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Computational Procedures

All  simulated  structures,  data  and  scripts  necessary  for  reproducing  the  simulations  herein  have  made  freely  accessible  at
https://nano.ku.dk/english/research/theoretical-electrocatalysis/katladb/bayesian-optimization-of-hea/

Density functional theory simulations
Density functional theory using the revised Perdew-Burke-Ernzerhof (RPBE) exchange-correlation functional [1] as implemented in the
GPAW code[2,3] was used to obtain *OH and O* adsorption energies on fcc (111) 2x2-atoms-sized, four-layered surface slabs that
were periodically repeated in the direction parallel to the slab. The structures were set up and manipulated in the Atomic Simulation
Environment (ASE)[4]. The slabs were constructed with an fcc lattice constant set to the weighted average of the calculated fcc lattice
constants of the elements in the surface layer, a vacuum of 7.5 Å was added above and below the slab, and the atoms in the two
bottom layers were held fixed during geometry relaxations at which the structures were optimized until the maximum force on any
atom was below at least 0.1 eVÅ-1. The wave functions were expanded in plane waves with an energy cutoff set to 400 eV, and the
Brillouin zone was sampled with a Monkhorst-Pack grid of 4x4x1 k-points. For training the Ag-Ir-Pd-Pt-Ru quinary alloy adsorption
energy regressor, a total of 1304 *OH and 1768 O* adsorption energies were simulated on slabs where the metals in the structure
were randomly sampled from an equimolar ratio. Equivalently for the Ir-Pd-Pt-Rh-Ru system where 856 *OH and 997 O* adsorption
energies  were  simulated.  The 2x2-atoms-sized,  four-layered  slabs for  the binary  alloy  systems (Ag-Pd,  Ir-Pt  and  Pd-Ru)  were
calculated with a similar computational setup with the exception of 10 Å added vacuum. In addition to slabs sampled from equimolar
ratios, 25% of the slabs were sampled from a 3:1 ratio e.g. Ag75Pd25 and 25% from a 1:3 ratio e.g. Ag25Pd75 in order to more sensibly
span the compositions of the binary alloy systems.

Adsorption energy prediction
The DFT calculated *OH and O* adsorption energies were used to train a regressor for predicting the *OH and O* adsorption energy
at any conceivable on-top and fcc hollow site of an fcc (111) surface. To this end, we applied our previously developed scheme [5] for
mapping structures into machine readable features simply by one-hot encoding the identity of the adsorption site ensemble and by
counting the number of each element in equidistant positions from the adsorption site. For *OH on-top adsorption the atoms included
in our description was the on-top adsorbing atom itself,  the surface and subsurface neighboring atoms, and the second-nearest
atoms in the third layer as we suggested recently[6]. For O* fcc hollow site adsorption the three-atom site ensemble as well as its
surface and subsurface neighboring atoms were included in the description of  the site (for  an example see  Figure S3).  These
features were used to fit a linear model for each on-top *OH adsorption site, i.e. one for on-top Ag, one for on-top Ir, etc. containing
15 fitted parameters each, as well as a single linear model for fcc hollow adsorbing O*, containing 55 fitted parameters (the fitted
linear parameters are shown in Table S2-S5). For the investigated binary alloys a gradient boosted regressor was used on a more
elaborate description of the surface site including the neighboring atomic environment up to the third or fourth closest atoms of each
layer in order to improve on the prediction accuracy. Since the 2x2-atoms-sized DFT simulated slabs are periodically repeated this
will  include some zones without any additional  information,  however all  available atoms will  be included in the site features. In
addition, a gradient boosted model was fitted to each O* adsorption site, i.e. one model for Ag3, Ag2Pd, AgPd2 and Pd3, respectively.
Furthermore,  when  training  the  gradient  boosted  regressor  the  samples  of  binary  alloys  were  weighted  to  enhance  their
representation of the composition span. Thus, each data set of  a binary alloy contained two pure metal samples with assigned
weights of  1000,  approximately 1000 samples drawn equally from the 1:3 and 3:1 molar ratios with assigned weights of 2 and
approximately 1000 samples drawn from the equimolar ratio with assigned weights of 1. Linear and gradient boosted regression
algorithms were used as implemented in scikit-learn[7] with default hyperparameters.

