on linear regression models. Basic model: by the use of SD scores it is automatically adjusted for gestational age. Fully adjusted model: basic model and additionally adjusted for maternal age, educational level, smoking, alcohol use, folic acid supplement use, ethnicity, parity, pre-pregnancy body mass index and fetal sex. p-for trend analysis with the neighbourhood deprivation as a continuous measure.

Study population	n	Model	Lowest SES quartile	Second SES quartile	Third SES quartile	Highest SES quartile	Trend	p-value for tre
n = 8617			n = 2170	n = 2208	n = 2090	n = 2149		
			β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	
Carly pregnancy								
CRL	1614	Basic	-0.03 (-0.17 ; 0.10)	-0.08 (-0.21 ; 0.05)	-0.08 (-0.20 ; 0.05)	Reference	0.01 (-0.02 ; 0.05)	0.48
		Adjusted	0.002 (-0.15 ; 0.16)	-0.04 (-0.17 ; 0.10)	-0.06 (-0.19 ; 0.06)	Reference	0.02 (-0.02 ; 0.07)	0.30
НС	5646	Basic	0.05 (-0.03 ; 0.13)	0.05 (-0.03 ; 0.13)	0.05 (-0.02 ; 0.13)	Reference	-0.01 (-0.03 ; 0.01)	0.44
		Adjusted	0.02 (-0.06 ; 0.11)	0.04 (-0.04 ; 0.12)	0.05 (-0.03 ; 0.13)	Reference	0.004 (-0.02 ; 0.03)	0.75
FL	4682	Basic	0.01 (-0.07 ; 0.09)	-0.09 (-0.17 ; -0.01)	0.06 (-0.02 ; 0.14)	Reference	0.01 (-0.01 ; 0.03)	0.44
		Adjusted	-0.09 (-0.18 ; 0.003)	-0.16 (-0.24 ; -0.07)	0.01 (-0.06 ; 0.10)	Reference	0.03 (0.002; 0.06)	0.04
Aid pregnancy						Op.		
НС	8035	Basic	-0.08 (-0.15 ; -0.02)	-0.07 (-0.13 ; -0.01)	-0.04 (-0.10 ; 0.03)	Reference	0.02 (0.01 ; 0.04)	0.01
		Adjusted	-0.02 (-0.09 ; 0.05)	-0.03 (-0.10 ; 0.03)	-0.02 (-0.08 ; 0.04)	Reference	0.02 (-0.01 ; 0.04)	0.18
		5				,		
FL	8058	Basic	0.07 (0.01 ; 0.14)	0.06 (0.001 ; 0.13)	0.05 (-0.01 : 0.12)	Reference	-0.02 (-0.04 ; -0.01)	0.01
		Adjusted	$-0.01(-0.08 \cdot 0.07)$	0.02 (-0.05 : 0.09)	0.02 (-0.05 : 0.08)	Reference	$0.003(-0.02 \cdot 0.02)$	0.80
		Tujusteu	0.01 (0.00 , 0.07)	0.02 (0.05 ; 0.07)	0.02 (0.02 , 0.00)	Rejerence	0.000 (0.02 , 0.02)	0.00

