

Supporting Information

Decarboxylative Hydroxylation of Benzoic Acids

Wanqi Su, Peng Xu, and Tobias Ritter*

anie_202108971_sm_miscellaneous_information.pdf

TABLE OF CONTENTS

TABLE OF CONTENTS	1
MATERIALS AND METHODS	6
EXPERIMENTAL DATA	7
General procedure of preparing lithium aryl carboxylate	7
General procedure of aromatic decarboxylative hydroxylation	7
Reaction condition optimization	8
Table S1 O-nucleophiles	8
Table S2 Cu(II) sources	11
Table S3 Counter ions	11
Table S4 Control experiments	12
Identification of the decarboxylation products	13
CuTC as coupling partner	13
4-Methoxybenzoate as coupling partner	15
Lithium thiophene-2-carboxylate as substrate	17
Decarboxylative hydroxylation of benzoic acids to phenols	19
Ataluren derivative 1	19
1 mmol Scale synthesis of Ataluren derivative 1	20
4-Fluorophenol (2)	21
One-pot synthesis of 4-fluorophenol (2)	22
4-Cyanophenol (3)	23
4-(Trifluoromethyl)phenol (4)	24
2,4-Bis(trifluoromethyl)phenol (5)	25
2-(Trifluoromethyl)pyridin-4-ol (6)	27
4-(5-Methyl-1,2,4-oxadiazol-3-yl)phenol (7)	28
6-Hydroxy-2-naphthonitrile (8)	29
(+)-Menthol derivative 9	30
3-Hydroxybenzaldehyde (10)	31
4-Methylphenol (11)	32
4-Methoxyphenol (12)	33
3,5-Dimethylphenol (13)	35
2,6-Dichloropyridin-4-ol (14)	37
2-Hydroxyquinoxaline (15)	38
4-Methyl-3-(morpholinosulfonyl)phenol (16)	39
Probenicid derivative 17	40

4-Acetylphenol (18)	41
4-Sulfonamidephenol (19)	42
4-(Methylsulfonyl)phenol (20)	43
2-Naphthol (21)	44
(4-Hydroxyphenyl)(morpholino)methanone (22)	45
4-(<i>trans</i> -4-Pentylcyclohexyl)phenol (23)	46
Celecoxib derivative 24	47
4-Bromophenol (25)	48
4-Nitrophenol (26)	49
2-Fluorophenol (27)	50
6-Hydroxy-1-tetralone (28)	51
2,2'-(5-Hydroxy-1,3-phenylene)bis(2-methylpropanenitrile) (29)	52
4-Phenylphenol (30)	53
Triclosan derivative 31	54
Reaction performed outside of a glovebox by using Schlenk techniques	55
Failed substrates	56
Preparation of starting material	56
Triclosan-derived benzoic acid S31	56
Mechanistic Studies	57
UV-vis Absorption Spectrum	57
Photolysis of the mixture of 2a , Cu(OTf) ₂ , and CuTC	58
Radical cyclisation experiment	59
Radical trapping experiments	60
SPECTROSCOPIC DATA	62
¹ H NMR of ataluren derivative 1	62
¹³ C NMR of ataluren derivative 1	63
¹⁹ F NMR of ataluren derivative 1	64
¹ H NMR of 4-cyanophenol (3)	65
¹³ C NMR of 4-cyanophenol (3)	66
¹ H NMR of 2-(trifluoromethyl)pyridin-4-ol (6)	67
¹³ C NMR of 2-(trifluoromethyl)pyridin-4-ol (6)	68
¹⁹ F NMR of 2-(trifluoromethyl)pyridin-4-ol (6)	69
¹ H NMR of 4-(5-methyl-1,2,4-oxadiazol-3-yl)phenol (7)	70

¹³ C NMR of 4-(5-methyl-1,2,4-oxadiazol-3-yl)phenol (7)	71
¹ H NMR of 6-hydroxy-2-naphthonitrile (8)	72
¹³ C NMR of 6-hydroxy-2-naphthonitrile (8)	73
¹ H NMR of (+)-menthol derivative 9	74
¹³ C NMR of (+)-menthol derivative 9	75
¹ H NMR of 3-hydroxybenzaldehyde (10)	76
¹³ C NMR of 3-hydroxybenzaldehyde (10)	77
¹ H NMR of 2,6-dichloropyridin-4-ol (14)	78
¹³ C NMR of 2,6-dichloropyridin-4-ol (14)	79
¹ H NMR of 2-hydroxyquinoxaline (15)	80
¹³ C NMR of 2-hydroxyquinoxaline (15)	81
¹ H NMR of 4-methyl-3-(morpholinosulfonyl)phenol (16)	82
¹³ C NMR of 4-methyl-3-(morpholinosulfonyl)phenol (16)	83
¹ H NMR of probenicid derivative 17	84
¹³ C NMR of probenicid derivative 17	85
¹ H NMR of 4-acetylphenol (18)	86
¹³ C NMR of 4-acetylphenol (18)	87
¹ H NMR of 4-sulfonamidephenol (19)	88
¹³ C NMR of 4-sulfonamidephenol (19)	89
¹ H NMR of 4-(methylsulfonyl)phenol (20)	90
¹³ C NMR of 4-(methylsulfonyl)phenol (20)	91
¹ H NMR of 2-naphthol (21)	92
¹³ C NMR of 2-naphthol (21)	93
¹ H NMR of (4-hydroxyphenyl)(morpholino)methanone (22)	94
¹³ C NMR of 4-(morpholinocarbonyl)phenone (22)	95
¹ H NMR of 4-(<i>trans</i> -4-pentylcyclohexyl)phenol (23)	96
¹³ C NMR of 4-(<i>trans</i> -4-pentylcyclohexyl)phenol (23)	97
¹ H NMR of celecoxib derivative 24	98
¹³ C NMR of celecoxib derivative 24	

¹⁹ F NMR of celecoxib derivative 24	
¹ H NMR of 4-bromophenol (25)	
¹³ C NMR of 4-bromophenol (25)	
¹ H NMR of 4-nitrophenol (26)	
¹³ C NMR of 4-nitrophenol (26)	
¹ H NMR of 6-hydroxy-1-tetralone (28)	
¹³ C NMR of 6-hydroxy-1-tetralone (28)	
¹ H NMR of 2,2'-(5-Hydroxy-1,3-phenylene)bis(2-methylpropanenitrile) (29)	
¹³ C NMR of 2,2'-(5-Hydroxy-1,3-phenylene)bis(2-methylpropanenitrile) (29)	
¹ H NMR of 4-phenylphenol (30)	
¹³ C NMR of 4-phenylphenol (30)	110
¹ H NMR of triclosan derivative 31	111
¹³ C NMR of triclosan derivative 31	112
¹ H NMR of triclosan-derived benzoic acid S31	113
¹³ C NMR of triclosan-derived benzoic acid S31	114
¹ H NMR of 6H-benzo[c]chromen-6-one (33)	115
¹ H NMR of 4-methoxy-1,1'-biphenyl (35)	117
¹³ C NMR of 4-methoxy-1,1'-biphenyl (35)	118
¹ H NMR of phenyl 4-methoxybenzoate (36)	
¹³ C NMR of phenyl 4-methoxybenzoate (36)	
¹ H NMR of 4-fluorophenyl thiophene-2-carboxylate (2b)	
¹³ C NMR of 4-fluorophenyl thiophene-2-carboxylate (2b)	
¹⁹ F NMR of 4-fluorophenyl thiophene-2-carboxylate (2b)	
¹ H NMR of 4-fluorophenyl 4-fluorobenzoate (2c)	124
¹³ C NMR of 4-fluorophenyl 4-fluorobenzoate (2c)	
¹⁹ F NMR of 4-fluorophenyl 4-fluorobenzoate (2c)	
¹ H NMR of 4-fluorophenyl 4-methoxybenzoate (2e)	
¹³ C NMR of 4-fluorophenyl 4-methoxybenzoate (2e)	
¹⁹ F NMR of 4-fluorophenyl 4-methoxybenzoate (2e)	

¹ H NMR of 4-methoxyphenyl 4-fluorobenzoate (2f)	130
¹³ C NMR of4-methoxyphenyl 4-fluorobenzoate (2f)	131
¹⁹ F NMR of 4-methoxyphenyl 4-fluorobenzoate (2f)	132
¹ H NMR of 4-methoxyphenyl 4-methoxybenzoate (2g)	133
¹³ C NMR of 4-methoxyphenyl 4-methoxybenzoate (2g)	134
REFERENCES	

MATERIALS AND METHODS

All air- and moisture-insensitive reactions were carried out under an ambient atmosphere and monitored by thin-layer chromatography (TLC). All air- and moisture-sensitive manipulations were performed using standard Schlenk and glove-box techniques under an atmosphere of nitrogen. Concentration under reduced pressure was performed by rotary evaporation at 25–40 °C at an appropriate pressure, unless otherwise stated. Purified compounds were further dried under high vacuum (0.008–0.5 Torr). Yields refer to purified and spectroscopically pure compounds, unless otherwise stated.

Solvents

Anhydrous acetonitrile, DCM, THF, and toluene were obtained from Phoenix Solvent Drying Systems. All deuterated solvents were purchased from Euriso-Top.

Chromatography

Thin layer chromatography (TLC) was performed using EMD TLC silica gel 60 F254 plates pre-coated with 250 μ m thickness silica gel and visualized by fluorescence quenching under UV light or phosphomolybdic acid stain. Preparative HPLC separation was executed on Shimadzu Prominence Preparative HPLC system. Preparative TLC was performed using pre-coated TLC plates SIL G-100 UV₂₅₄ (Layer: 1.00 mm silica gel 60 with fluorescent indicator UV₂₅₄).

Spectroscopy and Instruments

NMR spectra were recorded on a Bruker AscendTM 500 spectrometer operating at 500 MHz, 471 MHz, and 126 MHz, for ¹H, ¹⁹F, and ¹³C acquisitions, respectively; or a Bruker UltraShieldTM 300 spectrometer operating at 300 MHz, 282 MHz, and 75 MHz, for ¹H, ¹⁹F, and ¹³C acquisitions, respectively; or a Bruker AV600 spectrometer operating at 600 MHz and150 MHz for ¹H and ¹³C acquisitions; respectively. Chemical shifts are reported in ppm with the solvent residual peak as the internal standard. For ¹H NMR: CDCl₃, δ 7.26; CD₃CN, δ 1.94; CD₂Cl₂, δ 5.32, THF-*d*₈, δ 1.72, 3.58; CD₃OD-d₄, δ 3.31, (CD₃)₂SO, δ 2.50. For ¹³C NMR: CDCl₃, δ 77.16; CD₃CN, δ 1.32; CD₂Cl₂, δ 53.84, THF-*d*₈, δ 25.31, 67.21, CD₃OD-d₄, δ 49.00.¹ Data is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet; coupling constants in Hz; integration.

