# **Supplemental Online Content**

Saad M, Kennedy KF, Imran H, et al. Association Between COVID-19 Diagnosis and In-Hospital Mortality in Patients Hospitalized With ST-Segment Elevation Myocardial Infarction. *JAMA*. Published online October 29, 2021. doi:10.1001/jama.2021.18890

- eTable 1. ICD-10 codes for patient diagnoses, comorbidities, treatment, and outcomes
- eTable 2. Unadjusted outcomes in patients with out-of-hospital and in-hospital STEMI
- eTable 3. Propensity-matched exploratory outcomes in patients with out-of-hospital and in-hospital STEMI
- eTable 4. Propensity-matched primary and secondary outcomes in patients with out-of-hospital and in-hospital STEMI with control group from same calendar year (i.e., 2020)
- **eTable 5**. Propensity-matched primary and secondary outcomes in patients with out-of-hospital and in-hospital STEMI after matching on center
- **eTable 6**. Propensity-matched primary and secondary outcomes in patients with out-of-hospital and in-hospital STEMI after excluding transfer-in/-out patients
- **eTable 7**. Primary and sensitivity analyses for in-hospital mortality in patients with out-of-hospital and in-hospital STEMI
- eFigure 1. Forest plot of unadjusted outcomes in patients with out-of-hospital STEMI
- eFigure 2. Forest plot of unadjusted outcomes in patients with in-hospital STEMI

**eMethods** 

eResults

**eReferences** 

This supplemental material has been provided by the authors to give readers additional information about their work.

eTable 1: ICD-10 codes for patient diagnoses, comorbidities, treatment, and outcomes

| Diagnoses                                    |                                                                               |
|----------------------------------------------|-------------------------------------------------------------------------------|
| ST-segment elevation myocardial infarction   | I21.0 = STEMI of anterior wall; I21.1 = STEMI of inferior wall; I21.2 = STEMI |
|                                              | of other sites; I21.3 = STEMI of unspecified site                             |
| COVID-19 status                              | U07.1                                                                         |
| Comorbidities                                |                                                                               |
| Hypertension                                 | I10*, I11*, I12*, I13*, I14*, I15*, I16*                                      |
| Diabetes                                     | E08*, E09*, E10*, E11*, E12*, E13*                                            |
| Hyperlipidemia                               | E78*                                                                          |
| History of smoking                           | F17*                                                                          |
| Obesity                                      | E65*, E66*, E67*, E68*                                                        |
| Chronic kidney disease                       | N18*                                                                          |
| End stage renal disease                      | N18.6                                                                         |
| Coronary artery disease                      | I20*, I21*, I22*, I23*, I24*, I25*, Z95.1, Z95.5, I25.2                       |
| Prior myocardial infarction                  | 125.2                                                                         |
| Prior coronary angioplasty                   | Z98.61                                                                        |
| Prior coronary artery bypass grafting        | Z95.1                                                                         |
| History of implantable cardiac defibrillator | Z95.810                                                                       |
| History of cardiac pacemaker                 | Z95.0                                                                         |
| Cerebrovascular disease                      | I60*, I61*, I62*, I63*, I64*, I65*, I66*, I67*, I68*, I69*, Z86.73            |
| Prior stroke                                 | Z86.73                                                                        |
| Chronic lung disease                         | J40*, J41*, J42*, J43*, J44*, J45*, J46*, J47*                                |
| Pulmonary circulation disorders              | I26*, I27*, I28*                                                              |
| Chronic liver disease                        | K70*, K71*, K72*, K73*, K74*, K75*, K76*, K77*                                |
| Chronic anemia                               | D50*, D51*, D52*, D53*, D55*, D56*, D57*, D58*, D59*, D60*, D61*, D62*,       |
|                                              | D63*, D64*                                                                    |
| Coagulopathy                                 | D65*, D66*, D67*, D68*, D69*                                                  |
| Valvular heart disease                       | I05, I06, I07, I08, I09, I34, I35, I36, I37, I38*, Z95.2                      |
| Heart failure                                | I50*                                                                          |
| Cardiac arrest                               | 146.9                                                                         |
| Hypothyroidism                               | E02*, E03*                                                                    |
| Treatment                                    |                                                                               |
| Systemic fibrinolytic therapy                | Z92.82, 3E04317, 3E03317                                                      |