1											
2											
3		AC	8052	Basic	-0.15 (-0.21 ; -0.09)	-0.15 (-0.21 ; -0.09)	-0.09 (-0.15 ; -0.03)	Reference	0.04 (0.03 ; 0.06)	<0.001	
4				Adjusted	0.10 (0.17 • 0.03)	0.11 (0.18 • 0.05)		Defenence	0.03 (0.01 • 0.05)	0.01	
5				Aujusteu	-0.10 (-0.17 ; -0.03)	-0.11 (-0.10 ; -0.03)	-0.07 (-0.13 ; -0.01)	Kejerence	0.05 (0.01; 0.05)	0.01	
7											
8											
9		EFW	8016	Basic	-0.06 (-0.12; 0.01)	-0.06 (-0.12 ; 0.003)	-0.03 (-0.09 ; 0.03)	Reference	0.01 (-0.001 ; 0.03)	0.08	
10				Adjusted	-0.06 (-0.14 : 0.01)	-0.06 (-0.13 : 0.01)	-0.03(-0.10:0.03)	Reference	0.02(-0.003:0.04)	0.09	
11				Tajastea		0.00 (0.12 , 0.01)		Ingerence	0.02 (0.000 , 0.0.)	0.07	
12	Late pro	egnancy									-
13 14			9162	Deele	0.24 (0.21 + 0.19)		0.11 (0.17 - 0.05)	Deferrere	0.06 (0.05 - 0.09)	-0.001	
14		HC	8105	Basic	-0.24 (-0.31 ; -0.18)	-0.25 (-0.51 ; -0.19)	-0.11 (-0.17 ; -0.05)	Reference	0.00 (0.05 ; 0.08)	<0.001	
16				Adjusted	-0.14 (-0.21 ; -0.08)	-0.17 (-0.24 ; -0.11)	-0.07 (-0.14 ; -0.01)	Reference	0.04 (0.02; 0.06)	0.001	
17											
18											
19		FL	8234	Basic	-0.06 (-0.12 : 0.003)	-0.03 (-0.09 : 0.03)	-0.02(-0.08:0.05)	Reference	0.01 (-0.01 : 0.03)	0.21	
20					,,						
21				Adjusted	-0.10 (-0.17 ; -0.02)	-0.04 (-0.10 ; 0.03)	-0.03 (-0.09 ; 0.04)	Reference	0.02 (-0.01 ; 0.04)	0.16	
22											
24											
25		AC	8212	Basic	-0.24 (-0.30 ; -0.18)	-0.21 (-0.27 ; -0.15)	-0.10 (-0.16 ; -0.04)	Reference	0.06 (0.05 ; 0.08)	<0.001	
26											
27				Adjusted	-0.16 (-0.23 ; -0.09)	-0.13 (-0.20 ; -0.07)	-0.07 (-0.13 ; -0.01)	Reference	0.03 (0.01 ; 0.05)	0.002	
28											
29											
30		EFW	8201	Basic	-0.22 (-0.28 ; -0.16)	-0.18 (-0.24 ; -0.11)	-0.09 (-0.15 ; -0.02)	Reference	0.06 (0.04 ; 0.07)	<0.001	
32				A dimensional	0.17 (0.25 - 0.10)		0.07 (0.12 . 0.01)	Deferrere		0.001	
33				Adjusted	-0.17 (-0.25 ; -0.10)	-0.12 (-0.19 ; -0.06)	-0.07 (-0.13 ; -0.01)	Reference	0.03 (0.01 ; 0.00)	0.001	
34	98	Abbro	eviations:	HC: head c	rcumference. FL: fem	ur length, AC: abdom	inal circumference. EFV	W: estimated fetal	weight. Values are regre	ssion coefficient	- S
35	00		1 050/ 6	T C (1 1 (1 1'	' 11 D ' 1	11 (1 60)		1 1 4 10	
36	99	with t	the 95% C	1 of the data	a in SD-score and are b	based on linear regress	sion models. Basic mod	el: by the use of S	D scores it is automatical	ly adjusted for	
3/ 20	100	gestat	tional age.	Fully adjus	ted model: basic mode	el and additionally adj	usted for maternal age,	educational level,	smoking, alcohol use, fo	lic acid supplem	ent
30											
40											
41											
42											
43					For pe	er review only - http://l	bmjopen.bmi.com/site/al	bout/quidelines.xht	ml		
44					• •		y - p				
45											
33 34 ⁻ 35 36 37 38 39 40 41 42 43 44 45	98 99 100	Abbro with t gestat	eviations: the 95% C	HC: head ci I of the data Fully adjus	For pe	ur length, AC: abdom pased on linear regress el and additionally adj er review only - http://l	inal circumference, EFV sion models. Basic mod- usted for maternal age, bmjopen.bmj.com/site/al	W: estimated fetal el: by the use of SI educational level, bout/guidelines.xht	weight. Values are regre D scores it is automatical smoking, alcohol use, fo	ssion coeffici ly adjusted fo lic acid suppl	ents or em(

use, ethnicity, parity, pre-pregnancy body mass index, fetal sex and household income. p-for trend analysis with the neighbourhood deprivation as a
 continuous measure.