Starting materials

All substrates and materials were used as received from commercial suppliers, unless otherwise stated. Cu(OTf)₂ purchased from Fluorochem was stored in a glovebox and used as received. Copper(I) thiophene-2-carboxylate, abbreviated as CuTC, purchased from Chempur Feinchemikalien was stored on the bench and used as received. (+)Menthol-derived benzoic acid (**S9**) and carboxycelecoxib (**S24**) were synthesized according to the literature.^{2,3}

EXPERIMENTAL DATA

General procedure of preparing lithium aryl carboxylate

Under an ambient atmosphere, a 20 mL borosilicate vial equipped with a magnetic stir bar was charged with aryl carboxylic acid (0.30 mmol, 1.0 equiv.), lithium hydroxide (7.2 mg, 0.30 mmol, 1.0 equiv), and MeCN/H₂O (3.0 mL, v/v = 1:1, c = 0.10 M), which resulted in a solution. The reaction mixture was stirred at 25 °C for 1 h. The solvent was evaporated under reduced pressure to afford the lithium aryl carboxylate as a solid. The lithium aryl carboxylate was dried under high vacuum (0.008–0.5 Torr) at 45 °C. Dried lithium aryl carboxylate can be used directly without purification in the subsequent transformation, or stored on the bench for at least six months for later use.

Note: For some substrates, the v/v ratio and the final volume of $MeCN/H_2O$ were adjusted by adding additional MeCN or H_2O according to the solubility of the aryl carboxylic acid and the resulting lithium salt to generate a solution.

General procedure of aromatic decarboxylative hydroxylation

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium aryl carboxylate (0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, $Cu(OTf)_2$ (0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, *c* = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed (Note: The hydrolysis normally took roughly 2 hours). The

reaction mixture was acidified by addition of 1.0 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel to afford the corresponding phenol.

Note: The reactions can be performed outside of a glovebox by using Schlenk techniques, which gives the same yield (see **Figure S21**). Acid deprotonation by lithium carbonate to form copper carboxylates, decarboxylative oxygenation, and subsequent hydrolysis of the aryl ester can be carried out in the same pot to afford comparable yield (see **Figure S7**).

Reaction condition optimization

CO₂H 4.0 equiv. [Cu(MeCN)₄]BF₄ 4.0 equiv. Cu(OTf)₂ (50 µmol, 1.0 equiv) 8 equiv LiOH MeCN (25 mM), 35 °C, purple LEDs, 15 h R-CO₂H 2f 2e 2c coupling partner (75 µmol, 1.5 equiv) Oxydecarboxylation yield Coupling partner Yield (2e/2c/2f, %)^a Ratio [2e/(2c*0.5) (2e+2c*0.5, %)^a 1.5 equiv. CuTC^b 51/40/0 2.5/1 71 2.0 equiv. CuTC^b 52/34/0 2.5/169 21/44/12 1/1 43 31/30/26 2/1 46 Ph(O)C

Table S1 O-nucleophiles

МеО	46/34/19	2.7/1	63
РНО	29/50/10	1.2/1	54
ОНОМе	37/56/17	1.3/1	65
OMe O OH MeO OMe	0/0/0	/	0
Рһ	27/60/17	0.9/1	57
MeO MeO OMe	21/72/0	0.6/1	57
о он оме	25/38/23	1.3/1	44
Ме Ме	17/50/15	0.7/1	42
CF ₃ O OH CF ₃	0/0/0	/	0
ОН	45/48/0	1.9/1	69

о Ч с	30/26/0	2.3/1	43
о с с	34/26/0	2.6/1	47
ОН	10/28/0	0.7/1	24
ме он	8/80/0	0.2/1	44
o F₃C OH	8/56/0	0.3/1	36
Он	14/72/0	0.4/1	50
о Ме	12/31/0	0.8/1	27 (56% SM left)
D - C - C - C - C - C - C - C - C - C -	5/63/0	0.2/1	36 (24% SM left)

^aYield was determined by ¹⁹F NMR using 2-fluorotoluene (1.0 equiv.) as an internal standard.

 b lithium 2-fluorobenzoate (50 µmol, 1.0 equiv) as starting material. reaction condition: 2.5 equiv Cu(OTf)_2, MeCN (25 mM), 35 °C, purple LEDs, 15 h.

clithium 2-fluorobenzoate (50 µmol, 1.0 equiv) as starting material.

Table S2 Cu(II) sources

Cu(II) source	Yield (2b/2c/2d , %) ^a	Oxydecarboxylation yield (2b+2c*0.5, %) ^a
2.5 equiv Cu(OTf)₂	51/40/5	71
2.0 equiv Cu(OTf) ₂	25/42/5	46
1.5 equiv Cu(OTf)2	9/26/4	22
1.1 equiv Cu(OTf) ₂	0/0/0	0
Cu(NO ₃) ₂ ·nH ₂ O	0/0/0	0
Cu(ClO) ₄ .6H ₂ O	18/30/2	33
Cu(BF ₄) ₂ ·nH ₂ O	22/34/3	39

^{a 19}F NMR yield with 2-fluorotoluene (1.0 equiv.) as an internal standard.

Table S3 Counter ions

K+	43/32/4	59
Na+	46/34/3	63
Cs⁺	48/44/5	70
TBA⁺	37/24/6	49

^{a 19}F NMR yield with 2-fluorotoluene (1.0 equiv.) as an internal standard.

Table S4 Control experiments

Deviation	Yield (2b/2c/2d , %) ^a	Oxydecarboxylation yield (2b+2c*0.5 , %) ^a
no deviation	51/40/5	71
0.20 mmol scale	54/40/6	74
no irradiation	0/0/0	0
blue LEDs instead of purple LEDs	14/34/4	31
white CFL instead of purple LEDs	6/16/2	14
100 °C heating instead of irradination	0/0/0	0
lithium benzoate generated <i>in situ</i> by adding 4-fluorobenzoic acid and 2.0 equiv. Li ₂ CO ₃	54/34/5	71
lithium benzoate generated <i>in situ</i> by adding 4-fluorobenzoic acid and 2.0 equiv. Li ₂ CO ₃ (0.20 mmol scale)	42/46/6	64
no CuTC	0/60/13	30
no Cu(OTf)2	0/0/0	0

1.5 equiv. LiTC instead of CuTC	35/30/12	50
5.0 equiv. H ₂ O as additive	37/44/5	59
2.0 equiv. TEMPO as additive	36/56/6	64
air atmosphere instead of nitrogen atmosphere	0/0/0	0

^{a 19}F NMR yield with 2-fluorotoluene (1.0 equiv.) as an internal standard.

Identification of the decarboxylation products

CuTC as coupling partner

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-fluorobenzoate (29.2 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. 2-fluorotoluene (22.0 mg, 22.0 µL, 0.200 mmol, 1.00 equiv.) was added as an internal standard. The reaction mixture was diluted with CD₃CN, and the ¹⁹F NMR spectrum was measured. The yields of 4-fluorophenyl thiophene-2-carboxylate (2b, 53%, δ –118.42 (m) ppm), 4-fluorophenyl 4-fluorobenzoate (2c, 40%, δ –118.60, 106.41 (m) ppm) and 4fluorobenzene (2d, 6%, δ –114.82 (m) ppm) were determined by ¹⁹F NMR integration relative to the internal standard (δ –119.37 (m) ppm), respectively. The NMR sample was recycled and the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc 4:1, v/v) to afford 4-fluorophenyl thiophene-2-carboxylate (2b) (9.0 mg, 40 µmol) as a colorless solid and 4-fluorophenyl 4-fluorobenzoate (2c) (6.0 mg, 25 µmol) also as a colorless solid

Figure S1.¹⁹F NMR of resulting mixture of 2b, 2c and 2d.

4-fluorophenyl thiophene-2-carboxylate (2b)

Rf = 0.20 (pentane/EtOAc = 4/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.91 (dd, *J* = 3.8, 1.3 Hz, 1H), 7.60 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.16–7.07 (m, 3H), 7.07–6.99 (m, 2H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 160.6, 160.4 (d, *J* = 244.8 Hz) 146.4 (d, *J* = 3.0 Hz), 134.8, 133.7, 132.6, 128.1, 123.1 (d, *J* = 8.4 Hz), 116.1 (d, *J* = 23.3 Hz) ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –116.74 ppm.

HRMS-EI (m/z) calculated for C₁₁H₇O₂SF⁺ [M]⁺, 222.0145; found, 222.0144; deviation: 0.5 ppm.

4-fluorophenyl 4-fluorobenzoate (2c)

 $\mathbf{Rf} = 0.25$ (Pentane/EtOAc = 4/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.21 (dd, *J* = 8.9, 5.3 Hz, 2H), 7.25–7.15 (m, 4H), 7.11 (dd, *J* = 9.2, 8.0 Hz, 2H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 166.2 (d, *J* = 255.6 Hz), 164.2, 160.4 (d, *J* = 244.4 Hz), 146.6 (d, *J* = 3.0 Hz), 132.8 (d, *J* = 9.5 Hz), 125.6 (d, *J* = 3.0 Hz), 123.1 (d, *J* = 8.8 Hz), 116.2 (d, *J* = 23.3 Hz), 115.9 (d, *J* = 22.1 Hz) ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): -104.13, -116.78 ppm.

HRMS-ESI (m/z) calculated for C₁₃H₈O₂NaF⁺ [M+Na]⁺, 257.0384; found, 257.0386; deviation: -0.6 ppm.