Current density modeling
The current density predicted by simulations was predicted using equations 1-3. Equation 3 predicts the per site current density
based on an Arrhenius-like rate expression and takes as input the difference in the *OH or O* adsorption energy to an optimal value,
determined as 0.1 eV[8] and 0.2 eV[9] weaker than on Pt(111).  The theoretical  framework behind these experimentally validated
optimal adsorption energies is a kinetic model that involves the associative mechanism for the ORR. Initially, the electrochemical
adsorption-reduction step of O2 to *OOH must be facilitated, and finally the desorption-reduction steps of *OH or O* to H 2O. We note
that other pathways, including the dissociative ORR mechanism, could also contribute to the produced current density. However, we
expect these contributions to be minor. In case of the dissociation of O2 to form adsorbed O* on the surface, the argument is that this
reaction becomes increasingly less relevant compared to the associative mechanism as the overpotential increases. Already at about
0.8 V vs. RHE the effect of the dissociative mechanism is minor.[10]

In order to improve on the model’s predictive trend, a simple adsorbate interaction between adsorbed *OH and O* was included. [11]

This interaction works by ensuring that no two neighboring on-top and hollow sites can adsorb reaction intermediates at the same
time. To calculate the current density using equation 1-3, the net coverage and corresponding net adsorption energies were used by
accounting  for  this  interaction.  In  practice  these  net adsorption  energies  were  achieved  by  predicting  the  *OH and  O*  gross
adsorption energies on all on-top and fcc hollow sites on a randomly constructed surface with a desired composition and measuring
100x100 atoms (the dependence of the predicted current density on the surface size is shown in Figure S1). The surface was then
filled  with *OH on-top and O*  fcc  hollow adsorbates  starting at  the strongest  adsorbing  sites and filled  using the rule  that  no
neighboring on-top and hollow sites can adsorb at the same time, until no more free surface sites remained. The net coverage and
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net adsorption energies of *OH and O* achieved in this way would then act as the input for equation 1-3 when calculating the
predicted current density for the given composition.

Gaussian Process
A Gaussian process regressor as implemented in scikit-learn[7] was constructed by setting the prior mean to zero everywhere, and
defining the kernel (or covariance function) as shown in Equation 4 in the main text. This choice of kernel and prior mean is often a
standard choice in machine learning applications, because of its general applicability and limited prior knowledge about the function
being estimated. However, the squared exponential kernel does guarantee continuity and differentiability of the realizations of the
Gaussian process,  which we would also expect for the current densities of a composition space. It therefore forms a natural starting
point for the present implementation. 

When  training  the  Gaussian  process  on  the  sampled  compositions,  the  hyperparameters  C and   𝓁 were  updated  as
implemented with the default choice of parameters in scikit-learn. The evolution of the hyperparameters as more samples were added
are shown for illustration in Figure 2 in the main text.

Bayesian Optimization
In order to find optimal compositions with Bayesian inference, the Gaussian process regressor was initially trained on two randomly
selected molar fractions along with their corresponding simulated current densities obtained with the kinetic model. The Gaussian
process regressor was then used to predict current densities and surrogate model uncertainties at 1000 randomly selected molar
fractions in order to span the quinary composition space in an approximate manner. The selection of the most optimal composition to
sample next  was performed with the  expected improvement acquisition  function.  The principle of  this  acquisition function is  to
evaluate the expectation value of the improvement function,[12]