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For peer review only

Page 49 of 59

BMJ Open

n	Model	Lowest SES quartile	Second SES quartile	Third SES quartile	Highest SES quartile	Trend	p-value for tre
		n = 2170	n = 2208	n = 2090	n = 2149		
		β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	
1614	Basic	-0.03 (-0.17 ; 0.10)	-0.08 (-0.21 ; 0.05)	-0.08 (-0.20 ; 0.05)	Reference	0.01 (-0.02 ; 0.05)	0.48
	Adjusted	0.002 (-0.15 ; 0.16)	-0.04 (-0.17 ; 0.10)	-0.06 (-0.19 ; 0.06)	Reference	0.01 (-0.03 ; 0.05)	0.73
5646	Basic	0.05 (-0.03 ; 0.13)	0.05 (-0.03 ; 0.13)	0.05 (-0.02 ; 0.13)	Reference	-0.01 (-0.03 ; 0.01)	0.44
	Adjusted	0.02 (-0.06 ; 0.11)	0.04 (-0.04 ; 0.12)	0.05 (-0.03 ; 0.13)	Reference	0.002 (-0.02 ; 0.03)	0.90
	U U				·		
4682	Basic	0.01 (-0.07 · 0.09)	-0.09 (-0.17 : -0.01)	$0.06(-0.02 \cdot 0.14)$	Reference	0.01 (-0.01 · 0.03)	0 44
1002	Adjusted	0.00(0.18:0.002)		0.01 (0.05 ; 0.10)	Poforonoo		0.003
	Aujusteu	-0.09 (-0.18 , 0.003)	-0.10 (-0.24 ; -0.07)	0.01 (-0.00 , 0.10)	Kejerence	0.04 (0.01; 0.00)	0.003
8035	Basic	-0.08 (-0.15 ; -0.02)	-0.07 (-0.13 ; -0.01)	-0.04 (-0.10; 0.03)	Reference	0.02 (0.01 ; 0.04)	0.01
	Adjusted	-0.02 (-0.09 ; 0.05)	-0.03 (-0.10; 0.03)	-0.02 (-0.08 ; 0.04)	Reference	0.01 (-0.01 ; 0.02)	0.57
8058	Basic	0.07 (0.01 ; 0.14)	0.06 (0.001 ; 0.13)	0.05 (-0.01 ; 0.12)	Reference	-0.02 (-0.04 ; -0.01)	0.01
	Adjusted	-0.01 (-0.08 ; 0.07)	0.02 (-0.05 ; 0.09)	0.02 (-0.05 ; 0.08)	Reference	-0.004 (-0.02 ; 0.02)	0.69
	n 1614 5646 4682 8035 8058	n Model	nModelLowest SES quartile $n = 2170$ 1614Basic-0.03 (-0.17; 0.10) Adjusted0.002 (-0.15; 0.10)5646Basic0.002 (-0.15; 0.16)5646Basic0.05 (-0.03; 0.13) 0.02 (-0.06; 0.11)4682Basic0.01 (-0.07; 0.09) -0.09 (-0.18; 0.003)8035Basic-0.08 (-0.15; -0.02) -0.02 (-0.09; 0.05)8058Basic0.07 (0.01; 0.14) -0.01 (-0.08; 0.07)	n Model Lowest SES quartile Second SES quartile second SES quartile n = 2208 β (95% CI) β (95% CI) β (95% CI) β (95% CI) 1614 Basic -0.03 (-0.17; 0.10) -0.08 (-0.21; 0.05) -0.04 (-0.17; 0.10) -0.04 (-0.17; 0.10) -0.04 (-0.17; 0.10) 5646 Basic 0.002 (-0.15; 0.16) -0.04 (-0.17; 0.10) -0.04 (-0.17; 0.10) 5646 Basic 0.05 (-0.03; 0.13) 0.05 (-0.03; 0.13) 0.05 (-0.03; 0.13) 0.04 (-0.04; 0.12) 4682 Basic 0.01 (-0.07; 0.09) -0.09 (-0.17; -0.01) -0.04 (-0.04; 0.12) 4682 Basic 0.01 (-0.07; 0.09) -0.09 (-0.17; -0.01) -0.01 (-0.08; 0.003) -0.16 (-0.24; -0.07) 8035 Basic -0.08 (-0.15; -0.02) -0.07 (-0.13; -0.01) -0.03 (-0.10; 0.03) -0.03 (-0.10; 0.03) 8058 Basic -0.07 (0.01; 0.14) 0.06 (0.001; 0.13) Adjusted -0.01 (-0.08; 0.07) 0.02 (-0.05; 0.09)	nModelLowest SES quartue n = 2170Second SES quartue n = 2208Init's SES quartue n = 2090 β (95% CI) β (95% CI) β (95% CI) β (95% CI)1614Basic-0.03 (-0.17; 0.10) Adjusted-0.08 (-0.21; 0.05) -0.04 (-0.17; 0.10)-0.08 (-0.20; 0.05) -0.06 (-0.19; 0.06)5646Basic0.002 (-0.15; 0.16) -0.02 (-0.03; 0.13)-0.05 (-0.02; 0.13) 0.05 (-0.02; 0.13)0.05 (-0.02; 0.13) 0.05 (-0.02; 0.13)5646Basic0.02 (-0.06; 0.11) -0.02 (-0.06; 0.11)0.04 (-0.04; 0.12) -0.04 (-0.04; 0.12)0.05 (-0.02; 0.13) 0.05 (-0.03; 0.13)4682Basic0.01 (-0.07; 0.09) -0.09 (-0.18; 0.003)-0.09 (-0.17; -0.01) -0.06 (-0.02; 0.14) -0.01 (-0.06; 0.10)8035Basic-0.08 (-0.15; -0.02) -0.09 (-0.13; -0.01)-0.04 (-0.10; 0.03) -0.02 (-0.06; 0.10)8058Basic0.07 (0.01; 0.14) -0.01 (-0.08; 0.07)0.06 (0.001; 0.13) -0.02 (-0.05; 0.09)0.02 (-0.05; 0.08)	n Model Lowest SES quartue Second SES quartue Init'd SES quartue Highest SES quartue $n = 2170$ $n = 2208$ $n = 2090$ $n = 2149$ β (95% CI) 1614 Basic -0.03 (-0.17; 0.10) -0.08 (-0.21; 0.05) -0.08 (-0.20; 0.05) Reference 5646 Basic 0.002 (-0.15; 0.16) -0.04 (-0.17; 0.10) -0.06 (-0.19; 0.06) Reference 4682 Basic 0.05 (-0.03; 0.13) 0.05 (-0.03; 0.13) 0.05 (-0.02; 0.14) Reference 4682 Basic 0.01 (-0.07; 0.09) -0.09 (-0.17; -0.01) 0.06 (-0.02; 0.14) Reference 8035 Basic -0.09 (-0.18; 0.003) -0.16 (-0.24; -0.07) 0.01 (-0.06; 0.10) Reference 8035 Basic -0.08 (-0.15; -0.02) -0.07 (-0.13; -0.01) -0.04 (-0.10; 0.03) Reference 8035 Basic -0.02 (-0.09; 0.05) -0.03 (-0.10; 0.03) -0.02 (-0.08; 0.04) Reference 8058 Basic 0.07 (0.01; 0.14)	n Model Lowest SES quartue Second SES quartue Initial SES quartue </td