4-Methoxybenzoate as coupling partner

Scheme S2. 4-methoxybenzoate as coupling partner

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with 4-fluorobenzoic acid (28.0 mg, 0.200 mmol, 1.00 equiv.), 4-methoxybenzoic acid (60.8 mg, 0.400 mmol, 2.00 equiv.) and lithium carbonate (35.4 mg, 0.480 mmol, 2.40 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (289 mg, 0.800 mmol, 4.00 equiv.), [Cu(MeCN)₄]BF₄ (62.9 mg, 0.200 mmol, 1.00 equiv.) and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, 2-fluorotoluene (22.0 mg, 22.0 µL, 0.200 mmol, 1.00 equiv.) and dibromomethane (69.5 mg, 28.1 µL, 0.400 mmol, 2.00 equiv.) were added as internal standards for ¹⁹F and ¹H NMR measurements respectively. The reaction mixture was diluted with CD₃CN, and the ¹⁹F NMR spectrum and ¹H NMR spectrum were measured. The yields of 4-fluorophenyl 4-fluorobenzoate (2c, 32%, δ –118.75, 106.54 (m) ppm), 4-fluorophenyl 4-methoxybenzoate (2e, 48%, δ – 119.10 (m) ppm) and 4-methoxyphenyl 4-fluorobenzoate (**2f**, 18%, δ –106.88 (m) ppm) were determined by ¹⁹F NMR integration relative to the internal standard (δ –119.53 (m) ppm), respectively. The amount of 4methoxyphenyl 4-methoxybenzoate (**2g**, 0.230 mmol, 1.16 equiv. δ 3.87 (s), 3.79 (s) ppm) was determined by ¹H integration relative to the internal standard (δ 5.08 (s) ppm)The NMR sample was recycled and the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was purified by chromatography on silica gel (pentane/DCM 1:1, v/v) to afford 4-fluorophenyl 4-methoxybenzoate (2e) (8.4 mg, 34 µmol) as a colorless solid and 4-methoxyphenyl 4-methoxybenzoate (2g) (17 mg, 68 µmol) as a colorless solid. Fractions containing 2e and 2f were collected and concentrated. The residue was further purified by preparation TLC (pentane/DCM 1:1 v/v) to afford 4-methoxyphenyl 4-fluorobenzoate (2f) (2.3 mg, 9.3 µmol) as a pale yellow liquid.

Figure S2.¹⁹F NMR of resulting mixture of 2c, 2e¹ and 2f¹.

Figure S3.¹H NMR of resulting mixture of 2e, 2f.and 2g

4-fluorophenyl 4-methoxybenzoate (2e)

Rf = 0.40 (Pentane/DCM = 1/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.07 (d, *J* = 8.9 Hz, 2H), 7.13–7.06 (m, 2H), 7.03 (dd, *J* = 9.1, 8.1 Hz, 2H), 6.91 (d, *J* = 8.9 Hz, 2H), 3.83 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 164.9, 164.0, 160.2 (d, *J* = 244.2 Hz), 146.9 (d, *J* = 2.9 Hz), 132.3, 123.2 (d, *J* = 8.3 Hz), 121.6, 116.1 (d, *J* = 23.7 Hz), 113.9, 55.5 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –117.28 ppm.

HRMS-ESI (m/z) calculated for C₁₄H₁₁O₃NaF⁺ [M+Na]⁺, 269.0584; found, 269.0585; deviation: -0.2 ppm.

4-methoxyphenyl 4-fluorobenzoate (2f)

Rf = 0.35 (Pentane/DCM = 1/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.22 (dd, *J* = 8.9, 5.4 Hz, 2H), 7.18 (t, *J* = 8.7 Hz, 2H), 7.12 (d, *J* = 9.1 Hz, 2H), 6.94 (d, *J* = 9.0 Hz, 2H), 3.83 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 166.3 (d, *J* = 254.9 Hz), 164.7, 157.5, 144.4, 132.9 (d, *J* = 9.3 Hz), 126.0 (d, *J* = 3.1 Hz), 122.5, 115.9 (d, *J* = 22.1 Hz), 114.7, 55.8 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –104.64.

HRMS-ESI (m/z) calculated for C₁₄H₁₁O₃NaF⁺ [M+Na]⁺, 269.0584; found, 269.0586; deviation: -0.7 ppm.

4-methoxyphenyl 4-methoxybenzoate (2g)

Rf = 0.10 (Pentane/DCM = 1/1, v/v).

NMR Spectroscopy:

¹**H NMR** (600 MHz, CDCl₃, 298 K, δ): 8.15 (d, *J* = 9.1 Hz, 2H), 7.12 (d, *J* = 9.1 Hz, 2H), 6.98 (d, *J* = 9.0 Hz, 2H), 6.93 (d, *J* = 9.1 Hz, 2H), 3.89 (s, 3H), 3.82 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃, 298 K, δ): 165.4, 164.0, 157.3, 144.7, 132.4, 122.7, 122.1, 114.6, 113.9, 55.7, 55.6 ppm.

HRMS-ESI (m/z) calculated for C₁₅H₁₄O₄Na⁺ [M+Na]⁺, 281.0784; found, 281.0785; deviation: -0.4 ppm.

Lithium thiophene-2-carboxylate as substrate

Under an ambient atmosphere, a 4 mL borosilicate vial equipped with a magnetic stir bar was charged with 4-lithium thiophene-2-carboxylate (6.7 mg, 50 µmol , 1.0 equiv.) and copper (I) thiophene-2-carboxylate (14.3 mg, 75.0 µmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (45.2 mg, 125 µmol, 2.50 equiv.), CD₃CN (2.0 mL, *c* = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, dibromomethane (15 mg, 7.0 µL, 0.10 mmol, 0.80 equiv. to thiophene carboxylate) was added as an internal standard, and the yield of thiophene (8%, δ 7.57 (dd, *J* = 4.9, 1.0 Hz, 2H), 7.28 (m, *J* = 4.9, 1.0 Hz, 2H ppm)). was determined by ¹H NMR integration relative to the internal standard (δ 5.23 (s) ppm).

Figure S4.¹H NMR of the reaction mixture

Decarboxylative hydroxylation of benzoic acids to phenols

Ataluren derivative 1

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with the lithium salt of ataluren (58.0 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous. N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 4/1, v/v) to afford the ataluren derivative 1 (32.6 mg, 127 µmol, 64%) as an off-white solid.

Rf = 0.20 (pentane/EA = 4/1, v/v).

NMR Spectroscopy:

¹**H NMR** (600 MHz, CD₃CN, 298 K, δ): 8.20 (td, *J* = 7.5, 1.8 Hz, 1H), 7.70 (dddd, *J* = 8.4, 7.1, 5.1, 1.8 Hz, 1H), 7.63 (dt, *J* = 7.7, 1.3 Hz, 1H), 7.55 (dd, *J* = 2.6, 1.5 Hz, 1H), 7.45–7.38 (m, 2H), 7.39–7.35 (m, 2H), 7.02 (ddd, *J* = 8.2, 2.6, 1.0 Hz, 1H) ppm.

¹³**C NMR** (151 MHz, CD₃CN, 298 K, δ): 173.8 (d, *J* = 4.3 Hz), 169.4, 161.6 (d, *J* = 257.8 Hz), 158.4, 136.2 (d, *J* = 8.9 Hz), 131.8 (d, *J* = 1.2 Hz), 131.5, 128.9, 126.1 (d, *J* = 3.7 Hz), 119.8, 119.5, 118.1 (d, *J* = 21.0

Hz), 114.7, 113.5 (d, *J* = 11.5 Hz) ppm.

¹⁹**F NMR** (565 MHz, CD₃CN, 298 K, δ): –110.73 ppm.

HRMS-ESI (m/z) calculated for C₁₄H₉N₂O₂FNa⁺ [M+Na]⁺, 279.0540; found, 279.0540; deviation: 0 ppm.

1 mmol Scale synthesis of Ataluren derivative 1

Under an ambient atmosphere, a 100 mL Schlenk tube equipped with a rubber stopper and magnetic stir bar was charged with the lithium salt of ataluren (290 mg, 1.00 mmol, 1.00 equiv.) and copper (I) thiophene-2carboxylate (286 mg, 1.50 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (904 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (40 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The Schlenk tube was sealed with the rubber stopper and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 250 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (100 mL) and filtered through a short pad of silica using EtOAc (400 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 100 mL round-bottom flask. To the 100 mL flask containing phenolic esters, a magnetic stir bar, THF (7.5 mL), MeOH (7.5 mL) and aqueous LiOH solution (1.0 M, 4.0 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed (roughly 5 hours). The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3–5 (roughly 5 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (100 mL) and transferred into a separatory funnel containing 25 mL saturated aqueous NaHCO₃ and 25 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 100 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 4/1, v/v) to afford the ataluren derivative **1** (158 mg, 617 μ mol, 62%) as an off-white solid.

4-Fluorophenol (2)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-fluorobenzoate (29.2 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by 1 M aqueous HCl to pH = 3–5. 4-fluoroanisole (25.2 mg, 22.5 µL, 0.200 mmol, 1.00 equiv.) was added as an internal standard, and the yield of 4-fluorophenol (2) was determined by ¹⁹F NMR integration relative to the internal standard (72% yield, standard: δ –125.39 (m) ppm, and **2**: δ –126.95 (m) ppm, Figure **S5**). The identity of the product was further confirmed by GCMS (Figure S6) and HRMS-EI analysis

The yield of **2** reported in the manuscript (70%) represents an average of two runs [72% (above) and 69%].

Figure S5. ¹⁹F NMR of the resulting mixtures for product 2

Figure S6. Mass spectrum of product 2 peak from GCMS

HRMS-EI (m/z) calculated for C₆H₅OF⁺ [M]⁺, 112.0319; found, 112.0321; deviation: –2 ppm.

One-pot synthesis of 4-fluorophenol (2)

Under an ambient atmosphere, a 20 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-fluorobenzoic acid (28.0 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, *c* = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, MeOH (4.0 mL) and aqueous NaOH solution (1.0 M, 4.0 mL) were added into the same vial. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed (about 1 h). The reaction mixture was acidified by 2.0 M aqueous HCl to pH = 3–5. 4-Fluoroanisole (25.2 mg, 22.5 µL, 0.200 mmol, 1.00 equiv.) was added as an internal standard, and the yield of 4-fluorophenol (**2**) was determined by ¹⁹F NMR integration relative to the internal standard (65% yield, standard: δ –125.31 (m) ppm, and **2**: δ –126.62 (m) ppm, Figure **S7**)

Figure S7. ¹⁹F NMR of the resulting mixtures for product 2 from one-pot synthesis

4-Cyanophenol (3)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-cyanobenzoate (30.6 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by 1 M aqueous HCl to pH = 3–5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in DCM (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with DCM (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (DCM/EtOAc = 16/1, v/v) to afford the 4-cyanophenol (3) (18.3 mg, 154 µmol, 77%) as an off-white solid.

