

Supplementary Information for

Epigenetic aging of classical monocytes from healthy individuals

Irina Shchukina1,13, Juhi Bagaitkar2,13, Oleg Shpynov1,3,13, Ekaterina Loginicheva1, Sofia Porter1, Denis A.

Mogilenko1, Erica Wolin4, Patrick Collins1, German Demidov1,6,7, Mykyta Artomov8,9, Konstantin Zaitsev1,12,

Sviatoslav Sidorov5, Christina Camell5, Monika Bambouskova1, Laura Arthur1, Amanda Swain1, Alexandra

Panteleeva1, Aleksei Dievskii3, Evgeny Kurbatsky3, Petr Tsurinov1,3, Roman Chernyatchik1,3, Vishwa Deep

Dixit5, Marko Jovanovic4, Sheila A. Stewart10, Mark J. Daly8,9,11, Sergey Dmitriev3, Eugene M. Oltz1 and Maxim

N. Artyomov1,14

SUPPLEMENTARY METHODS

ChIP-Seq processing: samples overview

Monocytes were isolated from blood samples from young (24-30 y.o.) and old (57-70 y.o.) Caucasian

males as per the inclusion criteria listed in Figure 1A and in the methods section of the main manuscript.

CD14+CD16- monocytes were extracted from blood. We used ULI-ChIP-seq to characterize age-associated

changes in the five modifications of histone 3 (H3) tails (H3K4me3, H3K4me1, H3K27ac, H3K27me3,

H3K36me3) for all donors (20 young and 20 old). Overall, we generated 40 donors x 5 histone marks = 200

ChIP-seq datasets. All study participants identified themselves as Caucasians. We additionally confirmed the

ancestry by comparing Single Nucleotide Polymorphisms (SNPs) from our ChIP-Seq data to SNPs commonly

associated with Caucasians in 1000 Genomes dataset1. We pooled BAM files for all 5 modifications for each

donor, called individual variants, merged them into group variants, and applied filtration DP ³ 3. Common

SNPs were used to perform Principal Component Analysis (PCA) and build t-SNE on the first five components

(Supplementary Figure 2A). 38 put of 40 donors were identified as Europeans according to 1000 genomes

data, two were mixed European American descent, Supplementary Figure 2B.

Establishing experimental QC pipeline (concentrations, primers, etc.)

We used Ultra-Low-Input (ULI) ChIP-Seq protocol2

(https://artyomovlab.wustl.edu/aging/methods.html). The typical ChIP-Seq experiment requires 1-5 million

cells for each run, while ULI-ChIP-Seq requires only 100k cells. However, it has certain drawbacks such as

high variability of signal-to-noise ratio between samples within one library preparation. During pilot stage, we

focused on optimizing ULI-ChIP-Seq protocol for isolation conditions and cell type used in our study by

selecting antibody concentrations that result in the best signal to noise ratio. Final concentrations of antibodies

used in our studies were: 0.05 µg for H3K27ac, 0.3 µg for H3K27me3, 0.1 µg for H3K36me3, 0.2 µg for

H3K4me1 and 0.03 µg for H3K4me3.

 ChIP-qPCR Primer QC

Using public data for CD14+CD16- monocytes in Roadmap Epigenomics Consortium and data pilot

runs we developed a collection of positive and negative control primers. These primers were used to do an

additional check of signal-to-noise ratio using real-time PCR (SYBR-green) before sequencing step (see

Supplementary Table 15 for sequences and locations).

Data generation, QC and basic processing
Initial (raw) ULI-ChIP-Seq data were subjected to standard quality control and processing steps: (1)

raw reads quality, length, duplication rate, GC-content were determined for all reads; (2) alignment of raw

reads on reference human genome hg19; (3) visual inspection of tracks. Reads length was 51bp, average

duplication level was less than 20%, GC content was about 47%, and sequencing depth was on average ~50

million reads for all the histone modifications (Figure 4B). Full Reads QC data are available in the

Supplementary Table 13.

Reads quality control (step 1) revealed a problem with the first 5 base pairs (which were

computationally trimmed) in all ULI-ChIP-Seq libraries, which we believe to be an artifact of the particular

library preparation protocol (the same issue was observed for other cell types and species when using this

protocol). Alignment on hg19 was performed using bowtie without multimappers and followed by sorting using

samtools:

bowtie -p 4 -St -m 1 -v 3 --trim5 5 --best --strata bowtie_index hg19 ${FILE}.fastq ${ID}.sam
samtools view -bS ${ID}.sam -o ${ID}_not_sorted.bam

samtools sort ${ID}_not_sorted.bam -o ${BAM_NAME}

Full alignment statistics is available in Supplementary Table 13. Aligned BAM files were analyzed by

fastqc and PeakQualTools software and evaluated in accord with ENCODE data standard guidelines v4.