1 2 3		AC	8052	Basic	-0.15 (-0.21 ; -0.09)	-0.15 (-0.21 ; -0.09)	-0.09 (-0.15 ; -0.03)	Reference	0.04 (0.03 ; 0.06)	<0.001
4 5				Adjusted	-0.10 (-0.17 ; -0.03)	-0.11 (-0.18 ; -0.05)	-0.07 (-0.13 ; -0.01)	Reference	0.03 (0.01 ; 0.05)	0.01
6 7										
8 9		EFW	8016	Basic	-0.06 (-0.12 ; 0.01)	-0.06 (-0.12 ; 0.003)	-0.03 (-0.09 ; 0.03)	Reference	0.01 (-0.001 ; 0.03)	0.08
10 11				Adjusted	-0.06 (-0.14 ; 0.01)	-0.06 (-0.13 ; 0.01)	-0.03 (-0.10 ; 0.03)	Reference	0.02 (-0.004 ; 0.03)	0.13
12	Late pre	egnancy								_
14		HC	8163	Basic	-0.24 (-0.31 ; -0.18)	-0.25 (-0.31 ; -0.19)	-0.11 (-0.17 ; -0.05)	Reference	0.06 (0.05 ; 0.08)	<0.001
15 16				Adjusted	-0.14 (-0.21 ; -0.08)	-0.17 (-0.24 ; -0.11)	-0.07 (-0.14 ; -0.01)	Reference	0.03 (0.02 ; 0.05)	<0.001
17 10										
18 19		EI	8724	Dagio	$0.06(0.12 \cdot 0.003)$	0.03(0.00+0.03)	0.02 (0.08 + 0.05)	Deference	0.01(0.01+0.02)	0.21
20		ΓL	8234	Dasic	-0.06 (-0.12 ; 0.005)	-0.03 (-0.09 ; 0.03)	-0.02 (-0.08 ; 0.03)	Kejerence	0.01 (-0.01 ; 0.03)	0.21
22				Adjusted	-0.10 (-0.17 ; -0.02)	-0.04 (-0.10 ; 0.03)	-0.03 (-0.09 ; 0.04)	Reference	0.02 (-0.002 ; 0.04)	0.08
23 24										
24 25		AC	8212	Basic	-0.24 (-0.30 ; -0.18)	-0.21 (-0.27 ; -0.15)	-0.10 (-0.16 ; -0.04)	Reference	0.06 (0.05 ; 0.08)	<0.001
26 27				Adjusted	-0.16 (-0.23 ; -0.09)	-0.13 (-0.20 ; -0.07)	-0.07 (-0.13 ; -0.01)	Reference	0.04 (0.02 ; 0.06)	<0.001
28				5						
29 30										
31		EFW	8201	Basic	-0.22 (-0.28 ; -0.16)	-0.18 (-0.24 ; -0.11)	-0.09 (-0.15 ; -0.02)	Reference	0.06 (0.04 ; 0.07)	<0.001
32 33				Adjusted	-0.17 (-0.25 ; -0.10)	-0.12 (-0.19 ; -0.06)	-0.07 (-0.13 ; -0.01)	Reference	0.04 (0.02 ; 0.06)	<0.001
34	104	Abbrev	viations:	HC: head ci	rcumference, FL: fem	ur length, AC: abdom	inal circumference, EF	W: estimated fetal	weight. Values are regres	ssion coefficients
35 36	105	with th	e 95% C	I of the data	in SD-score and are b	based on linear regress	sion models. Basic mod	el: by the use of SI	O scores it is automatical	ly adjusted for
37 38	106	gestati	onal age.	Fully adjus	ted model: basic mode	el and additionally adj	justed for maternal age,	educational level,	smoking, alcohol use, fol	lic acid supplement
39	107	use, etl	nnicity, p	oarity, pre-pi	regnancy body mass ir	ndex and fetal sex. p-f	for trend analysis with th	he neighbourhood o	deprivation as a continuo	us measure.
40 41										
42										
43 44					For pe	er review only - http://	bmjopen.bmj.com/site/a	bout/guidelines.xht	ml	
15										