Rf = 0.30 (DCM/EA = 16/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.55 (d, *J* = 8.7 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.55 (brs, 1H). ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 160.2, 134.5, 119.4, 116.6, 103.3.ppm.

HRMS-ESI (m/z) calculated for C₇H₄NOF⁻ [M-H]⁻, 118.0298; found, 118.0300; deviation: –1 ppm.

4-(Trifluoromethyl)phenol (4)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-trifluoromethylbenzoate (39.2 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by 1 M aqueous HCl to pH = 3-5. 4-Fluorobenzotrifluoride (32.8 mg, 25.4 µL, 0.200 mmol, 1.00 equiv.) was added as an internal standard, and the yield of 4-(trifluoromethyl)phenol (4) was determined by ¹⁹F NMR integration relative to the internal standard (71% yield, standard: δ –63.16 ppm, and **4**: δ –62.45 ppm, Figure S8). The identity of the product was further confirmed by GCMS (Figure S9) and HRMS-EI analysis

The yield of 4 reported in the manuscript (71%) represents an average of two runs [71% (above) and 70%].

Figure S9. Mass spectrum of product 4 peak from GCMS

HRMS-EI (m/z) calculated for C₇H₅OF₃⁺ [M]⁺,162.0287; found,162.0289; deviation: -1 ppm.

2,4-Bis(trifluoromethyl)phenol (5)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with 2,4-bis(trifluoromethyl)benzoic acid (51.6 mg, 0.200 mmol, 1.00 equiv.) and LiOH (19.1 mg, 0.800 mmol, 4.00 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, $[Cu(MeCN)_4BF_4]$ (125 mg, 0.400 mmol, 2.00 equiv.), $Cu(OTf)_2$ (145 mg, 0.400 mmol, 2.00 equiv.) and CD_3CN (4.0 mL, *c* = 50 mM) were then added into the vial, resulting in a blue suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with

a fan. Subsequently, trifuoromethylbenzene (29.2 mg, 24.6 μ L, 0.200 mmol, 1.00 equiv.) was added as an internal standard, and the yield of 2,4-Bis(trifluoromethyl)phenol (**5**) was determined by ¹⁹F NMR integration relative to the internal standard (88% yield, standard: δ –63.19 (m) ppm, and **5**: δ –63.50 (m) ppm, Figure **S10**). The identity of the product was further confirmed by ¹H NMR (Figure **S11**), GCMS (Figure **S12**) and HRMS-EI analysis

The yield of 5 reported in the manuscript (88%) represents an average of two runs [88% (above) and 89%].

Figure S11. ¹H NMR of the resulting mixtures for product 5 (based on 0.05 mmol scale)

HRMS-EI (m/z) calculated for C₈H₄OF₆⁺ [M]⁺, 230.0161; found,230.0159; deviation: 0.7 ppm.

Note: This is the only example in which we directly obtained the phenol product after irradiation without an additional hydrolysis step. We proposed the phenol was produced from *in situ* hydrolysis of generated homoester, which released the unreacted carboxylates and eliminated the need of the coupling partner, CuTC, to afford more than 50% oxydecarboxylation yield. The possible reason for the unique reactivity could be the generated homo-ester, 2,4-bis(trifluoromethyl)phenyl 2,4-bis(trifluoromethyl)benzoate, can be hydrolyzed very easily compared to phenyl benzoate. Electron-withdrawing groups at the 2 and 4 positions significantly increase the electrophilicity of the carbonyl and the corresponding phenol is a good leaving group.

2-(Trifluoromethyl)pyridin-4-ol (6)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 2-(trifluoromethyl)isonicotinate (39.4 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced

pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (DCM/EtOAc = 5/1, v/v) to afford the 2-(trifluoromethyl)pyridin-4-ol (**6**) (18.3 mg, 112 µmol, 56%) as a colorless solid.

Rf = 0.20 (DCM/EA = 5/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 9.25 (brs, 1H), 8.22 (d, *J* = 6.1 Hz, 1H), 7.19 (d, *J* = 2.4 Hz, 1H), 6.96 (dd, *J* = 6.1, 2.5 Hz, 1H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 169.8, 147.9, 146.9 (d, *J* = 34.8 Hz), 121.1 (d, *J* = 275.4 Hz), 115.6, 111.4 ppm

¹⁹**F NMR** (471 MHz, CDCl₃, 298 K, δ): –67.66ppm.

HRMS-EI (m/z) calculated for C₆H₄NOF₃⁺ [M]⁺, 163.0239; found, 163.0241; deviation: –1 ppm.

4-(5-Methyl-1,2,4-oxadiazol-3-yl)phenol (7)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(5-methyl-1,2,4-oxadiazol-3-yl)benzoate (42.0 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as

the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc ($3 \times ca. 20 \text{ mL}$). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 4/1, v/v) to afford 4-(5-methyl-1,2,4-oxadiazol-3-yl)phenol (7) (24.0 mg, 136 µmol, 68%) as a colorless solid.

Rf = 0.15 (pentane/EA = 4/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 298 K, δ): 7.88 (d, *J* = 8.9 Hz, 1H), 6.92 (d, *J* = 9.0 Hz, 1H), 2.57 (s, 3H) ppm.

¹³C NMR (126 MHz, CD₃CN, 298 K, δ): 177.9, 169.0, 160.6, 129.9, 119.6, 116.7, 12.6 ppm.

HRMS-ESI (m/z) calculated for C₉H₇N₂O₂⁻ [M-H]⁻, 175.0513; found, 175.0513; deviation: -0.3 ppm.

6-Hydroxy-2-naphthonitrile (8)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 6-cyano-2-naphthoate (40.6 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at

40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc ($3 \times ca. 20$ mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 4/1, v/v) to afford 6-hydroxy-2-naphthonitrile (**8**) (17.4 mg, 102 µmol, 52%) as a colorless solid.

Rf = 0.15 (pentane/EA = 4/1, v/v).

NMR Spectroscopy:

¹H NMR (600 MHz, CD₃CN, 298 K, δ): 8.31–8.22 (m, 1H), 7.87 (d, J = 9.8 Hz, 1H), 7.82 (d, J = 8.6 Hz, 1H), 7.75 (brs, 1H), 7.59 (dd, J = 8.6, 1.7 Hz, 1H), 7.28–7.23 (m, 2H) ppm.

¹³**C NMR** (151 MHz, CD₃CN, 298 K, δ): 158.6, 137.6, 135.1, 131.4, 128.4, 128.2, 127.8, 121.0, 120.5, 110.2, 106.9 ppm.

HRMS-ESI (m/z) calculated for C₁₁H₆NO⁻ [M-H]⁻, 168.0455; found, 168.0456; deviation: -0.7 ppm.

(+)-Menthol derivative 9

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium (+)-menthol derived benzoate (62.1 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, *c* = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, benzene (2.0 mL) and nBuNH₂ (102 mg, 138 µL, 1.40 mmol, 7.00 equiv.) were added.⁴ The reaction mixture was stirred at 25 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture

was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 20/1, v/v) to afford the (+)-menthol derivative **9** (34.2 mg, 124 µmol, 62%) as a colorless solid.

Rf = 0.10 (pentane/EA = 20/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₂Cl₂, 298 K, δ): 7.59 (dt, J = 7.6, 1.2 Hz, 1H), 7.56 (dd, J = 2.7, 1.5 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 7.06 (ddd, J = 8.1, 2.7, 1.0 Hz, 1H), 5.95 (brs, 1H), 4.91 (td, J = 10.9, 4.4 Hz, 1H), 2.09 (dtd, J = 12.0, 4.0, 1.8 Hz, 1H), 1.95 (pd, J = 7.0, 2.8 Hz, 1H), 1.83–1.65 (m, 2H), 1.58–1.52 (m, 2H), 1.20– 1.05 (m, 2H), 0.95–0.93 (m, 1H), 0.93–0.91 (m, 6H), 0.78 (d, J = 6.9 Hz, 3H) ppm.

¹³**C NMR** (101 MHz, CD₂Cl₂, 298 K, δ): 166.5, 156.4, 132.7, 130.0, 122.1, 120.3, 116.6, 75.6, 47.6, 41.3, 34.7, 31.8, 26.9, 24.0, 22.2, 20.9, 16.6 ppm.

HRMS-CI (m/z) calculated for C₁₇H₂₃O_{3⁻} [M-H]⁻, 275.1642; found, 275.1639; deviation: 0.8 ppm.

3-Hydroxybenzaldehyde (10)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 3-formylbenzoate (31.2 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc ($3 \times ca. 20 \text{ mL}$). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 4/1, v/v) to afford 3-hydroxybenzaldehyde (**10**) (17.8 mg, 146 µmol, 73%) as a colorless solid.

Rf = 0.25 (pentane/EA = 4/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 298 K, δ): 9.92 (s, 1H), 7.43 (m, 1H), 7.41 (dd, *J* = 2.1, 1.3 Hz, 1H), 7.39 (s, 1H), 7.28 (ddd, *J* = 2.6, 1.3, 0.6 Hz, 1H), 7.16–7.08 (m, 1H) ppm.

¹³C NMR (126 MHz, CD₃CN, 298 K, δ): 193.5, 158.5, 139.2, 131.4, 122.8, 122.6, 115.6 ppm.

HRMS-EI (m/z) calculated for C₇H₆O₂⁺ [M]⁺, 122.0362; found, 122.0363; deviation: -0.3 ppm.

4-Methylphenol (11)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-methylbenzoate (28.4 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by 1 M aqueous HCl to pH = 3–5. The solution is concentrated to about 10% of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 10 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to roughly 0.1 mL then diluted with 0.50 mL CDCl₃. Dibromomethane (34.8 mg, 14.0 μ L, 0.200 mmol, 1.00 equiv.) was added as an internal standard, and the yield of 4-methylphenol (**11**) was determined by ¹H NMR integration relative to the internal standard (66% yield, standard: δ 4.91 (s) ppm, and **11**: δ 6.99 (d, *J* = 8.5 Hz) ppm, Figure **S13**). The identity of the product was further confirmed by GCMS (Figure **S14**) and HRMS-EI analysis.