| Left heart catheterization                   | B211010, B211110, B211Y10, B213010, B213110, B213Y10, B2150ZZ, B2151ZZ, B215YZZ, B2140ZZ, B2141ZZ, B214YZZ, B2160ZZ, B2161ZZ, B216YZZ, B2170ZZ, B2171ZZ, B217YZZ, B2180ZZ, B2181ZZ, B218YZZ, B21F0ZZ, B21F1ZZ, B21FYZZ, B2110ZZ, B2111ZZ, B211YZZ, B2130ZZ, B2131ZZ, B213YZZ, 4A023N7                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coronary angiography                         | B2110ZZ, B211010, B211110, B2111ZZ, B211Y10, B211YZZ, B210010, B2100ZZ, B210110, B2101ZZ, B210Y10, B210YZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Right heart catheterization                  | 4A0239Z, 4A023N6, 4A023N8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Balloon angioplasty                          | 02703Z6, 02703ZZ, 02713Z6, 02713ZZ, 02723Z6, 02723ZZ, 02733Z6, 02733ZZ, 02704Z6, 02704ZZ, 02714Z6, 02714ZZ, 02724Z6, 02724ZZ, 02734Z6, 02734ZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Insertion of Drug-eluting stent              | 0270346, 027034Z, 0270356, 027035Z, 0270366, 027036Z, 0270376, 027037Z, 0271346, 027134Z, 0271356, 027135Z, 0271366, 027136Z, 0271376, 027137Z, 0272346, 027234Z, 0272356, 027235Z, 0272366, 027236Z, 0272376, 027237Z, 0273346, 027334Z, 0273356, 027335Z, 0273366, 027336Z, 027337G, 027337Z, 0270446, 027044Z, 0270456, 027045Z, 0270466, 027046Z, 0270476, 027047Z, 0271446, 027144Z, 0271456, 027145Z, 0271466, 027146Z, 0271476, 027147Z, 0272446, 027244Z, 0272456, 027245Z, 0272466, 027246Z, 0272476, 027247Z, 0273446, 027344Z, 0273456, 027345Z, 0273466, 027346Z, 0273476, 027347Z  |
| Insertion of bare-metal stent                | 02703D6, 02703DZ, 02703E6, 02703EZ, 02703F6, 02703FZ, 02703G6, 02703GZ, 02713D6, 02713DZ, 02713E6, 02713EZ, 02713F6, 02713FZ, 02713G6, 02713GZ, 02723D6, 02723DZ, 02723E6, 02723EZ, 02723F6, 02723FZ, 02723G6, 02723GZ, 02733D6, 02733DZ, 02733E6, 02733EZ, 02733F6, 02733FZ, 02733G6, 02733GZ, 02704D6, 02704DZ, 02704E6, 02704EZ, 02704F6, 02704FZ, 02704G6, 02704GZ, 02714D6, 02714DZ, 02714E6, 02714EZ, 02714F6, 02714FZ, 02714G6, 02714GZ, 02724D6, 02724DZ, 02724E6, 02724EZ, 02724F6', 02724FZ, 02724G6, 02724GZ, 02734D6, 02734DZ, 02734E6, 02734EZ, 02734F6, 02734FZ, 02734G6, 02734GZ |
| Coronary artery bypass grafting              | 021209W, 021109W, 02100Z9, 02120Z9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Use of mechanical circulatory support        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - Intra-aortic balloon pump (IABP)           | 5A02210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| - Extracorporeal membrane oxygenation (ECMO) | 5A1522F, 5A1522G, 5A1522H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - Left ventricular assist device (LVAD)      | 02HA3RJ, 02HA3RZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Outcomes                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Myocardial infarction             | I21*, I22*                                                                       |
|-----------------------------------|----------------------------------------------------------------------------------|
| Ischemic stroke                   | I63*, I65*, I66*                                                                 |
| Acute decompensated heart failure | 150.21, 150.23, 150.31, 150.33, 150.41, 150.43, 150.811, 150.813, 150.1, 150.82, |
|                                   | 150.83, 150.84, 150.89, 150.9, 150.2, 150.4, 150.3, 150.81*                      |
| Cardiogenic shock                 | R570                                                                             |
| Mechanical complications          |                                                                                  |
| - Papillary muscle rupture        | I235, I512                                                                       |
| - Ventricular septal defect       | I232                                                                             |
| - Free wall rupture               | I233                                                                             |
| Major bleeding                    | I8501, I8511, K644*, K648*, K226*, K228*, K250*, K256*, K260*, K266*,            |
| - Gastrointestinal hemorrhage     | K270*, K276*, K280*, K286*, K2901, K2911, K2921, K2931, K2941, K2951,            |
|                                   | K2961, K2971, K2981, K2991, K5701, K5711, K5713, K5721, K5731, K5733,            |
|                                   | K5741, K5751, K5753, K5781, K5791, K5793, K625, K5521, K920*, K921*,             |
|                                   | K922*, K31811, K661*                                                             |
| - Cerebral hemorrhage             | I60*, I61*, I62*                                                                 |
| - Other major bleeding            | R310*, R311*, R312*, R319*, M25019, R040*, R041*, R042*, R0481, R0489,           |
|                                   | R049, I312*, R58*, S064X0A, S064X1A, S064X2A, S064X3A, S064X4A,                  |
|                                   | S064X5A, S064X6A, S064X7A, S064X8A, S064X9A, S065X0A, S065X1A,                   |
|                                   | S065X2A, S065X3A, S065X4A, S065X5A, S065X6A, S065X7A, S065X8A,                   |
|                                   | S065X9A, S066X0A, S066X1A, S066X2A, S066X3A, S066X4A, S066X5A,                   |
|                                   | S066X6A, S066X7A, S066X8A, S066X9A                                               |
| Blood transfusion:                | 30243N0, 30243N1, 30243P0, 30243P1, 30243H0, 30243H1, 30240N0,                   |
|                                   | 30240N1, 30240P0, 30240P1, 30240H0, 30240H1, 30230H0, 30230H1,                   |
|                                   | 30230N0, 30230N1, 30230P0, 30230P1, 30233N0, 30233N1, 30233P0,                   |
|                                   | 30233P1                                                                          |
| Acute kidney injury               | N17, N19, N990, R34, R944                                                        |
| Pneumonitis                       | J69*                                                                             |
| Acute respiratory failure         | I96*                                                                             |
| Encephalopathy                    | G93.40                                                                           |
| Septic shock                      | R65.21                                                                           |

eTable 2: Unadjusted outcomes in patients with out-of-hospital and in-hospital STEMI

| Outcome           |                     | Out-of-hospital S | TEMI        |       |                     | In-hospital STEMI |            |        |  |  |
|-------------------|---------------------|-------------------|-------------|-------|---------------------|-------------------|------------|--------|--|--|
|                   | Patients with       |                   | Absolute    | P-    | Patients with       | Patients without  | Absolute   | P-     |  |  |
|                   | COVID-19<br>(n=565) |                   | difference  | value | COVID-19<br>(n=359) | COVID-19          | difference | value  |  |  |
|                   |                     |                   | (95% CI)    |       |                     | (n=3656)          | (95% CI)   |        |  |  |
| Primary Outcome   | <u> </u>            |                   |             |       |                     |                   |            |        |  |  |
| In-hospital       | 87 (15.4%)          | 6856 (9.0%)       | 6.4 (3.38,  | <.001 | 287 (79.9%)         | 1418 (38.8%)      | 41.2       | < .001 |  |  |
| death, n (%)      |                     |                   | 9.34)       |       |                     |                   | (37.84,    |        |  |  |
|                   |                     |                   |             |       |                     |                   | 44.48)     |        |  |  |
| Secondary outcom  | ies                 |                   |             |       |                     |                   |            |        |  |  |
| Composite of      | 103 (18.2%)         | 8067 (10.6%)      | 12.4 (8.9,  | <.001 | 296 (82.5%)         | 1652 (45.2%)      | 37.3       | <.001  |  |  |
| death, stroke, or |                     |                   | 15.85)      |       |                     |                   | (34.11,    |        |  |  |
| MI, n (%)         |                     |                   |             |       |                     |                   | 40.42)     |        |  |  |
| Composite of      | 103 (18.2%)         | 7980 (10.5%)      | 7.7         | <.001 | 296 (82.5%)         | 1638 (44.8%)      | 37.7       | < .001 |  |  |
| death or stroke,  |                     |                   | (4.52,10.9) |       |                     |                   | (34.49,    |        |  |  |
| n (%)             |                     |                   |             |       |                     |                   | 40.8)      |        |  |  |