BMJ Open

Stud	ly Model	Lowest		Second		Third		Highest	Trend	p-value
populat	ition	deprivation		deprivation		deprivation		deprivatio		for trend
		quartile		quartile		quartile		n quartile		
n = 86	617	n = 1190		n = 1068		n = 1273		n = 1653		
		OR (95% CI)		OR (95% CI)		OR (95% CI)			OR (95% CI)	
Small for	Adjusted	1.39	0.01	1.15	0.24	1.13	0.31	Reference	0.91	0.004
estation;	al age	(1.09; 1.77)		(0.91; 1.46)		(0.89; 1.43)			(0.85; 0.97)	
109	Abbreviations: β: bet	a; OR: odds ratio. Values a	re odds rati	ios with the 95% Cl	I of the da	ta in SD-score and	are base	d on logistic reg	ression models.	Adjusted
110										
110	model: basic model a	nd additionally adjusted for	r maternal :	age, educational lev	vel, smoki	ng, alcohol use, fo	lic acid s	upplement use, e	ethnicity, parity,	pre-
111	model: basic model a pregnancy body mass	nd additionally adjusted for s index, fetal sex, and addit	r maternal a ionally for	age, educational lev maternal hypertensi	vel, smoki ion P-for	ng, alcohol use, fo r trend analysis wit	lic acid such the height	applement use, e ghbourhood dep	ethnicity, parity, rivation as a con	pre- tinuous
110 111 112	model: basic model a pregnancy body mass measure. Small size f	nd additionally adjusted for index, fetal sex, and addition for gestational age (SGA) a	r maternal a ionally for t birth was	age, educational lev maternal hypertens defined as a sex and	vel, smoki ion P-fo d gestatio	ng, alcohol use, fo r trend analysis wit nal age adjusted bi	lic acid so h the neig rthweight	upplement use, e ghbourhood dep below the 10th	ethnicity, parity, rivation as a con percentile (<-1.4	pre- tinuous 40 SD-
110 111 112 113	model: basic model a pregnancy body mass measure. Small size f score) in the study co	nd additionally adjusted for index, fetal sex, and addition for gestational age (SGA) a hort.	r maternal a ionally for t birth was	age, educational lev maternal hypertens defined as a sex and	vel, smoki ion P-fo d gestatio	ng, alcohol use, fo r trend analysis wit nal age adjusted bi	lic acid so h the neig rthweight	applement use, e ghbourhood dep below the 10th	ethnicity, parity, rivation as a con percentile (<-1.4	pre- tinuous 40 SD-
110 111 112 113 114	model: basic model a pregnancy body mass measure. Small size f score) in the study co	nd additionally adjusted for index, fetal sex, and addit for gestational age (SGA) a hort.	r maternal ionally for t birth was	age, educational lev maternal hypertens defined as a sex and	vel, smoki ion P-fo d gestatio	ng, alcohol use, fo r trend analysis wit nal age adjusted bi	lic acid such the neight the neig	applement use, e ghbourhood dep below the 10th	ethnicity, parity, rivation as a con percentile (<-1.4	pre- tinuous 40 SD-
110 111 112 113 114	model: basic model a pregnancy body mass measure. Small size f score) in the study co	nd additionally adjusted for index, fetal sex, and addition for gestational age (SGA) a hort.	r maternal ionally for t birth was	age, educational lev maternal hypertens defined as a sex and	vel, smoki ion P-fo d gestatio	ng, alcohol use, fo r trend analysis wit nal age adjusted bi	lic acid so h the neight rthweight	applement use, e ghbourhood dep below the 10th	ethnicity, parity, rivation as a con percentile (<-1.4	pre- tinuous 40 SD-
110 111 112 113 114	model: basic model a pregnancy body mass measure. Small size f score) in the study co	nd additionally adjusted for index, fetal sex, and addit for gestational age (SGA) a hort.	r maternal ionally for t birth was	age, educational lev maternal hypertens defined as a sex and	vel, smoki ion P-fo d gestatio	ng, alcohol use, fo r trend analysis wit nal age adjusted bi	lic acid such the neight of the second secon	upplement use, e ghbourhood dep below the 10th	ethnicity, parity, rivation as a con percentile (<-1.4	pre- tinuous 40 SD-
110 111 112 113 114	model: basic model a pregnancy body mass measure. Small size f score) in the study co	nd additionally adjusted for index, fetal sex, and addit for gestational age (SGA) a hort.	r maternal ionally for t birth was	age, educational lev maternal hypertens defined as a sex and	vel, smoki ion P-fo d gestatio	ng, alcohol use, fo r trend analysis wit nal age adjusted bi	lic acid su h the neight rthweight	applement use, e ghbourhood dep below the 10th	ethnicity, parity, rivation as a con percentile (<-1.4	pre- tinuous 40 SD-