E[ I (x)]=E [max ( ymin+ξ−Y ,0)] (S1)

at a molar fraction x for randomly distributed current densities Y and for the highest absolute value of the current density ymin sampled
by the kinetic model so far. 𝜉 is a tunable parameter that effectively adjusts ymin. If  is chosen to be greater than zero, the minimum𝜉

found so far is effectively increased making molar fractions with greater probability of having current densities below the minimum
have larger expected improvements and are therefore more likely to be compositions that could further minimize the current density.
Assuming that the current densities at  x are normally distributed with mean and standard deviation given by the prediction of the
surrogate Gaussian process regressor, the expected improvement can be evaluated as

S3

Figure S1. The predicted current density vs. the number of atoms of the simulated surface sampled for at least five random
surfaces of equimolar AgIrPdPtRu at each of the sampled sizes. The standard deviation (std.)  of the five sampled points are
shown in green in the lower plot. At 10,000 atoms in the surface (100x100 atoms) the variation in the simulated current density is
appreciably low compared to the variation between compositions (see for instance Figure 3 in the main text).
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E[ I (x)]=( ymin+ξ−μ(x))Φ(
ymin+ξ−μ(x)

σ( x) )+σ (x)ϕ(
ymin+ξ−μ(x)

σ (x) ) , (S2)

where  μ(x)  and  σ(x)  are  the  mean  and  standard  deviation  supplied  by  the  Gaussian  process  regressor,  respectively,  and
ϕ(t)=(1 /√2π)exp(−t2 /2)  and  Φ( t)=∫−∞

t

ϕ (t ' )dt '  are the standard normal probability and cumulative distributions, respectively.
The expected improvement was evaluated at the same 1000 compositions as the Gaussian process regressor, and the composition
with the maximum acquisition value was further optimized by sampling the expected improvement around the composition in molar
fraction steps of 0.005 until a maximum was found that was then selected for sampling by the kinetic model. A -value of 0.01 was𝜉

used  throughout.  A -value of  zero  was  found  to  potentially  discover  the locally  optimal  compositions  very  quickly.  However, 𝜉

discovery of the global optimum was not guaranteed with 150 samples as was the case for =0.01. 𝜉
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Experimental Procedures

Electrochemical characterization
Binary thin-film composition spreads were analyzed using a high-throughput  scanning droplet  cell  (SDC) coupled with a Jaissle
potentiostat/galvanostat. The teflon tip forming the head of the SDC had an opening of 1 mm in diameter, which formed the working
electrode in each of the measurement  areas (MAs) with a size of  7.35·10 -3 cm2,  allowing local characterization of  the samples.
Particular MAs on all of the samples were separated from each other by 2.25 mm, which corresponds to composition changes of ca.
1.5 at.% per element. All electrochemical measurements were conducted in 0.1 M HClO4 electrolyte in a three-electrode system with
a Ag|AgCl|3M KCl and a Pt wire as a reference and counter electrode, respectively. Linear sweep voltammetry was performed
between 1 V and 200 mV vs. the reversible hydrogen electrode (RHE) with a scan rate of 10 mV s -1. All potentials are reported versus
the RHE calculated according to the following equation:

U RHE=U Ag∣AgCl∣3MKCl+0.210V+0.059V⋅pH , (S3)

where UAg|AgCl|3M KCl is the potential measured vs. the Ag|AgCl|3M KCl reference electrode, 0.210 V is the standard potential of the Ag|
AgCl|3M KCl reference electrode at 25 °C. 0.059 V is the result of ln(10)RT/nF, where R is the gas constant,  T is the temperature
(298 K), F is the Faraday constant and n (=1) is the number of electrons transferred during the reaction.

Composition analysis
The elemental compositions of all MAs in the MLs were determined using automated energy dispersive X-ray spectroscopy (EDX) at
20 kV acceleration voltage in a scanning electron microscope (SEM, JEOL 5800) using a detector (INCA X-act, Oxford Instruments).

Surface roughness analysis by AFM
Topographical images of the Ag-Pd, Pd-Ru, Ir-Pt and Ir-(Hi) Pt thin film libraries were measured by atomic force microscopy (AFM,
Bruker  Dimension Fastscan)  using  Fastscan  mode.  For  surfaces,  whose  roughness  is  characterized  by  a  single  length  scale,
roughness parameters were calculated by the arithmetic mean roughness Ra.