| Acute             | 185 (32.7%) | 23911 (31.5%) | 1.2 (-2.66, | .53    | 131 (36.5%) | 1855 (50.7%) | -14.3 (-     | < .001 |
|-------------------|-------------|---------------|-------------|--------|-------------|--------------|--------------|--------|
|                   | ,           | ,             | ,           |        |             |              | ,            |        |
| decompensated     |             |               | 5.11)       |        |             |              | 18.23, -     |        |
| HF, n (%)         |             |               |             |        |             |              | 10.26)       |        |
| Cardiogenic       | 103 (18.2%) | 12783 (16.8%) | 1.4 (-1.81, | .38    | 91 (25.3%)  | 995 (27.2%)  | -1.9 (-5.47, | .45    |
| shock, n (%)      |             |               | 4.58)       |        |             |              | 1.73)        |        |
| Exploratory outco | mes         |               |             |        |             |              | <u> </u>     |        |
| Mechanical        | 4 (0.7%)    | 432 (0.6%)    | 0.1 (-0.55, | .66    | 0 (0.0%)    | 16 (0.4%)    | -0.4 (-0.48, | .21    |
| complications, n  |             |               | 0.83)       |        |             |              | -0.39)       |        |
| (%)               |             |               |             |        |             |              |              |        |
| Any bleeding, n   | 55 (9.7%)   | 5223 (6.9%)   | 2.9 (0.4,   | .007   | 97 (27.0%)  | 947 (25.9%)  | 1.1 (-2.56,  | .64    |
| (%)               |             |               | 5.3)        |        |             |              | 4.79)        |        |
| Blood             | 30 (5.3%)   | 2961 (3.9%)   | 1.4 (-0.45, | .08    | 64 (17.8%)  | 703 (19.2%)  | -1.4 (-4.57, | .52    |
| transfusion, n    |             |               | 3.26)       |        |             |              | 1.77)        |        |
| (%)               |             |               |             |        |             |              |              |        |
| Acute kidney      | 165 (29.2%) | 16381 (21.6%) | 7.6 (3.85,  | < .001 | 256 (71.3%) | 1955 (53.5%) | 17.8         | < .001 |
| injury, n (%)     |             |               | 11.37)      |        |             |              | (14.09,      |        |
|                   |             |               |             |        |             |              | 21.58)       |        |

| Mechanical       | 120 (21.2%)    | 10524 (13.9%)  | 7.4 (4.5,   | <.001  | 279 (77.7%)      | 1684 (46.1%)     | 31.7         | < .001 |
|------------------|----------------|----------------|-------------|--------|------------------|------------------|--------------|--------|
| ventilation, n   |                |                | 10.23)      |        |                  |                  | (26.24,      |        |
| (%)              |                |                |             |        |                  |                  | 37.07)       |        |
| Encephalopathy,  | 40 (7.1%)      | 3174 (4.2%)    | 2.9 (1.24,  | < .001 | 90 (25.1%)       | 739 (20.2%)      | 4.9 (0.47,   | .03    |
| n (%)            |                |                | 4.56)       |        |                  |                  | 9.24)        |        |
| Septic shock, n  | 34 (6.0%)      | 1610 (2.1%)    | 3.9 (2.69,  | < .001 | 173 (48.2%)      | 773 (21.1%)      | 27 (22.45,   | < .001 |
| (%)              |                |                | 5.1)        |        |                  |                  | 31.65)       |        |
| Pneumonitis, n   | 20 (3.5%)      | 2855 (3.8%)    | -0.2 (-1.8, | .78    | 29 (8.1%)        | 414 (11.3%)      | -3.2 (-6.64, | .06    |
| (%)              |                |                | 1.35)       |        |                  |                  | 0.15)        |        |
| Acute            | 0 (0.0%)       | 124 (0.2%)     | -0.2 (-0.5, | .34    | 4 (1.1%)         | 51 (1.4%)        | -0.3 (-1.54, | .66    |
| respiratory      |                |                | 0.17)       |        |                  |                  | 0.98)        |        |
| failure, n (%)   |                |                |             |        |                  |                  |              |        |
| ICU stay (days), | 1.0 (0.0, 3.0) | 1.0 (0.0, 2.0) | 0.9 (-0.04, | .06    | 7.0 (1.0, 15.0)  | 3.0 (1.0, 8.0)   | 3.5 (2.1,    | < .001 |
| median (IQR)     |                |                | 1.82)       |        |                  |                  | 4.8)         |        |
| Length of stay   | 3.0 (2.0, 7.0) | 3.0 (2.0, 5.0) | 2.2 (1.63,  | < .001 | 13.0 (8.0, 24.0) | 10.0 (5.0, 18.0) | 2.7 (0.7,    | .008   |
| (days), median   |                |                | 2.82)       |        |                  |                  | 4.6)         |        |
| (IQR)            |                |                |             |        |                  |                  |              |        |

| Total cost (US   | 19816.0       | 16998.0          | 5907 (1390,    | .01    | 50819.0         | 44535.0          | 1235 (-      | .84  |
|------------------|---------------|------------------|----------------|--------|-----------------|------------------|--------------|------|
| dollars), median | (13325.0, 337 | (11912.0, 27981. | 10422)         |        | (28363.0, 87299 | (24349.0, 81920. | 11099,       |      |
| (IQR)            | 03.0)         | 0)               |                |        | .0)             | 5)               | 13570)       |      |
| Discharge        |               |                  |                | < .001 |                 |                  |              | .002 |
| disposition      |               |                  |                |        |                 |                  |              |      |
| among            |               |                  |                |        |                 |                  |              |      |
| survivors, n (%) |               |                  |                |        |                 |                  |              |      |
| Routine/Home     | 343 (72.2%)   | 55046 (80.6%)    | -8.4 (-12.1, - |        | 16 (22.2%)      | 693 (31.2%)      | -8.6 (-      |      |
|                  |               |                  | 4.69)          |        |                 |                  | 12.01, -     |      |
|                  |               |                  |                |        |                 |                  | 5.12)        |      |
| Short term       | 1 (0.2%)      | 170 (0.2%)       | -0.04 (-0.42,  |        | 1 (1.4%)        | 11 (0.5%)        | 0.9 (-0.07,  |      |
| hospitalization  |               |                  | 0.34)          |        |                 |                  | 1.87)        |      |
| SNF              | 32 (6.7%)     | 3059 (4.5%)      | 2.3 (0.19,     |        | 15 (20.8%)      | 423 (19.0%)      | 2.0 (-1.32,  |      |
|                  |               |                  | 4.33)          |        |                 |                  | 5.4)         |      |
| ICF              | 13 (2.7%)     | 1444 (2.1%)      | 0.6 (-0.73,    |        | 7 (9.7%)        | 233 (10.5%)      | -0.6 (-3.08, |      |
|                  |               |                  | 1.97)          |        |                 |                  | 1.82)        |      |
| Another type     | 16 (3.4%)     | 755 (1.1%)       | 2.3 (0.77,     |        | 12 (16.7%)      | 121 (5.4%)       | 11.3 (8.21,  |      |
| of facility      |               |                  | 3.75)          |        |                 |                  | 14.37)       |      |