110 111 112 113 114	model: basic model a pregnancy body mass measure. Small size f score) in the study co	nd additionally adjusted for index, fetal sex, and addit for gestational age (SGA) a hort.	r maternal ionally for t birth was	age, educational lev maternal hypertens defined as a sex and	vel, smoki ion P-fo d gestatio	ng, alcohol use, fo r trend analysis wit nal age adjusted bi	lic acid so h the neight rthweight	applement use, e ghbourhood dep below the 10th	ethnicity, parity, rivation as a con percentile (<-1.4	pre- tinuous 40 SD-
111 112 113 114	model: basic model a pregnancy body mass measure. Small size f score) in the study co	nd additionally adjusted for index, fetal sex, and addition for gestational age (SGA) a hort.	r maternal ionally for t birth was	age, educational lev maternal hypertens defined as a sex and	vel, smoki ion P-fo d gestatio	ng, alcohol use, fo r trend analysis wit nal age adjusted bi	lic acid so h the neight rthweight	applement use, e ghbourhood dep below the 10th	ethnicity, parity, rivation as a con percentile (<-1.4	pre- tinuous 40 SD-
110 111 112 113 114	model: basic model a pregnancy body mass measure. Small size f score) in the study co	nd additionally adjusted for index, fetal sex, and addit for gestational age (SGA) a hort.	r maternal ionally for t birth was	age, educational lev maternal hypertens defined as a sex and	vel, smoki ion P-fo d gestatio	ng, alcohol use, fo r trend analysis wit nal age adjusted bi	lic acid so h the neight rthweight	applement use, e ghbourhood dep below the 10th	ethnicity, parity, rivation as a con percentile (<-1.4	pre- tinuous 40 SD-
110 111 112 113 114	model: basic model a pregnancy body mass measure. Small size f score) in the study co	nd additionally adjusted for index, fetal sex, and addit for gestational age (SGA) a hort.	r maternal ionally for t birth was	age, educational lev maternal hypertens defined as a sex and	vel, smoki ion P-fo d gestatio	ng, alcohol use, fo r trend analysis wit nal age adjusted bi	lic acid su h the neig rthweight	applement use, e ghbourhood dep below the 10th	ethnicity, parity, rivation as a con percentile (<-1.4	pre- tinuous 40 SD-
111 112 113 114	model: basic model a pregnancy body mass measure. Small size f score) in the study co	nd additionally adjusted for index, fetal sex, and addit for gestational age (SGA) a hort.	r maternal ionally for t birth was	age, educational lev maternal hypertens defined as a sex and	vel, smoki ion P-fo d gestatio	ng, alcohol use, fo r trend analysis wit nal age adjusted bi	lic acid su h the neight rthweight	applement use, e ghbourhood dep below the 10th	ethnicity, parity, rivation as a con percentile (<-1.4	pre- tinuous 40 SD-
110 111 112 113 114	model: basic model a pregnancy body mass measure. Small size f score) in the study co	nd additionally adjusted for index, fetal sex, and addit for gestational age (SGA) a hort.	r maternal ionally for t birth was	age, educational lev maternal hypertens defined as a sex and	vel, smoki ion P-fo d gestatio	ng, alcohol use, fo r trend analysis wit nal age adjusted bi	lic acid su h the neig rthweight	applement use, e ghbourhood dep below the 10th	ethnicity, parity, rivation as a con percentile (<-1.4	pre- tinuous 40 SD-
110 111 112 113 114	model: basic model a pregnancy body mass measure. Small size f score) in the study co	nd additionally adjusted for index, fetal sex, and addition for gestational age (SGA) a hort.	r maternal ionally for t birth was	age, educational lev maternal hypertens defined as a sex and only - http://bmiope	vel, smoki ion P-fo d gestatio	ng, alcohol use, fo r trend analysis wit nal age adjusted bi	lic acid si h the neig rthweight	applement use, e ghbourhood dep below the 10th	ethnicity, parity, rivation as a con percentile (<-1.4	pre- tinuous 40 SD-

Supplemental Table 10. Observed and expected values of covariates.