The yield of **11** reported in the manuscript (68%) represents an average of two runs [66% (above) and 70%].

HRMS-EI (m/z) calculated for C₇H₈O⁺ [M]⁺,108.0569; found,108:0570; deviation: -0.6 ppm.

4-Methoxyphenol (12)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-methoxybenzoate (31.6 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2

S34

mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by 1 M aqueous HCl to pH = 3–5. The solution is concentrated to about 10% of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 10 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to roughly 0.1 mL then diluted with 0.50 mL CD₃CN. Dibromomethane (34.8 mg, 14.0 µL, 0.200 mmol, 1.00 equiv.) was added as an internal standard, and the yield of 4methoxyphenol (12) was determined by ¹H NMR integration relative to the internal standard (54% yield, standard: δ 5.08 (s) ppm, and **12**: δ 6.74 (d, J = 6.1 Hz) ppm, Figure **S15**). The identity of the product was further confirmed by GCMS (Figure S16 and HRMS-ESI analysis.

The yield of **12** reported in the manuscript (54%) represents an average of two runs [54% (above) and 55%].

Figure S15. ¹H NMR of the resulting mixtures for product 12

Figure S16. Mass spectrum of product 12 peak from GCMS

HRMS-ESI (m/z) calculated for C₇H₈O₂⁺ [M]⁺,124:0519; found,124:0521; deviation: –2 ppm.

3,5-Dimethylphenol (13)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 3,5-dimethylbenzoate (31.2 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N2-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by 1 M aqueous HCl to pH = 3–5. The solution is concentrated to about 10% of its volume under reduced pressure. The remaining suspension was dissolved in DCM (20 mL) and transferred into a separatory funnel containing 10 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with DCM (3 × ca. 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated
under reduced pressure to roughly 0.1 mL then diluted with 0.50 mL CD₃CN. Dibromomethane (34.8 mg, 14.0 μ L, 0.200 mmol, 1.00 equiv.) was added as an internal standard, and the yield of 3,5-dimethylphenol (**13**) was determined by ¹H NMR integration relative to the internal standard (62% yield, standard: δ 4.99 (s) ppm, and **13**: δ 6.61 (s) ppm, Figure **S17**). The identity of the product was further confirmed by GCMS (Figure **S18**) and HRMS-EI analysis.

The yield of **13** reported in the manuscript (62%) represents an average of two runs [62% (above) and 63%].

Figure S18. Mass spectrum of product 13 peak from GCMS

HRMS-EI (m/z) calculated for C₈H₁₀O⁺ [M]⁺,122.0726; found,122.0728; deviation: -2 ppm.

2,6-Dichloropyridin-4-ol (14)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 2,6-dichloroisonicotinateate (39.6 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 4/1, v/v) to afford 2,6dichloropyridin-4-ol (14) (16.7 mg, 102 µmol, 51%) as a colorless solid.

Rf = 0.30 (pentane/EA = 4/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 298 K, δ): 6.83 (s, 2H).ppm.

¹³C NMR (151 MHz, CD₃CN, 298 K, δ): 168.0, 151.6, 111.7 ppm.

HRMS-ESI (m/z) calculated for C₅H₂Cl₂ NO⁻ [M-H]⁻, 161.9519; found, 161.9517; deviation: 1 ppm.

2-Hydroxyquinoxaline (15)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium quinoxaline-2-carboxylate (36.0 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3–5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 1/1, v/v) to afford 2hydroxyquinoxaline (15) (9.6 mg, 66 µmol, 33%) as a yellow solid. (The compound is poorly dissolved in CD₃OD)

Rf = 0.20 (pentane/EA = 1/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, (CD₃)₂SO, 298 K, δ): 8.16 (s, 1H), 7.77 (d, *J* = 7.9 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 1H), 7.33–7.30 (m, 1H), 7.30–7.28 (m, 1H) ppm.

¹³C NMR (126 MHz, (CD₃)₂SO, 298 K, δ): 155.0, 151.6, 132.0, 132.0, 130.7, 128.8, 123.2, 115.8 ppm.
HRMS-ESI (m/z) calculated for C₈H₅N₂O⁻ [M-H]⁻, 145.0407; found, 145.0408; deviation: –0.8 ppm.

4-Methyl-3-(morpholinosulfonyl)phenol (16)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-methyl-3-(morpholinosulfonyl)benzoate (58.2 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N2-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c =25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCI to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 5/1, v/v) to afford 4-methyl-3-(morpholinosulfonyl)phenol (16) (28.3 mg, 110 µmol, 55%) as a colorless solid.

Rf = 0.10 (pentane/EA = 5/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.43 (d, *J* = 2.7 Hz, 1H), 7.19 (d, *J* = 8.2 Hz, 1H), 6.98 (dd, *J* = 8.3, 2.7 Hz, 1H), 6.34 (brs, 1H), 3.76–3.69 (m, 4H), 3.18–3.12 (m, 4H), 2.53 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 154.3, 134.4, 129.6, 120.7, 117.1, 66.4, 45.5, 19.9 ppm.

HRMS-EI (m/z) calculated for C₁₁H₁₅NO₄S⁺ [M]⁺, 257.0716; found, 257.0717; deviation: –0.2 ppm.

Probenicid derivative 17

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium probenecid salt (58.2 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3–5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 4/1, v/v) to afford the probenicid derivative 17 (22 mg, 86 µmol, 43%) as a colorless solid.

Rf = 0.10 (pentane/EA = 4/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.65 (d, *J* = 8.8 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 6.65 (brs, 1H), 3.07–3.03 (m, 4H), 1.62–1.46 (m, 4H), 0.86 (t, *J* = 7.4 Hz, 6H) ppm.

¹³C NMR (126 MHz, CDCl₃, 298 K, δ): 159.9, 131.2, 129.4, 116.0, 50.1, 22.1, 11.3 ppm.

HRMS-ESI (m/z) calculated for C₁₂H₁₈NO₃S⁻ [M-H]⁻, 256.1013; found, 256.1015; deviation: -0.9 ppm.

4-Acetylphenol (18)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-acetylbenzoate (34.0 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3–5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 4/1, v/v) to afford 4acetylphenol (18) (17.7 mg, 130 µmol, 65%) as a colorless solid.

Rf = 0.30 (pentane/EA = 4/1, v/v).

NMR Spectroscopy:

¹**H NMR** (600 MHz, CDCl₃, 298 K, δ): 7.92 (d, *J* = 8.9 Hz, 2H), 7.50 (brs, 1H), 6.94 (d, *J* = 8.9 Hz, 2H), 2.59 (s, 3H) ppm.

¹³C NMR (151 MHz, CDCl₃, 298 K, δ): 198.6, 161.3, 131.3, 129.8, 115.7, 26.5 ppm.

HRMS-EI (m/z) calculated for C₈H₈O₂⁺ [M]⁺, 136.0519; found, 136.0522; deviation: -2 ppm.

4-Sulfonamidephenol (19)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-sulfamoylbenzoate (41.4 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N2-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 1/1, v/v) to afford 4sulfonamidephenol (19) (25.2 mg, 146 µmol, 73%) as a colorless solid.

Rf = 0.30 (pentane/EA = 1/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 298 K, δ): 7.71 (d, *J* = 8.8 Hz, 2H), 7.69 (brs, 1H), 6.93 (d, *J* = 8.8 Hz, 2H), 5.50 (brs, 2H) ppm.

¹³**C NMR** (126 MHz, CD₃CN, 298 K, δ): 161.3, 135.5, 129.3, 116.4 ppm.

HRMS-ESI (m/z) calculated for C₆H₆NO₃S⁻ [M-H]⁻, 172.0074; found, 172.0075; deviation: –0.7 ppm.

4-(Methylsulfonyl)phenol (20)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(methylsulfonyl)benzoate (41.2 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 2/1, v/v) to afford 4-(methylsulfonyl)phenol (20) (24.0 mg, 140 µmol, 70%) as a colorless solid.

Rf = 0.20 (pentane/EA = 2/1, v/v).

NMR Spectroscopy:

¹**H NMR** (300 MHz, CDCl₃, 298 K, δ): 7.77 (d, *J* = 8.8 Hz, 2H), 6.97 (d, *J* = 8.8 Hz, 2H), 3.06 (s, 3H) ppm.

¹³C NMR (75 MHz, CDCl₃, 298 K, δ): 161.2, 131.5, 129.8, 116.4, 45.1 ppm.

HRMS-EI (m/z) calculated for C₇H₈O₃S⁺ [M]⁺, 172.0189; found, 172.0190; deviation: –1 ppm.

2-Naphthol (21)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 2-naphthoate (35.6 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 7/1, v/v) to afford 2naphthol (21) (13 mg, 90 µmol, 45%) as a colorless solid.

Rf = 0.20 (pentane/EA = 7/1, v/v)

NMR Spectroscopy:

¹**H NMR** (600 MHz, CDCl₃, 298 K, δ): 7.81–7.74 (m, 2H), 7.71–7.67 (m, 1H), 7.44 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.34 (ddd, *J* = 8.1, 6.8, 1.2 Hz, 1H), 7.18–7.14 (m, 1H), 7.11 (dd, *J* = 8.8, 2.6 Hz, 1H), 5.04 (s, 1H) ppm.

¹³**C NMR** (151 MHz, CDCl₃, 298 K, δ): 153.4, 134.7, 130.0, 129.1, 127.9, 126.7, 126.5, 123.8, 117.9, 109.6 ppm.

HRMS-ESI (m/z) calculated for C₁₀H₇O⁻ [M-H]⁻, 143.0502; found, 143.0501; deviation: 0.7 ppm.

(4-Hydroxyphenyl)(morpholino)methanone (22)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(4-morpholinylcarbonyl) benzoate (48.2 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCI to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 2/1, v/v) to afford (4-hydroxyphenyl)(morpholino)methanone (22) (23.6 mg, 114 µmol, 57%) as a colorless solid.

Rf = 0.10 (pentane/EA = 2/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 8.09 (brs, 1H), 7.23 (d, *J* = 8.6 Hz, 2H), 6.73 (d, *J* = 8.6 Hz, 2H), 3.89– 3.41 (m, 8H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 298 K, δ): 171.5, 158.8, 129.3, 125.8, 115.7, 67.0. ppm (one carbon resonance was not identified).