 $<sup>\</sup>ensuremath{\text{@}}\xspace$  2021 American Medical Association. All rights reserved.

| ННС              | 56 (11.8%) | 6745 (9.9%) | 1.9 (-0.75,  |     | 11 (15.3%) | 491 (22.1%) | -6.5 (-9.52, |        |
|------------------|------------|-------------|--------------|-----|------------|-------------|--------------|--------|
|                  |            |             | 4.58)        |     |            |             | -3.55)       |        |
| Hospice          | 14 (2.9%)  | 1073 (1.6%) | 1.4 (-0.02,  |     | 10 (13.9%) | 249 (11.2%) | 1.5 (-       |        |
|                  |            |             | 2.77)        |     |            |             | 1.37,4.36)   |        |
| 30-day re-       | 36 (6.4%)  | 5524 (7.3%) | -0.9 (-2.93, | .41 | 13 (3.6%)  | 423 (11.6%) | -7.9 (-9.51, | < .001 |
| admission, n (%) |            |             | 1.11)        |     |            |             | -6.39)       |        |

eTable 3: Propensity-matched exploratory outcomes in patients with out-of-hospital and in-hospital STEMI

| Exploratory        |               | Out-of-hospital STE | MI           |       | In-hospital STEMI |                  |              |        |  |
|--------------------|---------------|---------------------|--------------|-------|-------------------|------------------|--------------|--------|--|
| Outcome            | Patients with | Patients without    | Absolute     | P-    | Patients with     | Patients without | Absolute     | P-     |  |
|                    | COVID-19      | COVID-19            | difference   | value | COVID-19          | COVID-19         | difference   | value  |  |
|                    | (n=551)       | (n=2755)            | (95% CI)     |       | (n=252)           | (n=756)          | (95% CI)     |        |  |
| Mechanical         | 4 (0.7%)      | 22 (0.8%)           | -0.07 (-     | .86   | 0 (0.0%)          | 3 (0.4%)         | -0.4 (-1.17, | .32    |  |
| complications, n   |               |                     | 0.78, 0.63)  |       |                   |                  | 0.38)        |        |  |
| (%)                |               |                     |              |       |                   |                  |              |        |  |
| Any bleeding, n    | 55 (10.0%)    | 230 (8.3%)          | 1.6 (-0.85,  | .21   | 68 (27.0%)        | 188 (24.9%)      | 2.1 (-4.09,  | .50    |  |
| (%)                |               |                     | 4.11)        |       |                   |                  | 8.32)        |        |  |
| Blood              | 30 (5.4%)     | 149 (5.4%)          | 0.04 (-1.84, | .97   | 53 (21.0%)        | 123 (16.3%)      | 4.8 (-0.65,  | .08    |  |
| transfusion, n     |               |                     | 1.91)        |       |                   |                  | 10.17)       |        |  |
| (%)                |               |                     |              |       |                   |                  |              |        |  |
| Acute kidney       | 160 (29.0%)   | 670 (24.3%)         | 4.7 (0.96,   | .02   | 177 (70.2%)       | 409 (54.1%)      | 16.1 (9.1,   | < .001 |  |
| injury, n (%)      |               |                     | 8.47)        |       |                   |                  | 23.17)       |        |  |
| Mechanical         | 117 (21.2%)   | 465 (16.9%)         | 4.4 (0.87,   | .01   | 188 (74.6%)       | 361 (47.8%)      | 26.9 (19.75, | < .001 |  |
| ventilation, n (%) |               |                     | 7.84)        |       |                   |                  | 33.95)       |        |  |

| Encephalopathy,     | 36 (6.5%)           | 125 (4.5%)         | 2 (0.03,     | .05    | 68 (27.0%)         | 135 (17.9%)     | 9.1 (3.41,   | .001   |
|---------------------|---------------------|--------------------|--------------|--------|--------------------|-----------------|--------------|--------|
| n (%)               |                     |                    | 3.97)        |        |                    |                 | 14.84)       |        |
| Septic shock, n     | 32 (5.8%)           | 70 (2.5%)          | 3.3 (1.69,   | < .001 | 118 (46.8%)        | 171 (22.6%)     | 24.2 (17.76, | < .001 |
| (%)                 |                     |                    | 4.85)        |        |                    |                 | 30.65)       |        |
| Pneumonitis, n      | 18 (3.3%)           | 126 (4.6%)         | -1.3 (-3.17, | .17    | 25 (9.9%)          | 83 (11.0%)      | -1.1 (-5.47, | .64    |
| (%)                 |                     |                    | 0.56)        |        |                    |                 | 3.35)        |        |
| Acute respiratory   | 0 (0.0%)            | 6 (0.2%)           | -0.2 (-0.61, | .27    | 3 (1.2%)           | 8 (1.1%)        | 0.1 (-1.35,  | .86    |
| failure, n (%)      |                     |                    | 0.17)        |        |                    |                 | 1.61)        |        |
| Intensive care      | 1.0 (0.0, 3.0)      | 1.0 (0.0, 3.0)     | -0.3 (-3.1,  | .82    | 7.0 (1.0, 15.0)    | 3.0 (1.0, 7.0)  | 4.47 (2.51,  | < .001 |
| unit stay (days),   |                     |                    | 2.5)         |        |                    |                 | 6.42)        |        |
| median (IQR)        |                     |                    |              |        |                    |                 |              |        |
| Length of stay      | 3.0 (2.0, 7.0)      | 3.0 (2.0, 6.0)     | 1.3 (0.36,   | .006   | 14.0 (9.0, 25.5)   | 9.0 (4.0, 17.5) | 3.64 (0.81,  | .01    |
| (days), median      |                     |                    | 2.23)        |        |                    |                 | 6.46)        |        |
| (IQR)               |                     |                    |              |        |                    |                 |              |        |
| Total cost (US      | 19854.0             | 17658.0            | 1381 (-      | .70    | 52723.0            | 38477.0         | 6203 (-      | .49    |
| dollars), median    | (13325.0, 33703.0)  | (12012.0, 32326.0) | 5533,        |        | (31652.0, 92200.0) | (23113.0, 6700  | 11282,       |        |
| (IQR)               |                     |                    | 8296)        |        |                    | 2.0)            | 23687)       |        |
| Discharge dispositi | on among survivors, | n (%)              |              | .01    |                    |                 |              | < .01  |