Phase analysis from XRD
The crystallographic phase analysis was performed using X-ray diffraction (XRD). A Bruker D8 Discover with a Vantec-500 2D-
detector  in  Bragg–Brentano  geometry  and  Cu  Kα  X-ray  source  was  used.  To  avoid  Si-substrate  peaks,  measurements  were
performed in θ–2θ mode with a 2.5° offset on θ. Five frames were taken stepwise at every MA with an increment of θ/2θ 7.5°/15°,
starting at 10°/25° and finishing at 40°/85°. In this way an angular 2θ range from approximately 10° to 100° was covered.

Thin-film fabrication Pd-Ru, Ir-Pt, and Ag-Pd
The Pd-Ru and Ir-Pt libraries were fabricated by a combinatorial magnetron sputtering system (DCA Instruments, Finland) equipped
with five cathodes. Two of these five cathodes were positioned at 144° form each other to create composition gradients. High purity
(Ir: 99.9%, Pt: 99.99%,) 100 mm diameter single-element targets were used. A confocally-placed 100 mm diameter sapphire wafer (c-
plane) was used as a substrate for the Ir-Pt system. It was patterned with small numbered crosses by a photolithographic lift-off
process to serve as a reference grid and for making local thickness measurements by stylus profilometry. All of the depositions were
carried out without intentional heating. Prior to the deposition, the chamber vacuum was on the order of 10 -5 Pa. During deposition,
the pressure was set to 0.667 Pa using Ar (99.9999%) at a flow rate of 60 sccm, and the substrate was kept stationary to obtain
continuous compositional gradients. The type of power supply used for each library and sputter powers are listed in Table S1.
The Ag-Pd system was deposited in an alternate vacuum chamber, where cathodes with 38 mm diameter targets (Ag: 99.99%, Pd:
99.95%) are positioned 180° to each other.  The substrate used was an approximately 1 cm wide strip cleaved from a 100 mm
diameter <100> Si wafer, which was thermally oxidized as a diffusion barrier. The chamber base vacuum was 10 -4 Pa and deposition
was done at an Ar pressure of 0.5 Pa. The 100 mm diameter (100) Si substrate with a 500 nm SiO 2 barrier layer was stationary at the
confocal point of the tilted cathodes so that composition gradients were obtained.
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Table S1. Sputter parameters for the Pd-Ru, Ir-Pt and Ir-(High)Pt, respectively.

Deposition power (W)

Libraries

Pd Ru Ir Pt

(RF)[a] (DC)[b] (DC)[b] (RF)[a]

Pd-Ru 182 44 - -

Ir-Pt - - 70 194

Ir-(Hgh)Pt - - 40 239

[a] RF: Radio frequency. [b] DC: Direct current.
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Results and Discussion

Number of samples in a grid search of an N-component composition space
The number of combinations of alloy compositions in steps of molar fractions of s are given by equation S4.

N=
( 1s+N elems−1)!

( 1s )! (N elems−1 )!
(S4)

where Nelems is the number of metals in the alloy system. For example, to uniformly span the composition space of a quinary alloy in 
5% intervals 10,626 points are needed. Figure S2 shows the number of combinations needed to span the composition space for 
various steps of molar fractions. It is observed that as the number of elements increases, the exploration of the composition space 
becomes increasingly infeasible as the number of samples needed increase combinatorially.