	Observed	Expected
Age at intake (years)	29.6 (5.3)	29.6 (5.3)
Prepregnancy body mass index (kg/m ²)	22.8 (18.4 - 32.2)	22.6 (18.6 – 32.4
Parity (nulliparous)	4796 (55.7)	4739 (55.7)
Fetal sex (boy)	4347 (50.4)	4346 (50.4)
Educational level		
Lower/no education	1101 (12.8)	916 (11.7)
Middle	4060 (47.1)	3638 (46.4)
High	3456 (40.1)	3282 (41.9)
Ethnicity		
Dutch and Western	4967 (57.6)	4793 (58.8)
Turkish and Moroccan	1464 (17.0)	1330 (16.3)
African	1178 (13.7)	1076 (13.2)
Asian	1008 (11.7)	946 (11.6)
Smoking		
Never smoked during pregnancy	6256 (72.6)	5472 (72.8)
Smoked until pregnancy was known	735 (8.5)	644 (8.6)
Continued smoking in pregnancy	1626 (18.9)	1403 (18.7)
Alcohol		
Never alcohol consumption in pregnancy	4351 (50.5)	3692 (49.8)
Alcohol consumption until pregnancy was known	1149 (13.3)	999 (13.5)
Continued alcohol consumption in pregnancy	3117 (36.2)	2728 (36.8)
Folic acid supplement use		
None	2751 (31.9)	1877 (29.4)
Start in first 10 weeks of pregnancy	2661 (30.9)	1981 (31.1)
Start preconceptional	3205 (37.2)	2518 (39.5)

116 Data are represented as n (%), mean (SD) or median with the 90% range. Percentages 'expected'

117 displayed as valid percentages.

1 2		
2 3	118	Supplemental 1 . First trimester and fetal growth, measurement guidelines.
4 5	119	
6	120	CRL: crown-rump length (39)
7 8	121	CRL is measured as the largest dimension of embryo, excluding the yolk sac and extremities. A
9	122	midline sagittal section of the whole embryo or fetus should be obtained, ideally with the embryo or
10 11	123	fetus oriented horizontally on the screen. An image should be magnified sufficiently to fill most of the
12	124	width of the ultrasound screen, so that the measurement line between crown and rump is at about 90°
13 14	125	to the ultrasound beam.
15	126	<u>Caliper placement</u> : measure the fetus in a neutral position (i.e. neither flexed nor hyperextended). The
16 17	127	end points of crown and rump should be defined clearly.
18	128	
19 20	129	HC: Head circumference (40)
21 22	131	As described for the BPD, ensuring that the circumference placement markers correspond to the
22	132	technique described on the reference chart.
24 25	133	<u>Caliper placement</u> : If the ultrasound equipment has ellipse measurement capacity, then the HC can be
26	134	measured directly by placing the ellipse around the outside of the skull bone echoes.
27 28	135	
29	136	
30 31	137	AC: abdominal circumference (40)
32	138	- Transverse section of the fetal abdomen (as circular as possible);
33 34	139	- umbilical vein at the level of the portal sinus;
35 36	140	- stomach bubble visualized;
30 37	141	- kidneys should not be visible.
38 39	142	<u>Caliper placement:</u> The AC is measured at the outer surface of the skin line, either directly with ellipse
40	143	calipers or calculated from linear measurements made perpendicular to each other, usually the
41 42	144	anteroposterior abdominal diameter and transverse abdominal diameter.
43	145	
44 45	146	
46	147	FL: femur length (40)
47 48	148	The FL is imaged optimally with both ends of the ossified metaphysis clearly visible. The longest
49 50	149	axis of the ossified diaphysis is measured. The same technique as that used to establish the reference
50 51	150	chart should be used with regard to the angle between the femur and the insonating ultrasound beams.
52	151	An angle of insonation between 45° and 90° is typical.
55 54	152	Caliper placement: Each caliper is placed at the ends of the ossified diaphysis without including the
55 56	153	distal femoral epiphysis if it is visible
57	154	
58 59 60	155	

Supplemental 2. Multiple imputations for missing data of covariates.

157 We imputed missing data of the covariates using multiple imputations (17). The percentages of

158 missing values for the confounders within the population for analysis were lower than 20%. For the

159 multiple imputation, we the Markov chain Monte Carlo approach. In the imputation model, we

- 160 included all confounders, plus maternal age, ethnicity, parity and prepregnancy BMI. Furthermore, we
- 161 additionally added the studied determinants and outcomes in the imputation model as prediction
- 162 variables only; they were not imputed themselves. Five imputed datasets were created and analyzed
 - 163 together.

to perteries only
BMJ Open

1 2 3 4 5	Reporting checklist for cohort study.					
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Based on the STROBE cohort guidelines.					
	Instructions to authors					
	Complete this checklist by entering the page numbers from your manuscript where readers will find					
	each of the items listed below.					
	Your article may not currently address all the items on the checklist. Please modify your text to					
20 21 22	include the missing information. If you are certain that an item does not apply, please write "n/a" and					
22 23 24 25 26 27 28 29 30 31	provide a short explanation.					
	Upload your completed checklist as an extra file when you submit to a journal.					
	In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them					
32 33	as:					
34 35 36	von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening					
37 38	the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for					
39 40 41	reporting observational studies.					
42 43				Page		
44 45 46 47 48 49 50			Reporting Item	Number		
	Title and abstract					
50 51 52	Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the	1		
53 54 55 56 57 58			title or the abstract			
59 60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