 $<sup>\</sup>ensuremath{\text{@}}\xspace$  2021 American Medical Association. All rights reserved.

| Routine/Home     | 336 (72.3%) | 1903 (78.4%) | -6.2 (-9.89, |     | 11 (18.6%) | 150 (35.8%) | -17.2 (-      |          |
|------------------|-------------|--------------|--------------|-----|------------|-------------|---------------|----------|
|                  |             |              | -2.48)       |     |            |             | 30.04, -      |          |
|                  |             |              |              |     |            |             | 4.27)         |          |
| Short term       | 1 (0.2%)    | 14 (0.6%)    | -0.4 (-0.75, |     | 1 (1.7%)   | 3 (0.7%)    | 1 (-1.5,      |          |
| hospitalization  |             |              | 0.02)        |     |            |             | 3.46)         |          |
| Skilled nursing  | 32 (6.9%)   | 126 (5.2%)   | 1.7 (-0.41,  |     | 13 (22.0%) | 65 (15.5%)  | 6.5 (-3.55,   |          |
| facility         |             |              | 3.78)        |     |            |             | 16.59)        |          |
| Intermediate     | 13 (2.8%)   | 55 (2.3%)    | 0.5 (-0.83,  |     | 7 (11.9%)  | 42 (10.0%)  | 1.8 (-6.43,   |          |
| care facility    |             |              | 1.89)        |     |            |             | 10.11)        |          |
| Another type of  | 15 (3.2%)   | 37 (1.5%)    | 1.7 (0.24,   |     | 12 (20.3%) | 22 (5.3%)   | 15.1 (8.08,   |          |
| facility         |             |              | 3.16)        |     |            |             | 22.09)        |          |
| Home health      | 54 (11.6%)  | 250 (10.3%)  | 1.3 (-1.34,  |     | 8 (13.6%)  | 88 (21.0%)  | -7.4 (-18.36, |          |
| care             |             |              | 3.96)        |     |            |             | 3.48)         |          |
| Hospice          | 14 (3.0%)   | 41 (1.7%)    | 1.3 (-0.09,  |     | 7 (11.9%)  | 49 (11.7%)  | 0.2 (-8.6,    |          |
|                  |             |              | 2.73)        |     |            |             | 8.94)         |          |
| 30-day re-       | 34 (6.2%)   | 245 (8.9%)   | -2.7 (-4.72, | .04 | 10 (4.0%)  | 76 (10.1%)  | -6.1 (-10.07, | <.001    |
| admission, n (%) |             |              | -0.73)       |     |            |             | -2.1)         |          |
| Abbreviations:   |             | 1            |              |     |            |             | I             | <u> </u> |

 $<sup>\</sup>ensuremath{\text{@}}\xspace$  2021 American Medical Association. All rights reserved.

CI= confidence interval; IQR= inter-quartile range; STEMI= ST elevation myocardial infarction.

eTable 4: Propensity-matched primary and secondary outcomes in patients with out-of-hospital and in-hospital STEMI with control group from same calendar year (i.e., 2020)

| Outcome                             | Out-of-hospital STEMI  |                               |                      |             |                              | In-hospital STEMI             |                      |             |  |  |
|-------------------------------------|------------------------|-------------------------------|----------------------|-------------|------------------------------|-------------------------------|----------------------|-------------|--|--|
|                                     | Patients with COVID-19 | Patients without COVID-19 (n= | Absolute difference, | P-<br>value | Patients with  COVID-19 (n = | Patients without COVID-19 (n= | Absolute difference, | P-<br>value |  |  |
|                                     | (n= 547)               | 2735)                         | % (95%               |             | 337)                         | 337)                          | % (95%               |             |  |  |
|                                     |                        |                               | CI)                  |             |                              |                               | CI)                  |             |  |  |
| Primary outcome                     |                        |                               |                      |             |                              |                               |                      |             |  |  |
| In-hospital                         | 84 (15.4%)             | 303 (11.1%)                   | 4.3 (1.1,            | .004        | 267 (79.2%)                  | 168 (49.9%)                   | 29.4 (22.5,          | < .001      |  |  |
| death, n (%)                        |                        |                               | 7.5)                 |             |                              |                               | 36.2)                |             |  |  |
| Secondary outcom                    | nes                    |                               |                      |             |                              |                               |                      |             |  |  |
| Composite of death, stroke, or      | 95 (17.4%)             | 371 (13.6%)                   | 3.8 (0.4,<br>7.2)    | .02         | 276 (81.9%)                  | 186 (55.2%)                   | 26.7 (20,<br>33.4)   | <.001       |  |  |
| MI, n (%)                           |                        |                               |                      |             |                              |                               |                      |             |  |  |
| Composite of death or stroke, n (%) | 95 (17.4%)             | 367 (13.4%)                   | 3.9 (0.5,<br>7.4)    | .02         | 276 (81.9%)                  | 186 (55.2%)                   | 26.7 (20,<br>33.4)   | < .001      |  |  |

 $<sup>\</sup>ensuremath{\mathbb{C}}$  2021 American Medical Association. All rights reserved.

| Acute         | 171 (31.3%) | 850 (31.1%) | 0.2 (-4, 4.4) | .93 | 126 (37.4%) | 149 (44.2%) | -6.8 (-14.2, | .07 |
|---------------|-------------|-------------|---------------|-----|-------------|-------------|--------------|-----|
| decompensated |             |             |               |     |             |             | 0.5)         |     |
| HF, n (%)     |             |             |               |     |             |             |              |     |
| Cardiogenic   | 101 (18.5%) | 438 (16.0%) | 2.4 (-1.1, 6) | .16 | 88 (26.1%)  | 89 (26.4%)  | -0.3 (-6.9,  | .93 |
| shock, n (%)  |             |             |               |     |             |             | 6.3)         |     |