Figure S2. Number of samples needed to span the composition space. Shown for molar
fraction step sizes of 1, 2, 5 and 10% as a function of the number of metals in the alloy.
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Figure S3. Examples of encoding the features of a structure. Shown in  a) for an *OH on-top site with a set of
features for each possible on-top site element (exemplified for an Ag on-top site) with a total of 15 parameters, and
in  b) for an O* fcc hollow site with one-hot encoding of the adsorption site ensemble (here exemplified for the
AgAgPd ensemble) with a total of 55 parameters. The color of the text matches the corresponding colors of the
atoms in the structure.
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Figure  S4. Pseudo-ternary  plot of  the Ag-Ir-Pd-Pt-Ru modeled current  densities after
sampling of 150 samples with Bayesian optimization. The Ag, Ir, and Pt concentrations
have been grouped into one to highlight the plateau of similar current densities when the
binary Pd65Ru35 is mixed with other elements in trace amounts. Yellow colors correspond
to  regions  with  high  absolute  values  of  the  current  density  and  blue  colors  to
correspondingly low values. The projection of the current density from the quinary to the
pseudo-ternary composition space was accomplished by showing the maximal absolute
value  of  the  current  density  possible  for  compositions  that  would  otherwise  be
overlapping.
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Table S2. Linear parameters used for on-top *OH adsorption energy prediction on the Ag-Ir-Pd-Pt-Ru system. The parameters will give the electronic energy in
eV relative to *OH on Pt(111). The order of the parameters, after the intercept, follows the features given in  Figure S3a. In the labels of the parameters the
number refers to the layer, and the letter to the proximity to the adsorption site, e.g. “3a Pd” refers to the influence of Pd in the nearest atoms in the 3rd layer
below the surface. The intercept has been chosen to yield the prediction for the pure element, since this value is obtained by setting the respective parameters for
that element in each zone to zero.

Ag-Ir-Pd-Pt-Ru (eV relative to *OH@Pt(111))

@Ag @Ir @Pd @Pt @Ru

Intercept 0.262515 -0.363696 0.075474 -0.023367 -0.604279

1b Ag 0 -0.074370 -0.025064 -0.065560 -0.026962

1b Ir 0.124874 0 0.044604 0.014894 0.025734

1b Pd 0.055553 -0.057413 0 -0.042658 -0.021608

1b Pt 0.106736 -0.016379 0.040827 0 0.021586

1b Ru 0.083629 -0.019943 0.007435 -0.016870 0

2a Ag 0 0.020613 0.022701 0.076312 -0.097415

2a Ir -0.103170 0 -0.050573 -0.022161 -0.022948

2a Pd -0.025039 0.008149 0 0.046161 -0.070458

2a Pt -0.057300 -0.012203 -0.032788 0 -0.059442

2a Ru -0.121723 0.031539 -0.051361 -0.014583 0

3a Ag 0 -0.036480 -0.015738 -0.022794 -0.025380

3a Ir 0.019881 0 0.035545 0.032103 0.013630

3a Pd -0.001190 -0.014928 0 -0.006961 -0.000195

3a Pt 0.005926 -0.012114 0.000055 0 0.008633

3a Ru 0.023315 -0.002794 0.033945 0.039372 0
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Table S3. Linear parameters used for fcc hollow O* adsorption energy prediction on the Ag-Ir-Pd-Pt-Ru system. The parameters will give the electronic energy in
eV relative to O* on Pt(111). The order of the parameters follows the features given in Figure S3b. In the labels of the parameters the number refers to the surface
layer, and the letter to the proximity to the adsorption site, e.g. “2b Pd” refers to the influence of Pd in the next nearest atoms in the subsurface layer.

Ag-Ir-Pd-Pt-Ru (eV relative to O*@Pt(111))