HRMS-ESI (m/z) calculated for C₁₁H₁₂NO₃⁻ [M-H]⁻, 206.0823; found, 206.0823; deviation: -0.2 ppm.

4-(trans-4-Pentylcyclohexyl)phenol (23)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-(4-pentylcyclohexyl)benzoate (56.4 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c =25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO3 and 5 mL H2O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 10/1, v/v) to afford 4-(trans-4-pentylcyclohexyl)phenol (23) (28.0 mg, 114 µmol, 57%) as a colorless solid.

Rf = 0.20 (pentane/EA = 10/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.08 (d, *J* = 8.5 Hz, 2H), 6.76 (d, *J* = 8.5 Hz, 2H), 4.61 (brs, 1H), 2.40 (tt, *J* = 12.2, 3.2 Hz, 1H), 1.98–1.73 (m, 4H), 1.40 (qd, *J* = 13.6, 13.0, 3.6 Hz, 2H), 1.35–1.18 (m, 9H), 1.09–0.98 (m, 2H), 0.90 (t, *J* = 7.0 Hz, 3H) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 298 K, δ): 153.6, 140.5, 128.0, 115.2, 43.9, 37.5, 37.5, 34.7, 33.8, 32.4, 26.8, 22.9, 14.3 ppm.

HRMS-EI (m/z) calculated for C₁₇H₂₆O⁺ [M]⁺, 246.1978; found, 246.1979; deviation: -0.4 ppm.

Celecoxib derivative 24

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium celecoxib-derived benzoate (83.4 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M agueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated agueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 2/1, v/v) to afford the celecoxib derivative 24 (39.8 mg, 104 µmol, 52%) as a pale yellow solid.

Rf = 0.10 (pentane/EA = 2/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 298 K, δ): 7.88 (d, *J* = 8.7 Hz, 2H), 7.48 (d, *J* = 8.7 Hz, 2H), 7.38 (brs, 1H), 7.13 (d, *J* = 8.6 Hz, 2H), 6.86 (s, 1H), 6.81 (d, *J* = 8.6 Hz, 2H), 5.76 (s, 2H) ppm.

¹³C NMR (75 MHz, CD₃CN, 298 K, δ): 159.0, 146.6, 143.9 (q, J = 37.9 Hz), 143.9, 143.2, 131.6, 128.1, 122.6 (q. 126.8, J = 266.3 Hz) 121.2, 116.5, 106.6 (q, J = 2.1 Hz) ppm.

¹⁹**F NMR** (282 MHz, CD₃CN, 298 K, δ): –62.88 ppm.

HRMS-ESI (m/z) calculated for C₁₆H₁₁F₃N₃O₃S⁻ [M-H]⁻, 382.0478; found, 382.0481; deviation: -0.8 ppm.

4-Bromophenol (25)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-bromobenzoate (41.9 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in DCM (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with DCM (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/DCM = 2/1, v/v) to afford 4bromophenol (25) (24.0 mg, 173 µmol, 70%) as a colorless solid.

Rf = 0.10 (pentane/DCM = 2/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₂Cl₂, 298 K, δ): 7.34 (d, *J* = 8.9 Hz, 2H), 6.74 (d, *J* = 8.9 Hz, 2H), 5.12 (s, 1H) ppm.

¹³**C NMR** (151 MHz, CD₃CN, 298 K, δ): 155.3, 132.8, 117.6, 113.0 ppm.

HRMS-EI (m/z) calculated for C₆H₅OBr⁺ [M]⁺, 171.9518; found, 171.9519; deviation: -0.4 ppm.

4-Nitrophenol (26)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-nitrobenzoate (34.6 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 4/1, v/v) to afford 4nitrophenol (26) (15.3 mg, 110 µmol, 55%) as a colorless solid.

Rf = 0.3 (pentane/EA = 4/1, v/v).

NMR Spectroscopy:

¹**H NMR** (300 MHz, CD₃CN, 298 K, δ): 8.12 (d, J = 9.2 Hz, 1H), 6.93 (d, J = 9.2 Hz, 1H), 2.26 (s, 3H).ppm.

¹³C NMR (75 MHz, CD₃CN, 298 K, δ): 164.0, 127.1, 116.6 ppm. (one carbon missing)

HRMS-EI (m/z) calculated for C₆H₅NO₃⁺ [M]⁺, 139.0264; found, 139.0266; deviation: –2 ppm.

2-Fluorophenol (27)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 2-fluorobenzoate (29.2 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by 1 M aqueous HCl to pH = 3–5. 4-fluoroanisole (25.2 mg, 22.5 µL, 0.200 mmol, 1.00 equiv.) was added as an internal standard, and the yield of 2-fluorophenol (27) was determined by ¹⁹F NMR integration relative to the internal standard (50% yield, standard: δ –126:29 (m) ppm, and **27**: δ –139:29 (m) ppm, Figure **S19**). The identity of the product was further confirmed by GCMS (Figure S20) and HRMS-EI analysis

The yield of 25 reported in the manuscript (52%) represents an average of two runs [50% (above) and 54%].

HRMS-EI (m/z) calculated for C₆H₅OF⁺ [M]⁺, 112.0319; found, 112.0320; deviation: −2 ppm.

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 5-oxo-5,6,7,8-tetrahydronaphthalene-2-carboxylate (39.3 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N2filled glovebox. Under nitrogen atmosphere, Cu(OTf)2 (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in EtOAc (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with EtOAc (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was

concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 4/1, v/v) to afford 6-hydroxy-1-tetralone (**28**) (18.7 mg, 116 µmol, 58%) as a colorless solid.

Rf = 0.30 (pentane/EA = 4/1, v/v).

NMR Spectroscopy:

¹H NMR (500 MHz, CDCl₃, 298 K, δ): 7.98 (d, J = 8.7 Hz, 1H), 7.55 (brs, 1H), 6.82 (dd, J = 8.6, 2.5 Hz, 1H), 6.73 (d, J = 2.5 Hz, 1H), 2.90 (t, J = 6.1 Hz, 2H), 2.63 (dd, J = 7.2, 5.8 Hz, 2H), 2.11 (p, J = 6.4 Hz, 2H) ppm.

¹³**C NMR** (151 MHz, CDCl₃, 298 K, δ): 198.4, 161.1, 147.8, 130.3, 126.1, 114.7, 114.7, 39.0, 30.1, 23.4 ppm.

HRMS-ESI (m/z) calculated for C₁₀H₉O₂⁻ [M-H]⁻, 161.0608; found, 161.0609; deviation: -0.7 ppm.

2,2'-(5-Hydroxy-1,3-phenylene)bis(2-methylpropanenitrile) (29)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 3,5-bis(2-cyanopropan-2-yl)benzoate (52.4 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c =25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to dryness. The residue was purified by chromatography on silica gel (DCM/EtOAc = 16/1, v/v) to afford 2,2'-(5-Hydroxy-1,3-phenylene)bis(2-methylpropanenitrile) (29) (30.0 mg, 131 µmol, 66%) as a colorless solid.

Rf = 0.4 (DCM/EA = 16/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 298 K, δ): 7.03 (t, *J* = 1.7 Hz, 1H), 6.96 (d, *J* = 1.6 Hz, 2H), 6.36 (s, 1H), 1.73 (s, 12H). ppm.

¹³C NMR (126 MHz, CDCl₃, 298 K, δ): 157.2, 144.0, 124.2, 113.1, 112.3, 37.5, 29.2. ppm.

HRMS-EI (m/z) calculated for C₁₄H₁₆N₂O⁺ [M]⁺, 228.1257; found, 228.1260; deviation: –1 ppm.

4-Phenylphenol (30)

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with 4-biphenylcarboxylic acid lithium salt (40.8 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c =25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous LiOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCI to pH = 3-5 (roughly 0.70 mL). The solution is concentrated to about 10% or less of its volume under reduced pressure. The remaining suspension was dissolved in Et₂O (20 mL) and transferred into a separatory funnel containing 5 mL saturated aqueous NaHCO₃ and 5 mL H₂O. The organic layer was collected, and the aqueous layer was further extracted with Et₂O (3 × ca. 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/Et₂O = 4/1, v/v) to afford 4-phenylphenol (30) (21.4 mg, 126 µmol, 63%) as a colorless solid.

Rf = 0.30 (pentane/Et₂O = 4/1, v/v)

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 298 K, δ): 7.57 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.49 (d, *J* = 8.7 Hz, 2H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.34–7.27 (m, 1H), 7.03 (brs, 1H), 6.89 (d, *J* = 8.7 Hz, 2H) ppm.

¹³C NMR (126 MHz, CD₃CN, 298 K, δ): 157.6, 141.7, 133.6, 129.8, 129.1, 127.6, 127.3, 116.6 ppm. HRMS-EI (m/z) calculated for C₁₂H₁₀O⁺ [M]⁺, 170.0726; found, 170.0728; deviation: –0.9 ppm.

Triclosan derivative 31

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium triclosan-derived benzoate (85.9 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, c = 25 mM) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was dissolved in EtOAc (40 mL) and filtered through a short pad of silica using EtOAc (50 mL) as the eluent to remove the majority of the copper salts. The filtrate was collected and concentrated under reduced pressure into a 20 mL borosilicate vial. To the 20 mL vial containing phenolic esters, a magnetic stir bar, THF (1.5 mL), MeOH (1.5 mL) and aqueous KOH solution (1.0 M, 0.60 mL) were added. The reaction mixture was stirred at 40 °C and monitored by TLC until the phenolic esters were fully consumed. The reaction mixture was acidified by addition of 1 M aqueous HCl to pH = 3–5 (roughly 0.70 mL). The solution is concentrated to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 7/1, v/v) to afford triclosan derivative **31** (35.6 mg, 110 µmol, 55%) as a colorless solid.

Rf = 0.3 (pentane/EA = 7/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 298 K, δ): 7.50 (d, *J* = 2.6 Hz, 1H), 7.22–7.16 (m, 2H), 7.13 (t, *J* = 8.1 Hz, 1H), 7.03 (d, *J* = 8.5 Hz, 1H), 7.00 (dd, *J* = 8.6, 2.3 Hz, 1H), 6.97 (brs, 1H), 6.74–6.72 (m, 2H), 6.67–6.66 (m, 2H), 4.99 (s, 2H). ppm.