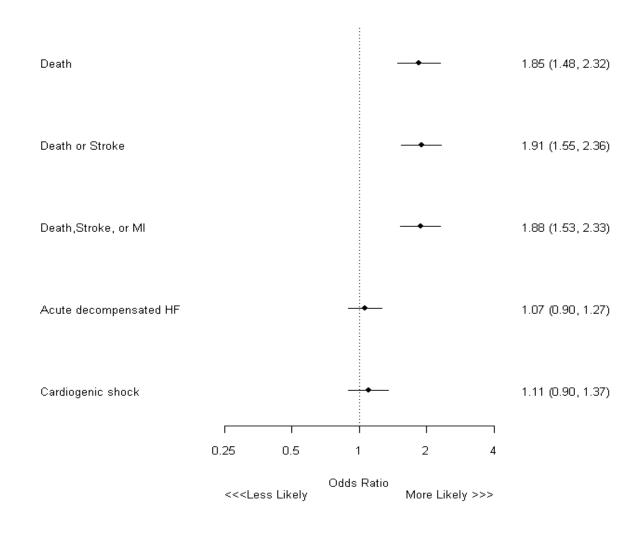
eTable 5: Propensity-matched primary and secondary outcomes in patients with out-of-hospital and in-hospital STEMI after matching on center

| Outcome           |               | Out-of-hospital S | TEMI          | In-hospital STEMI |               |                  |             |        |  |
|-------------------|---------------|-------------------|---------------|-------------------|---------------|------------------|-------------|--------|--|
|                   | Patients with | Patients without  | Absolute      | P-                | Patients with | Patients without | Absolute    | P-     |  |
|                   | COVID-19      | COVID-19 (n=      | difference,   | value             | COVID-19 (n = | COVID-19 (n=     | difference, | value  |  |
|                   | (n= 440)      | 440)              | % (95%        |                   | 181)          | 181)             | % (95%      |        |  |
|                   |               |                   | CI)           |                   |               |                  | CI)         |        |  |
| Primary outcome   |               |                   |               |                   |               |                  |             |        |  |
| In-hospital       | 66 (15.0%)    | 38 (8.6%)         | 6.4 (2.1,     | .003              | 134 (74.0%)   | 83 (45.9%)       | 28.2 (18.6, | < .001 |  |
| death, n (%)      |               |                   | 10.6)         |                   |               |                  | 37.8)       |        |  |
| Secondary outcom  | ies           |                   |               |                   |               |                  | <u> </u>    |        |  |
| Composite of      | 74 (16.8%)    | 50 (11.4%)        | 5.5 (0.9, 10) | .02               | 140 (77.3%)   | 88 (48.6%)       | 28.7 (19.3, | < .001 |  |
| death, stroke, or |               |                   |               |                   |               |                  | 38.2)       |        |  |
| MI, n (%)         |               |                   |               |                   |               |                  |             |        |  |
| Composite of      | 74 (16.8%)    | 50 (11.4%)        | 5.5 (0.9 ,10) | .02               | 140 (77.3%)   | 88 (48.6%)       | 28.7 (19.3, | < .001 |  |
| death or stroke,  |               |                   |               |                   |               |                  | 38.2)       |        |  |
| n (%)             |               |                   |               |                   |               |                  |             |        |  |

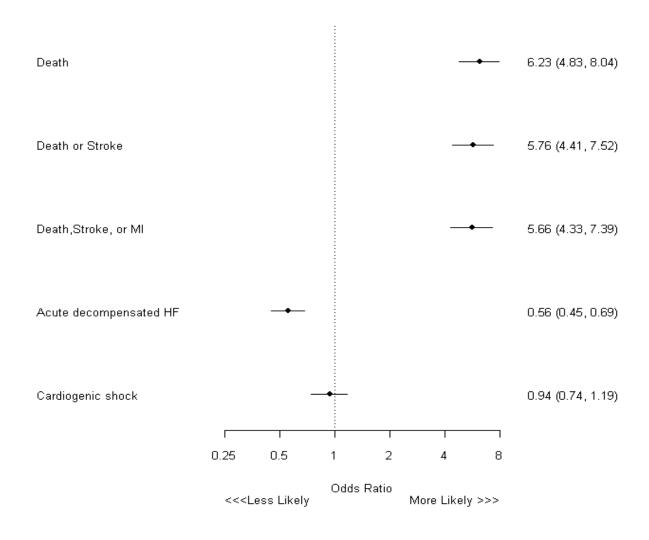
 $<sup>\</sup>ensuremath{\mathbb{C}}$  2021 American Medical Association. All rights reserved.

| Acute         | 144 (32.7%) | 130 (29.5%) | 3.2 (-2.9,    | .31 | 69 (38.1%) | 75 (41.4%) | -3.3 (-13.3, | .52 |
|---------------|-------------|-------------|---------------|-----|------------|------------|--------------|-----|
| decompensated |             |             | 9.3)          |     |            |            | 6.7)         |     |
| HF, n (%)     |             |             |               |     |            |            |              |     |
| Cardiogenic   | 83 (18.9%)  | 65 (14.8%)  | 4.1 (-0.8, 9) | .10 | 49 (27.1%) | 45 (24.9%) | 2.2 (-6.8,   | .63 |
| shock, n (%)  |             |             |               |     |            |            | 11.2)        |     |

**eTable 6:** Propensity-matched primary and secondary outcomes in patients with out-of-hospital and in-hospital STEMI after excluding transfer-in/-out patients