AgAgAg 0.823301 AgAgIr -0.470179 AgAgPd 0.612573 AgAgPt 0.374752

AgAgRu -0.869420 AgIrIr -0.603051 AgIrPd -0.386478 AgIrPt -0.296955

AgAgRu -0.971134 AgPdPd 0.417371 AgPdPt 0.226634 AgPdRu -0.897300

AgPtPt 0.231177 AgPtRu -0.677207 AgRuRu -1.168980 IrIrIr -0.884791

IrIrPd -0.791251 IrIrPt -0.645038 IrIrRu -1.154468 IrPdPd -0.586752

IrPdPt -0.435780 IrPdRu -1.101158 IrPtPt -0.331185 IrPtRu -0.912780

IrRuRu -1.396306 PdPdPd 0.142790 PdPdPt 0.030062 PdPdRu -0.915004

PdPtPt 0.073705 PdPtRu -0.771205 PdRuRu -1.356419 PtPtPt 0.092753

PtPtRu -0.617444 PtRuRu -1.178394 RuRuRu -1.654559 - -

1b Ag -0.081909 1c Ag 0.028809 2a Ag -0.040527 2B Ag 0.005127

1b Ir 0.062988 1c Ir -0.020630 2a Ir 0.030518 2b Ir -0.004639

1b Pd -0.047180 1c Pd 0.014160 2a Pd -0.022949 2b Pd -0.013672

1b Pt 0.025269 1c Pt 0.002563 2a Pt -0.011230 2b Pt -0.027344

1b Ru 0.040649 1c Ru -0.025635 2a Ru 0.042969 2b Ru 0.040405
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Table S4. Linear parameters used for on-top *OH adsorption energy prediction on the Ir-Pd-Pt-Rh-Ru system. The parameters will give the electronic energy in
eV relative to *OH on Pt(111). The order of the parameters, after the intercept, follows the features given in  Figure S3a: In the labels of the parameters the
number refers to the layer, and the letter to the proximity to the adsorption site, e.g. “3a Pd” refers to the influence of Pd in the nearest atoms in the 3rd layer
below the surface. The intercept has been chosen to yield the prediction for the pure element, since this value is obtained by setting the respective parameters for
that element in each zone to zero.

Ir-Pd-Pt-Rh-Ru (eV relative to *OH@Pt(111))

@Ir @Pd @Pt @Rh @Ru

Intercept -0.324264 0.044878 -0.008922 -0.323476 -0.639564

1b Ir 0 0.045847 0.011095 0.037634 0.040998

1b Pd -0.067114 0 -0.041923 -0.012061 -0.024511

1b Pt -0.022217 0.041869 0 0.028185 0.018334

1b Rh -0.048245 0.006241 -0.030170 0 -0.002666

1b Ru -0.026561 0.001899 -0.020977 0.002107 0

2a Ir 0 -0.034497 -0.013930 -0.007092 -0.018194

2a Pd 0.017262 0 0.030018 -0.006571 -0.047992

2a Pt -0.006588 -0.027407 0 -0.014891 -0.037786

2a Rh 0.009353 -0.020069 0.021633 0 -0.022024

2a Ru 0.021847 -0.030915 0.002223 0.005128 0

3a Ir 0 0.034227 0.029385 0.006703 0.004741

3a Pd -0.026733 0 -0.016174 -0.021482 -0.015521

3a Pt -0.016911 0.012355 0 -0.006625 -0.000825

3a Rh -0.005591 0.015988 0.015289 0 -0.003526

3a Ru 0.006793 0.035460 0.039082 0.007343 0
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Table S5. Linear parameters used for fcc hollow O* adsorption energy prediction on the Ir-Pd-Pt-Rh-Ru system. The parameters will give the electronic energy in
eV relative to O* on Pt(111). The order of the parameters follows the features given in Figure S3b. In the labels of the parameters the number refers to the surface
layer, and the letter to the proximity to the adsorption site, e.g. “2b Pd” refers to the influence of Pd in the next nearest atoms in the subsurface layer.