¹³**C NMR** (126 MHz, CD₃CN, 298 K, δ): 158.0, 153.4, 151.6, 144.0, 138.8, 131.2, 130.9, 130.6, 129.0, 128.5, 124.8, 123.3, 122.3, 119.7, 119.1, 116.4, 115.9, 115.1, 71.5. ppm.

HRMS-ESI (m/z) calculated for C₁₉H₁₂Cl₃O₃⁻ [M-H]⁻, 392.9857; found, 392.9859; deviation: -0.4 ppm.

Reaction performed outside of a glovebox by using Schlenk techniques

Under argon atmosphere, an oven-dried 20 mL Schlenk tube equipped with a rubber stopper and a magnetic stir bar was charged with lithium 4-fluorobenzoate (29.2 mg, 0.200 mmol, 1.00 equiv.), copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.) and Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.). The Schlenk tube was evacuated under low pressure (ca. 3×10^{-1} mbar) with oil pump then backfilled with Ar for 3 times. Anhydrous MeCN (8.0 mL, *c* = 25 mM) was then added via a syringe. The tube was sealed with a rubber stopper and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. 2-fluorotoluene (22.0 mg, 22.0 µL, 0.200 mmol, 1.00 equiv.) was added as an internal standard. The reaction mixture was diluted with CD₃CN, and the ¹⁹F NMR spectrum was measured. The yields of 4-fluorophenyl thiophene-2-carboxylate (**2b**, 53%, δ –118.39 (m) ppm) and 4-fluorophenyl 4-fluorobenzoate (**2c**, 40%, δ – 118.57, 106.36 (m) ppm) 4-fluorobenzene (**2d**, 6%, δ –114.82 (m) ppm)were determined by ¹⁹F NMR integration relative to the internal standard (δ –119.32 (m) ppm), respectively.

Figure S21. ¹⁹F NMR of the resulting mixture of 2b, 2c and 2d using Schlenk techniques

Failed substrates

A 50 mL round-bottom flask was charged with a stirring bar, triclosan (868 mg, 3.00 mmol, 1.00 equiv), methyl 3-(bromomethyl)benzoate (687 mg, 3.00 mmol, 1.00 equiv) and Cs₂CO₃ (977 mg, 3.00 mmol, 1.00 equiv). 10 mL DMF was added, and the reaction mixture was stirred at 23 °C for 12 h. The mixture was diluted with ethyl acetate (25 ml), washed with water (25 ml x 3), and dried over Na₂SO₄. The drying agent was removed by filtration and the filtrate was evaporated to dryness under reduced pressure. To the flask which contained the residue, a stirring bar, 6 mL THF and 4.5 mL 2 M KOH (aq) were added. The reaction mixture was stirred at 23 °C for 15 h. THF was removed under reduced pressure and the mixture was acidified with 1M HCl (aq) to pH = 2. The remaining aqueous suspension was extracted with EtOAc (50 mL x 3). The combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 5/1, v/v) to afford triclosan-derived benzoic acid (**S31**) (918 mg, 2.16 mmol, 72%) as a white solid.

72% yield

1.0 equiv.

CI

S31

Rf = 0.3 (pentane/EA = 5/1, v/v).

1.0 equiv.

NMR Spectroscopy:

¹**H NMR** (500 MHz, (CD₃)₂SO, 298 K, δ): 12.99 (brs, 1H), 7.89–7.82 (m, 2H), 7.61 (d, *J* = 2.6 Hz, 1H), 7.46–7.34 (m, 3H), 7.27 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.14 (d, *J* = 8.6 Hz, 1H), 7.06 (dd, *J* = 8.5, 2.4 Hz, 1H), 6.78 (d, *J* = 8.8 Hz, 1H), 5.21 (s, 2H).ppm.

¹³**C NMR** (126 MHz, (CD₃)₂SO, 298 K, δ): 167.0, 152.0, 150.1, 142.5, 136.7, 131.4, 131.0, 129.8, 129.7, 128.8, 128.6, 128.3, 128.0, 127.0, 123.3, 122.5, 121.4, 118.2, 115.4, 69.6. ppm.

HRMS-ESI (m/z) calculated for C₂₀H₁₂O₄Cl₃⁻ [M-H]⁻, 420.9807; found, 420.9810; deviation: -0.8 ppm.

Mechanistic Studies

UV-vis Absorption Spectrum

All UV-vis measurements were recorded on a Shimadzu UV-vis Spectrophotometer UV-2600 with temperature controller using a screw-top quartz cuvette (Hellma fluorescence quartz cuvette, 10 × 10 mm, 3.5 mL). Samples were prepared in a glovebox and then taken out of the glovebox.

Preparation of the stock solution/suspension of reaction components in a nitrogen-filled glovebox:

- A. lithium 4-fluorobenzoate (2a) (8.8 mg, 60 µmol) in 20 mL MeCN;
- B. Cu(OTf)₂ (54.2 mg, 150 µmol) in 20 mL MeCN (7.5 mM);
- C. CuTC (17.2 mg, 90.0 µmol) in 20 mL MeCN.

Note: stock A and C are suspensions.

UV-vis spectra of **2a** (1.0 mL of stock A + 2.0 mL MeCN; filtered through 0.22 μ m syringe filter), Cu(OTf)₂ (1.0 mL of stock B + 2.0 mL MeCN, 2.5 mM), CuTC (1.0 mL of stock C + 2.0 mL MeCN, filtered through 0.22 μ m syringe filter), the mixture of **2a** + Cu(OTf)₂ (1 mL of stock A + 1mL of stock B + 1 mL MeCN, homogenous), the mixture of **2a** + CuTC (1.0 mL of stock A + 1.0 mL of stock C + 1.0 mL MeCN, filtered through 0.22 μ m syringe filter), the mixture of Cu(OTf)₂ + CuTC (1.0 mL of stock B + 1.0 mL of stock C + 1.0 mL MeCN, filtered through 0.22 μ m syringe filter), the mixture of Cu(OTf)₂ + CuTC (1.0 mL of stock B + 1.0 mL of stock C + 1.0 mL MeCN, filtered through 0.22 μ m syringe filter), and the mixture of **2a** + Cu(OTf)₂ + CuTC (1.0 mL of stock A + 1.0 mL of stock A + 1.0 mL of stock B + 1.0 mL of stock C, filtered through 0.22 μ m syringe filter) were recorded respectively. The mixture of **2a** + Cu(OTf)₂, **2a** + CuTC and the mixture of **2a** + Cu(OTf)₂ + CuTC have significant absorbance from 370 to 470 nm which indicates the ligand to metal charge transfer (LMCT) band. All samples containing Cu(OTf)₂ show a strong absorbance from 550 to 900 nm.

Note: lithium 4-fluorobenzoate and CuTC are poorly dissolved in MeCN in all samples that contain either of these two components (except for the mixture of lithium 4-fluorobenzoate + Cu(OTf)₂). The actual concentration of lithium 4-fluorobenzoate in these samples is less than 1.0 mM and the actual concentration of CuTC is less than 1.5 mM.

Figure S22. UV-vis spectra of the reaction components

Photolysis of the mixture of 2a, Cu(OTf)₂, and CuTC

Preparation of the stock solution/suspension of reaction components in a nitrogen-filled glove box:

- A. lithium 4-fluorobenzoate (2a) (8.8 mg, 60 µmol) in 20 mL MeCN;
- B. Cu(OTf)₂ (54.2 mg, 150 µmol) in 20 mL MeCN (7.5 mM);
- C. CuTC (17.2 mg, 90.0 µmol) in 20 mL MeCN.

Note: stock A and C are suspensions.

In a nitrogen-filled glovebox, a mixture of **2a**, Cu(OTf)₂, CuTC (1.0 mL of stock A + 1.0 mL of stock B + 1.0 mL of stock C, filtered through 0.22 μ m syringe filter) was transferred to a screw-top quartz cuvette (Hellma fluorescence quartz cuvette, 10 × 10 mm, 3.5 mL). The quartz cuvette was sealed and taken out of the glovebox. The absorption spectra were recorded on a Shimadzu UV-vis Spectrophotometer UV-2600 after the cuvette was irradiated by two Kessil PR160-390 nm LEDs (5 cm away from two Kessil PR160-390 nm LEDs, and the temperature was maintained at approximately 35 °C through cooling with a fan) for various time (0 min, 1 min, 3 mins, 6 mins, 16 mins, and 46 mins).

Figure S23. UV-vis spectra of the photolyzed mixture of 2a, Cu(OTf)2, and CuTC in CH3CN

Radical cyclisation experiment

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium [1,1'-biphenyl]-2-carboxylate (**32**) (40.8 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (8.0 mL, 25 mM) and were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was purified by chromatography on silica gel (pentane/EtOAc = 9/1, v/v) to afford 6*H*-benzo[*c*]chromen-6-one (**33**) (32.0 mg, 163 µmol, 81%) as a colorless solid.

Rf =0.30 (pentane/EtOAc = 9/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 298 K, δ): 8.24 (ddd, *J* = 7.9, 1.5, 0.6 Hz, 1H), 8.16 (ddd, *J* = 8.1, 1.1, 0.6 Hz, 1H), 8.10 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.88–7.76 (m, 1H), 7.58 (ddd, *J* = 8.2, 7.2, 1.1 Hz, 1H), 7.49 (ddd, *J* = 8.2, 7.3, 1.5 Hz, 1H), 7.41–7.25 (m, 2H) ppm.

¹³C NMR (126 MHz, CD₃CN, 298 K, δ): 161.7, 152.2, 135.9, 135.6, 131.5, 130.8, 130.0, 125.5, 124.2, 123.1, 122.2, 119.0, 118.3 ppm.

HRMS-ESI (m/z) calculated for C₁₃H₈O₂⁺ [M]⁺, 196.0519; found, 196.0520; deviation: −0.6 ppm.