| Outcome           |                         | Out-of-hospital S             | TEMI                 | In-hospital STEMI |                            |                               |                      |             |  |
|-------------------|-------------------------|-------------------------------|----------------------|-------------------|----------------------------|-------------------------------|----------------------|-------------|--|
|                   | Patients with  COVID-19 | Patients without COVID-19 (n= | Absolute difference, | P-<br>value       | Patients with COVID-19 (n= | Patients without COVID-19 (n= | Absolute difference, | P-<br>value |  |
|                   | (n= 417)                | 2085)                         | % (95%               | value             | 195)                       | 585)                          | % (95%               | varue       |  |
|                   |                         |                               | CI)                  |                   |                            |                               | CI)                  |             |  |
| Primary outcome   |                         |                               |                      |                   |                            |                               |                      |             |  |
| In-hospital       | 59 (14.1%)              | 214 (10.3%)                   | 3.9 (0.3,            | .02               | 149 (76.4%)                | 247 (42.2%)                   | 34.2 (27,            | < .001      |  |
| death, n (%)      |                         |                               | 7.5)                 |                   |                            |                               | 41.3)                |             |  |
| Secondary outcom  | nes                     |                               |                      |                   | <u> </u>                   |                               |                      |             |  |
| Composite of      | 69 (16.5%)              | 257 (12.3%)                   | 4.2 (0.4, 8)         | .02               | 155 (79.5%)                | 287 (49.1%)                   | 30.4 (23.5,          | < .001      |  |
| death, stroke, or |                         |                               |                      |                   |                            |                               | 37.4)                |             |  |
| MI, n (%)         |                         |                               |                      |                   |                            |                               |                      |             |  |
| Composite of      | 69 (16.5%)              | 256 (12.3%)                   | 4.3 (0.5,            | .02               | 155 (79.5%)                | 283 (48.4%)                   | 31.1 (24.2,          | < .001      |  |
| death or stroke,  |                         |                               | 8.1)                 |                   |                            |                               | 38)                  |             |  |
| n (%)             |                         |                               |                      |                   |                            |                               |                      |             |  |

| Acute         | 119 (28.5%) | 584 (28.0%) | 0.5 (-4.2,<br>5.2) | .83 | 84 (43.1%) | 261 (44.6%) | -1.5 (-9.5, | .71 |
|---------------|-------------|-------------|--------------------|-----|------------|-------------|-------------|-----|
| decompensated |             |             | ,                  |     |            |             | 6.5)        |     |
| HF, n (%)     |             |             |                    |     |            |             |             |     |
| Cardiogenic   | 68 (16.3%)  | 301 (14.4%) | 1.9 (-2, 5.7)      | .33 | 55 (28.2%) | 127 (21.7%) | 6.5 (-0.6,  | .06 |
| shock, n (%)  |             |             |                    |     |            |             | 13.6)       |     |


eTable 7: Primary and sensitivity analyses for in-hospital mortality in patients with out-of-hospital and in-hospital STEMI

| Model                                          |      | Out-of-hospital S | ГЕМІ    | In-hospital STEMI |            |         |  |
|------------------------------------------------|------|-------------------|---------|-------------------|------------|---------|--|
|                                                | OR   | 95% CI            | P value | OR                | 95% CI     | P value |  |
| Main analysis                                  | 1.43 | 1.1, 1.86         | .007    | 4.11              | 2.97, 5.69 | <.001   |  |
| Sensitivity analysis (2020 control group)      | 1.46 | 1.12, 1.89        | .004    | 3.84              | 2.73, 5.38 | .001    |  |
| Sensitivity analysis (matched on center)       | 1.87 | 1.22, 2.85        | .003    | 3.37              | 2.16, 5.24 | <.001   |  |
| Sensitivity analysis (transfers excluded)      | 1.44 | 1.06, 1.96        | .02     | 4.43              | 3.06, 6.41 | <.001   |  |
| Sensitivity analysis (multivariable regression | 1.60 | 1.17, 2.19        | .003    | 5.77              | 3.93, 8.46 | <.0001  |  |
| following propensity score matching)           |      |                   |         |                   |            |         |  |

eFigure 1: Forest plot of unadjusted outcomes in patients with out-of-hospital STEMI



eFigure 2: Forest plot of unadjusted outcomes in patients with in-hospital STEMI



#### eMethods:

# A) ICU type:

Transplant ICU; Burn Care ICU; Burn Intermediate Unit (Step Down); Cardiac Intermediate Unit (Step Down); Cardiac/Thoracic ICU with Transplant; Cardio/Thoracic ICU W/O Transplant; Cardiovascular Surgical ICU; Coronary Cardiac ICU (CCU); Medical/Surgical / Cardiac Intermediate Unit (Step Down); Medical / Surgical / Cardiac ICU; Medical/Surgical ICU; Medical/Surgical ICU; Medical/Surgical ICU; Medical/Surgical Intermediate Unit (Step Down); Neonatal Intermediate Unit (Step Down); Neurology / Neurosurgical ICU; Neonatal ICU; Pediatric ICU; Pediatric Intermediate Unit (Step Down); Respiratory Intermediate Unit (Step Down); Surgical ICU; Transplant ICU; Transplant Intermediate Unit (Step Down); Trauma (ICU and Resuscitation); Other ICU; Other Intermediate Unit (Step Down); and Unknown.

For simplification, these categories were collapsed into medical ICU, cardiac ICU, other ICU, cardiac stepdown, other stepdown, and other.

# B) Elixhauser Comorbidity Score:

The Vizient Clinical Database provides the Elixhauser comorbidity score for every patient. The Elixhauser comorbidity index was initially develop by Elixhauser et al.<sup>1</sup> and consisted of 30 comprehensive comorbidity categories based on ICD-9-CM coding found in hospital abstracts data. The aim of the index was to provide an overall summative measure of comorbidity for use in

# © 2021 American Medical Association. All rights reserved.

administrative databases for prediction of hospital charges, length of stay, and in-hospital mortality. In 2005, Quan et al, modified the index for use with ICD-10 codes.<sup>2</sup> In 2009, van Walraven et al. modified the Elixhauser Comorbidity Index into a scoring system that weighted each comorbidity group according to how predictive it was of in-hospital mortality. <sup>3</sup> Each person's Elixhauser comorbidity score was calculated by summing the points (positive and negative) of all Elixhauser comorbidity groups that were present. Elixhauser comorbidity score is widely utilized in studies involving administrative and claims data. Further, in patients admitted with COVID-19, the Elixhauser comorbidity score was a reliable predictor of critical illness as well as length of hospital stay.

C) Variables included in propensity models for main analysis and in multivariable regression for sensitivity analyses <sup>a b</sup>:

#### Patient characteristics

- Age
- Sex
- Race
- Hispanic ethnicity
- Payer (Medicaid, Medicare, Private, Other)
- Hypertension
- Diabetes mellitus

© 2021 American Medical Association. All rights reserved.