Ir-Pd-Pt-Rh-Ru (eV relative to O*@Pt(111))

IrIrIr -0.802671 IrIrPd -0.698724 IrIrPt -0.549723 IrIrRh -0.867686

IrIrRu -1.039895 IrPdPd -0.490209 IrPdPt -0.372960 IrPdRh -0.717682

IrIrRu -1.023565 IrPtPt -0.244375 IrPtRh -0.585337 IrPtRu -0.815201

IrRhRh -0.894818 IrRhRu -1.128900 IrRuRu -1.293938 PdPdPd 0.154385

PdPdPt 0.096998 PdPdRh -0.273295 PdPdRu -0.866591 PdPtPt 0.062937

PdPtRh -0.252892 PdPtRu -0.716471 PdRhRh -0.602280 PdRhRu -1.054314

PdRuRu -1.262522 PtPtPt 0.183877 PtPtRh -0.153542 PtPtRu -0.560802

PtRhRh -0.506731 PtRhRu -0.874115 PtRuRu -1.077222 RhRhRh -0.856961

RhRhRu -1.144941 RhRuRu -1.392573 RuRuRu -1.563099 - -

1b Ir 0.045966 1c Ir -0.020285 2a Ir 0.026245 2B Ir 0.002915

1b Pd -0.061963 1c Pd 0.029724 2a Pd -0.040319 2b Pd -0.028029

1b Pt 0.006466 1c Pt 0.012666 2a Pt -0.022935 2b Pt -0.039050

1b Rh -0.011702 1c Rh 0.000303 2a Rh 0.007976 2b Rh 0.003210

1b Ru 0.021233 1c Ru -0.022409 2a Ru 0.029033 2b Ru 0.060954
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S14

Figure S5. Histograms of DFT calculated adsorption energies of *OH and *O on the quinary alloy and the three binary alloys. Adsorption ensembles are
distinguished by different colors with the mean adsorption energy (𝜇ΔE) and standard deviation (𝜎ΔE). Adsorption energies of the pure metal fcc(111) surfaces are
marked with black arrows.
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Table S6. Mean absolute errors (MAEs)  in units of eV of several regression algorithms predicting adsorption energies of *OH and O* on the quinary and binary
alloys using truncated site features as displayed in  Figure S3. 20% of the samples were selected for testing with the remaining samples used to train the
regression model. The standard deviations on the last digit(s) of the MAEs are displayed in parentheses.

*OH adsorption energies - Truncated adsorption site features

Regressor type
Ag-Pd

(1843 samples)
Ir-Pt

(1820 samples)
Pd-Ru

(1816 samples)
Ag-Ir-Pd-Pt-Ru
(1304 samples)

Dummy (mean) 0.09(7) 0.05(4) 0.06(5) 0.12(9)

Linear regr. 0.04(3) 0.02(2) 0.05(4) 0.06(5)

Ridge regr. 0.04(3) 0.02(2) 0.05(4) 0.06(5)

Gradient Boosting 0.03(2) 0.018(14) 0.03(3) 0.07(6)

Random Forest 0.03(2) 0.018(15) 0.04(3) 0.07(6)

*O adsorption energies - Truncated adsorption site features

Regressor type
Ag-Pd

(2001 samples)
Ir-Pt

(2002 samples)
Pd-Ru

(1872 samples)
Ag-Ir-Pd-Pt-Ru
(1768 samples)

Dummy (mean) 0.11(8) 0.10(8) 0.15(10) 0.5(4)

Linear regr. 0.05(4) 0.04(3) 0.08(6) 0.09(7)

Ridge regr. 0.05(4) 0.04(3) 0.08(5) 0.11(8)

Gradient Boosting 0.04(3) 0.04(3) 0.05(4) 0.11(8)

Random Forest 0.03(3) 0.04(3) 0.05(4) 0.10(8)
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Table S7. Mean absolute errors (MAEs) in units of eV of several regression algorithms predicting adsorption energies of *OH and O* on the quinary and binary
alloys using extended site features (up to fourth-nearest neighboring atoms for all  layers).  20% of the samples were selected for testing with the remaining
samples used to train the regression model. The standard deviations on the last digit(s) of the MAEs are displayed in parentheses.