Radical trapping experiments

Under an ambient atmosphere, a 10 mL borosilicate vial equipped with a magnetic stir bar was charged with lithium 4-methoxybenzoate (**34**) (31.6 mg, 0.200 mmol, 1.00 equiv.) and copper (I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.). The vial was transferred into an anhydrous, N₂-filled glovebox. Under nitrogen atmosphere, Cu(OTf)₂ (181 mg, 0.500 mmol, 2.50 equiv.), and anhydrous MeCN (4.0 mL) and benzene (4.0 mL) were then added into the vial, resulting in a green suspension. The vial was sealed with a Teflon cap and placed 5 cm away from two purple LEDs (Kessil PR160-390 nm LEDs). The reaction mixture was stirred at a speed of 1200 rpm (Note: Fast stirring is essential due to the heterogeneity of the reaction mixture.) and irradiated for 16 h while maintaining the temperature at approximately 35 °C through cooling with a fan. Subsequently, the reaction mixture was transferred into a 50 mL round-bottom flask and evaporated to dryness. The residue was purified by chromatography on silica gel (pentane/DCM = 4/1 to 1/1, v/v) to afford 4-methoxy-1,1'-biphenyl (**35**) (2.1 mg, 11 µmol, 6%) as a colorless solid and phenyl 4-methoxybenzoate (**36**) (3.9 mg, 17 µmol, 9%) also as a pale yellow liquid.

4-methoxy-1,1'-biphenyl (35):

Rf = 0.7 (Pentane/DCM = 1/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₂Cl₂, 298 K, δ): 7.62–7.50 (m, 4H), 7.41 (t, *J* = 7.8 Hz, 2H), 7.34–7.25 (m, 1H), 6.98 (d, *J* = 8.8 Hz, 2H), 3.84 (s, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃, 298 K, δ): 159.7, 141.1, 133.9, 129.1, 128.4, 127.0, 127.0, 114.6, 55.7 ppm. HRMS-EI (m/z) calculated for $C_{13}H_{12}O^+$ [M]⁺, 184.0883; found, 184.0881; deviation: 0.5 ppm.

phenyl 4-methoxybenzoate (36):

Rf = 0.2 (Pentane/DCM= 1/1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₂Cl₂, 298 K, δ): 8.14 (d, *J* = 9.0 Hz, 1H), 7.50–7.41 (m, 1H), 7.31–7.25 (m, 1H), 7.23–7.17 (m, 1H), 7.01 (d, *J* = 9.0 Hz, 1H), 3.90 (s, 2H) ppm.

¹³**C NMR** (126 MHz, CD₂Cl₂, 298 K, δ): 165.2, 164.4, 151.6, 132.5, 129.8, 128.3, 126.1, 122.3, 114.2, 56.0 ppm.

HRMS-CI (m/z) calculated for C₁₄H₁₃O₃⁺ [M+H]⁺, 229.0859; found, 229.0861; deviation: -1 ppm.

SPECTROSCOPIC DATA

¹H NMR of ataluren derivative 1

180 170

150 140

¹³C NMR of ataluren derivative 1

110 100 f1 (ppm)

¹⁹F NMR of ataluren derivative 1

CD₃CN, 298 K

60 50	40 30	20	10	Ó	-10	-20	-30	-40	-50 f1 (ppm	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	_

¹H NMR of 4-cyanophenol (3)

¹³C NMR of 4-cyanophenol (3)

¹H NMR of 2-(trifluoromethyl)pyridin-4-ol (6)

¹³C NMR of 2-(trifluoromethyl)pyridin-4-ol (6)

¹⁹F NMR of 2-(trifluoromethyl)pyridin-4-ol (6)

--67.66

CDCl₃, 298 K

ОН

CF₃

¹H NMR of 4-(5-methyl-1,2,4-oxadiazol-3-yl)phenol (7)

CD₃CN, 298 K

¹³C NMR of 4-(5-methyl-1,2,4-oxadiazol-3-yl)phenol (7)

					· · · ·						· · ·						· · ·		, ,			
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1(
	f1 (ppm)																					
¹H NMR of 6-hydroxy-2-naphthonitrile (8)

CD3CN, 25 °C

¹³C NMR of 6-hydroxy-2-naphthonitrile (8)

CD₃CN, 25 °C

¹H NMR of (+)-menthol derivative 9

CD₂Cl₂, 25 °C

¹³C NMR of (+)-menthol derivative 9

CD₂Cl₂, 25 °C

¹H NMR of 3-hydroxybenzaldehyde (10)

CD₃CN, 298 K

¹³C NMR of 3-hydroxybenzaldehyde (10)

CD₃CN, 298 K

f1 (ppm) 140 130 -10

¹H NMR of 2,6-dichloropyridin-4-ol (14)

¹³C NMR of 2,6-dichloropyridin-4-ol (14)

CD3CN, 298 K

· · ·	· ·		, ,		· · ·				, ,									, ,		' '		
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
f1 (ppm)																						

¹H NMR of 2-hydroxyquinoxaline (15)

(CD₃)₂SO, 298 K

¹³C NMR of 2-hydroxyquinoxaline (15)

(CD₃)₂SO, 298 K

¹H NMR of 4-methyl-3-(morpholinosulfonyl)phenol (16)

¹³C NMR of 4-methyl-3-(morpholinosulfonyl)phenol (16)

¹H NMR of probenicid derivative 17

¹³C NMR of probenicid derivative 17

				I
	1	1	1	
I.				

180	1	70	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	1	
f1 (ppm)																					

¹H NMR of 4-acetylphenol (18)

¹³C NMR of 4-acetylphenol (18)

— 198.6		~	— 115.7			State Me
210 200 190 180	170 160 150	140 130 12	0 110 100 f1 (ppm)	90 80 70	60 50 40	30 20 10 0 -1

¹H NMR of 4-sulfonamidephenol (19)

CD₃CN, 298 K

¹³C NMR of 4-sulfonamidephenol (19)

S90

¹H NMR of 4-(methylsulfonyl)phenol (20)

¹³C NMR of 4-(methylsulfonyl)phenol (20)

¹H NMR of 2-naphthol (21)

CDCl₃, 298 K

¹³C NMR of 2-naphthol (21)

¹H NMR of (4-hydroxyphenyl)(morpholino)methanone (22)

¹³C NMR of 4-(morpholinocarbonyl)phenone (22)

¹H NMR of 4-(*trans*-4-pentylcyclohexyl)phenol (23)

¹³C NMR of 4-(*trans*-4-pentylcyclohexyl)phenol (23)

¹H NMR of celecoxib derivative 24

CD₃CN, 298 K

¹³C NMR of celecoxib derivative 24

CD₃CN, 298 K

¹⁹F NMR of celecoxib derivative 24

---62.76

		-					· · ·		· · ·						· · ·		· · ·	· · ·					· · · ·	-
10		0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	
f1 (ppm)																								

¹H NMR of 4-bromophenol (25)

CD₂Cl₂, 298 K

¹³C NMR of 4-bromophenol (25)

CD₂Cl₂, 298 K

¹H NMR of 4-nitrophenol (26)

¹³C NMR of 4-nitrophenol (26)

¹H NMR of 6-hydroxy-1-tetralone (28)

¹³C NMR of 6-hydroxy-1-tetralone (28)

¹H NMR of 2,2'-(5-Hydroxy-1,3-phenylene)bis(2-methylpropanenitrile) (29)

¹³C NMR of 2,2'-(5-Hydroxy-1,3-phenylene)bis(2-methylpropanenitrile) (29)

¹H NMR of 4-phenylphenol (30)

CD₃CN, 298 K

¹³C NMR of 4-phenylphenol (30)

CD₃CN, 298 K

-157.5-141.7-141.7123.8123.8123.1-115.5

¹H NMR of triclosan derivative 31

¹³C NMR of triclosan derivative 31

CD₃CN, 298 K

¹H NMR of triclosan-derived benzoic acid S31

(CD₃)₂SO, 298 K

¹³C NMR of triclosan-derived benzoic acid S31

(CD₃)₂SO, 298 K

¹H NMR of 6H-benzo[c]chromen-6-one (33)

CD₃CN, 298 K

¹³C NMR of 6H-benzo[c]chromen-6-one (33)

CD3CN, 298 K

¹³C NMR of 4-methoxy-1,1'-biphenyl (35)

¹H NMR of phenyl 4-methoxybenzoate (36)

¹³C NMR of phenyl 4-methoxybenzoate (36)

¹H NMR of 4-fluorophenyl thiophene-2-carboxylate (2b)

CD₃CN, 298 K

¹³C NMR of 4-fluorophenyl thiophene-2-carboxylate (2b)

CD₃CN, 298 K

¹⁹F NMR of 4-fluorophenyl thiophene-2-carboxylate (2b)

1																					· · ·			· · · ·
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												f1 (ppm)											

¹H NMR of 4-fluorophenyl 4-fluorobenzoate (2c)

¹³C NMR of 4-fluorophenyl 4-fluorobenzoate (2c)

¹⁹F NMR of 4-fluorophenyl 4-fluorobenzoate (2c)

CD3CN, 298 K

----116.78

¹H NMR of 4-fluorophenyl 4-methoxybenzoate (2e)

¹³C NMR of 4-fluorophenyl 4-methoxybenzoate (2e)

¹⁹F NMR of 4-fluorophenyl 4-methoxybenzoate (2e)

CDCl₃, 298 K

1																					<u> </u>	/	· · · ·	
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
f1 (ppm)																								

¹H NMR of 4-methoxyphenyl 4-fluorobenzoate (2f)

¹³C NMR of4-methoxyphenyl 4-fluorobenzoate (2f)

¹⁹F NMR of 4-methoxyphenyl 4-fluorobenzoate (2f)

CDCl₃, 298 K

1		,							· · ·	· · ·												· · · ·	· · · ·		· · · ·
20	10	0)	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
													f1 (ppm)											

¹H NMR of 4-methoxyphenyl 4-methoxybenzoate (2g)

¹³C NMR of 4-methoxyphenyl 4-methoxybenzoate (2g)

REFERENCES

- Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* **2010**, *29*, 2176–2179.
- 2. Xu, P.; López-Rojas, P.; Ritter, T. Radical Decarboxylative Carbometalation of Benzoic Acids: A Solution to Aromatic Decarboxylative Fluorination, *J. Am. Chem. Soc.* **2021**, *143*, 5349-5354.
- 3. Lill, A.; Scholich, K.; Stark, H. Synthesis of Novel Dansyl-Labeled Celecoxib Derivatives. *Tetrahedron Lett.* **2013**, *54*, 6682–6686.
- 4. Bell. K. H. Facile Selective Aminolysis of Phenolic Benzoates with 1-Butanamine in Benzene. *Tetrahedron Lett.* **1986**, *20*, 2263–2264.