- Hyperlipidemia
- Smoking
- Obesity
- Chronic kidney disease
- End-stage renal disease
- Coronary artery disease
- Coronary artery bypass grafting
- Cerebrovascular disease
- Rheumatic heart disease
- Pulmonary circulation disorder
- Interstitial lung disease
- Chronic lung disease
- Chronic liver disease
- Obstructive sleep apnea
- Hypothyroidism
- Venous thromboembolism
- Chronic anemia

- Coagulopathy
- Valvular heart disease
- Heart failure on admission
- Cardiac arrest on admission
- Elixhauser score

# o Facility Characteristics

- Number of Beds
- ICU type
- Urban/Rural hospital
- Region (Midwest, Northeast, Southeast, Southwest, West)
- Hospital Ownership (Governmental, Proprietary, Voluntary)
- Average number of patients with STEMI treated per year
- <sup>a</sup> Of 20 variables employed for propensity matching and multivariable regression, only 6 (all categorical) had missing data (summarized in eResults)
- <sup>b</sup> In the out-of-hospital STEMI cohort, all characteristics were well matched, i.e., standardized mean difference < .10, except for admission source (.23), percent of hospital occupancy at time of admission (.15), ICU occupancy (.14). In the in-hospital

STEMI cohort, all characteristics were well matched, i.e., standardized mean difference < .10, except for age (.11), race (.13), admission source (.31), region (.12), ICU occupancy (.36), prior MI (.13).

# D) ICD-10 code validation:

In a study by Kokotailo et al, the positive predictive value for utilizing ICD-10 codes for stroke was 92% (95% CI 88 to 95) with perfect agreement between coder and researcher (Kappa statistic 0.89, 95% CI 0.82 to 0.96). In a study by Park et al, the positive predictive value for myocardial infarction reached 92.0%. For cardiogenic shock, positive predictive value of ICD-10 code was 96% in a study by Lauridsen et al.<sup>6</sup> For heart failure, in a meta-analysis of the 11 studies reporting sensitivity and specificity values, the pooled sensitivity was 75.3% (95% CI: 74.7–75.9) and specificity was 96.8% (95% CI: 96.8–96.9). Regarding the exploratory outcomes, the validation of AKI was less robust. In a study that validated AKI at the time of hospital admission using ICD-10 codes in the elderly population, sensitivity was 61.6% (95% CI 57.5% to 65.5%) and specificity > 95%. In another study that validated the ICD-10 code for AKI in patients following kidney transplant, the sensitivity and specificity were was 42.1% (95 % CI 31.7, 53.3), and 90.6% (95% CI 87.6, 93.0), respectively. These 2 studies suggest that ICD-10 codes are likely to underestimate the true incidence of AKI. For mechanical ventilation, the ICD-9 code has a sensitivity of 50% and specificity of >99%. 10 For ICD-10 codes, a study showed that procedure codes for mechanical ventilation have high specificity (96.0%; 95% CI 95.8–96.2), but only moderate sensitivity (58.4%; 95% CI 57.7– 59.1), with a positive predictive value of 89.6% (95% CI 89.1–90.1) and negative predictive value of 79.7% (95% CI 79.4–

# © 2021 American Medical Association. All rights reserved.

80.1).<sup>11</sup> ICD-10 codes for GI bleeding and intracranial hemorrhage have a PPV of 92.0% and 71.5%, respectively.<sup>5</sup> Studies validating the ICD-10 codes for the remainder of the exploratory outcomes are lacking.

# E) Multivariable regression:

In a sensitivity analysis of the primary study outcome, multivariable logistic regression was performed following propensity matching, with active COVID infection entered as the primary exposure variable, and the variables listed above in eMethods C included as covariates. In the out-of-hospital STEMI cohort, there were 392 deaths, while in the in-hospital cohort there were 528 deaths. That number of events provided approximately 40-50 degrees of freedom; in keeping with the 10 events per variable rule, the multivariable model was able to accommodate the covariate list above without concern for model saturation. Odds ratio and 95% confidence intervals were reported.

### eResults:

Simple imputation was used for variables with missing data, employing the most frequently observed category among those with non-missing values. Approximately 9% were missing ethnicity and were imputed to non-Hispanic, 2.7% were missing race and were imputed to Caucasian, 3% were missing bed size and were imputed to >500, 3% were missing teaching status and were imputed to teaching, 3% were missing Urban/Rural and were imputed to Urban, 3% were missing ownership and were imputed to voluntary.

### eReferences:

- 1. Elixhauser A, Steiner C, Harris D, Coffey R. Comorbidity measures for use with administrative data. *Med Care*. 1998;36(1):8-27.
- 2. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. *Med Care*. 2005;43(11):1130-1139.
- 3. van Walraven C, Austin P, Jennings A, Quan H, Forster A. A modification of the Elixhauser comorbidity measures into a point system for hospital death using administrative data. *Med Care*. 2009;47(6):626-633.
- 4. Kokotailo RA, Hill MD. Coding of Stroke and Stroke Risk Factors Using International Classification of Diseases, Revisions 9 and 10. *Stroke*. 2005;36(8):1776-1781.
- 5. Park J, Kwon S, Choi E-K, et al. Validation of diagnostic codes of major clinical outcomes in a National Health Insurance database. *Int J Arrhythmia 2019 201*. 2019;20(1):1-7.
- 6. Lauridsen MD, Gammelager H, Schmidt M, Nielsen H, Christiansen CF. Positive predictive value of International Classification of Diseases, 10th revision, diagnosis codes for cardiogenic, hypovolemic, and septic shock in the Danish National Patient Registry. *BMC Med Res Methodol 2015 151*. 2015;15(1):1-7.
- 7. McCormick N, Lacaille D, Bhole V, Avina-Zubieta JA. Validity of Myocardial Infarction Diagnoses in Administrative Databases: A Systematic Review. *PLoS One*. 2014;9(3):e92286.
- 8. Hwang YJ, Shariff SZ, Gandhi S, et al. Validity of the International Classification of Diseases, Tenth Revision code for acute
- $\ensuremath{\mathbb{C}}$  2021 American Medical Association. All rights reserved.

- kidney injury in elderly patients at presentation to the emergency department and at hospital admission. *BMJ Open*. 2012;2(6):e001821.
- 9. Molnar AO, Walraven C van, McArthur E, Fergusson D, Garg AX, Knoll G. Validation of Administrative Database Codes for Acute Kidney Injury in Kidney Transplant Recipients: *Can J Kindey Health Dis.* 2016;3(18).
- 10. Kerlin MP, Weissman GE, Wonneberger KA, et al. Validation of Administrative Definitions of Invasive Mechanical Ventilation across 30 Intensive Care Units. *Am J Respir Crit Care Med.* 2016;194(12):1548-1552.
- 11. Wunsch H, Kramer A, Gershengorn HB. Validation of intensive care and mechanical ventilation codes in Medicare data. *Crit Care Med*. 2017;45(7):e711.