*OH adsorption energies - Extended adsorption site features

Regressor type
Ag-Pd 

(1843 samples)
Ir-Pt

(1820 samples)
Pd-Ru

(1816 samples)
Ag-Ir-Pd-Pt-Ru
(1304 samples)

Dummy (mean) 0.09(7) 0.05(4) 0.06(5) 0.12(9)

Linear regr. 0.04(3) 0.020(17) 0.05(4) 0.08(7)

Ridge regr. 0.03(3) 0.020(19) 0.04(3) 0.06(5)

Gradient Boosting 0.017(16) 0.012(9) 0.03(2) 0.07(5)

Random Forest 0.015(13) 0.011(10) 0.03(2) 0.07(6)

*O adsorption energies - Extended adsorption site features

Regressor type AgPd (2001 samples) IrPt (2002 samples) PdRu (1872 samples) AgIrPdPtRu (1768 samples)

Dummy (mean) 0.11(8) 0.10(8) 0.15(10) 0.5(4)

Linear regr. 0.04(4) 0.02(2) 0.06(4) 0.09(7) 

Ridge regr. 0.05(3) 0.026(19) 0.06(4) 0.10(8) 

Gradient Boosting 0.024(19) 0.021(17) 0.04(3) 0.08(6) 

Random Forest 0.020(18) 0.024(19) 0.03(3) 0.09(8) 
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Figure S6. Predicted adsorption energy plotted against DFT calculated adsorption energy for
the Ag-Ir-Pd-Pt-Ru linear model (a,b), Ag-Pd (c,d), Ir-Pt (e,f), and Pd-Ru (g,h) gradient boosted
models for on-top *OH (a,c,e,g) and fcc hollow O* (b,d,f,h) adsorption on fcc(111) surfaces. The
colors indicate the identity of the adsorption site as shown in the legend. M ean absolute errors
with standard deviations are displayed for both training and test set. 20% of the samples were
selected for testing (crosses) with the remaining samples used to train the model (circles). For
the quinary alloy the results of the linear regression model trained on the truncated site features
are displayed, while for the binary alloys the results of the gradient boosted model trained on the
extended site features are displayed.
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Figure S7. a) Simulated current densities of the Ir-Pt binary system shown as a scan from pure Pt to pure Ir with 1 at.% increments. A linear regression model trained
on the DFT calculated samples of the quinary alloy is used alongside a gradient boosted model trained on DFT calculated samples of Ir-Pt to predict the adsorption
energies of the simulated surface. These predictions serve as input for Equations 1-3 which yield the resulting current densities.  b-e) *OH and O* net adsorption
energy distributions (after intersite blocking) for selected compositions corresponding to the annotations in a). A scaled visualization of the modeled current density in
Equation 3 is shown (black solid line).
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Figure S8. a) Simulated current densities of the Pd-Ru binary system shown as a scan from pure Ru to pure Pd with 1 at.% increments. A linear regression model
trained on the DFT calculated samples of the quinary alloy is used alongside a gradient boosted model trained on DFT calculated samples of Pd-Ru to predict the
adsorption energies of the simulated surface. These predictions serve as input for Equations 1-3 which yield the resulting current densities.  b,c) *OH and O* net
adsorption energy distributions (after intersite blocking) for selected compositions corresponding to the annotations in  a). A scaled visualization of the modeled
current density in Equation 3 is shown (black solid line).
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Figure S9. All automatically measured LSV curves. a) Ag-Pd (right side: LSV plots from the low-Ag part of the sample, without visible film corrosion),
b) Pd-Ru, and c) and d) Ir-Pt binaries.
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Figure S10. Comparisons of measured ORR current densities (black curve) with sample composition (blue curve) and surface roughness (red
curve) for synthesized thin-films of a) Ag-Pd, b) Pd-Ru, c) Ir-Pt, and d) Ir-(High)Pt.
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Figure S11. XRD profiles for a) Ag-Pd, b) Pd-Ru c) Ir-Pt, and d) Ir-(High)Pt binaries. A single fcc phase is observed for both the Ag-Pd and Pd-
Ru systems, regardless of composition, while a dual phase is found for the Ir-Pt system.
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