4 5

2	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	2
3 4			of what was done and what was found	
5 6				
7 8	Introduction			
9 10	Background /	<u>#2</u>	Explain the scientific background and rationale for the	4
11 12	rationale		investigation being reported	
13 14				
15 16	Objectives	<u>#3</u>	State specific objectives, including any prespecified	4
17 18			hypotheses	
19 20				
21 22	Methods			
23 24 25	Study design	<u>#4</u>	Present key elements of study design early in the paper	4, 5
26 27 28	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	4, 5
28 29 30			periods of recruitment, exposure, follow-up, and data	
31 32			collection	
33 34 35	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	4, 5
36 37			selection of participants. Describe methods of follow-up.	
38 39 40	Eligibility criteria	#6b	For matched studies, give matching criteria and number of	4.5
41 42		<u></u>	exposed and unexposed	.,.
43				
44 45 46	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	5, 6
47 48			confounders, and effect modifiers. Give diagnostic criteria, if	
49 50			applicable	
51 52	Data sources /	#8	For each variable of interest give sources of data and details	156
55 54		<u>#0</u>		4, 0, 0
55 56	measurement		or methods of assessment (measurement). Describe	
57 58			comparability of assessment methods if there is more than	
59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 57 of 59			BMJ Open	
1			one group. Give information separately for for exposed and	
2 3 4			unexposed groups if applicable.	
5 6 7	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	5, 6, 8
8 9 10 11	Study size	<u>#10</u>	Explain how the study size was arrived at	4, 5
12 13	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	7, 8
14 15	variables		analyses. If applicable, describe which groupings were	
16 17 18			chosen, and why	
19 20 21	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to	
21 22 23 24	methods		control for confounding	
25 26 27	6, 8			
28 29	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	7, 8
30 31 32	methods		interactions	
33 34 35	Statistical	<u>#12c</u>	Explain how missing data were addressed	7, 8
36 37	methods			
38 39 40	Statistical	<u>#12d</u>	If applicable, explain how loss to follow-up was addressed	7, 8
41 42 43	methods			
44 45	Statistical	<u>#12e</u>	Describe any sensitivity analyses	
46 47 48	methods			
49 50 51	7, 8			
52 53 54	Results			
55 56 57	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	9
58 59			numbers potentially eligible, examined for eligibility,	
60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

1			confirmed eligible, included in the study, completing follow-	
2 3			up, and analysed. Give information separately for for	
4 5 6 7			exposed and unexposed groups if applicable.	
7 8 9 10	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	9
11 12 13	Participants	<u>#13c</u>	Consider use of a flow diagram	
14 15 16	9			
17 18	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	9
19 20			clinical, social) and information on exposures and potential	
21 22 22			confounders. Give information separately for exposed and	
23 24 25 26			unexposed groups if applicable.	
27 28	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each	
29 30 31			variable of interest	
32 33 34	9			
35 36 37	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total amount)	
38 39 40	9			
41 42	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures	
43 44 45			over time. Give information separately for exposed and	
46 47			unexposed groups if applicable.	
48 49 50 51	9, 10			
52 53 54	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-	9, 10
55 56 57			adjusted estimates and their precision (eg, 95% confidence	
58 59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 59 of 59			BMJ Open	
1			interval). Make clear which confounders were adjusted for	
2 3 4			and why they were included	
5 6 7	Main results	<u>#16b</u>	Report category boundaries when continuous variables were	9, 10
8 9			categorized	
10 11 12	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into	
13 14			absolute risk for a meaningful time period	
15 16 17 18	9, 10			
19 20 21	Other analyses	<u>#17</u>	Report other analyses done—eg analyses of subgroups and	10, 11
22 23			interactions, and sensitivity analyses	
24 25 26 27	Discussion			
28 29 30	Key results	<u>#18</u>	Summarise key results with reference to study objectives	11
30 31 32	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources	12, 13
33 34 35			of potential bias or imprecision. Discuss both direction and	
36 37			magnitude of any potential bias.	
38 39 40	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	13, 14
41 42			limitations, multiplicity of analyses, results from similar	
43 44 45			studies, and other relevant evidence.	
46 47	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	13
48 49 50			results	
51 52 53 54 55 56 57	Other Information			
эх 59 60		For pee	r review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Funding#22Give the source of funding and the role of the funders for the
present study and, if applicable, for the original study on
which the present article is based

The STROBE checklist is distributed under the terms of the Creative Commons Attribution License

CC-BY. This checklist was completed on 14. January 2021 using https://www.goodreports.org/, a tool

made by the EQUATOR Network in collaboration with Penelope.ai