Average alignment rate was about 85%, and most of the tracks met the standards for library depth, PCR

bottlenecking coefficients, and non-redundant reads fraction. Complete code for technical ULI ChIP-Seq

pipeline is available on GitHub: https://github.com/JetBrains-Research/washu

Peak calling: golden standard tools

 Next, we set to perform peak calling for the compendium of ULI ChIP-Seq experiments. In 191 libraries

that passed QC described above, the peaks were distinctly visible by visual inspection, yet the signal-to-noise

ratio varied considerably within the cohort (see Extended Data 6A). This variability can be observed directly

by applying traditional peak calling approaches such as MACS2 and SICER, which yield difference in numbers

of peaks, peaks consistency, etc. We used MACS2 for all modifications and SICER for broad ones only

(H3K27me and H3K36me3).

MACS2 parameters:
macs2 callpeak -t ${FILE} -c ${INPUT} -f BAM -g hs –broad -q 1e-4

SICER parameters:
SICER.sh ${INPUT_FOLDER} ${FILE_BED} ${INPUT_BED} ${OUTPUT_FOLDER} hg19 1 200 150 2.7e9 600 1e-6

Traditional peak calling approaches (MACS2, SICER) produced very inconsistent number of peaks for

all histone marks (Extended Data 6B), which made it impossible to analyze the difference between two

cohorts. We analyzed overlap between all pairs of donors and found that the average overlap rate was as low

as 30% for some cases when samples were analyzed by MACS2 or SICER (Extended Data 6E), while visual

data inspection suggested strong concordance between different samples. Therefore, we concluded that

traditional peak calling approaches were not optimally suited for the analysis of large cohorts of ULI-ChIP-seq

data.

Hocking et al 3 proposed a method to estimate the best parameters of peak callers using supervised

labels. In this approach, user manually creates peak labels and then this information is used to find optimal

peak caller parameters for all samples. The original approach was designed for conventional ChIP-Seq

experiments and generated a single set of parameters for the whole group of samples. While introducing

labeling information aids significantly in amplifying the consistency of peak calling, having a single set of

parameters across all samples cannot be used in the context of multiple ULI-ChIP-Seq samples due to high

variability of the signal-to-noise ratio between ULI-ChIP-Seq samples.

 Thus, based on the concepts proposed by Hocking et al, we developed SPAN – a novel semi-

supervised machine learning peak calling algorithm. In SPAN, we preprocess each sample separately to train

the underlying statistical model. For each chromatin mark, the labeling set, that is common for all samples, is

used to optimize parameters individually for each sample.

 One of the major drawbacks of the semi-supervised methods is the technical difficulty of creating label

annotations. A researcher has to visualize tracks in a separate genome browser, find peaks, and create text

file with labeling set separately. This precludes wide-spread usage and limits the reproducibility of the data

analysis. Thus, we created a dedicated genome browser, JBR Genome Browser, where data exploration

and annotation can be processed simultaneously within one environment inside a single application.

We integrated SPAN and JBR Genome Browser to perform on-the-fly peak calling using uploaded

SPAN model and either uploaded or created within the JBR Genome Browser labeling set. Such workflow

allows for effortless semi-supervised peak calling and can serve as a scaffold for development of other semi-

supervised approaches.

SPAN – algorithm: overview
The pipeline consists of 3 main steps: (1) creating SPAN model (done with SPAN in command line

environment starting from bam or wig files), (2) creating manual annotation labels (can be conveniently done

in JBR Genome Browser or manually), and (3) performing SPAN tuning procedure for all the ULI-ChIP-Seq

tracks independently.

(1) Creating SPAN model:

For each BAM file or pair of signal and input (control) BAM files SPAN creates a 3-state HMM model that best

fits the data. This part is done in the command line environment and can be a part of standardized ChIP-Seq

processing routine.

(2) Creating a labeling file in BED format:
Four types of labels are used:

• peaks: there is at least one peak in the labeled area

• noPeaks: there are no peaks in the labeled area

• peakStart: exactly one peak starts in the labeled area

• peakEnd: exactly one peak ends in the labeled area

The label peaks is satisfied by any positive number of peaks within the label area, and it guards against too

conservative calling; noPeaks is satisfied by no peaks intersecting the area, and it guards against too liberal

calling; peakStart and peakEnd are satisfied by exactly one peak starting or ending in the area and guards

against calling peaks that are too narrow.

(3) Producing final peaks optimized for signal-to-noise ratio:

 BED file with labels is then passed as an input (control) file to SPAN tool whether in command line

environment or within JBR Genome Browser. Given labeling BED file and model file, SPAN iterates through

model parameters to find optimal parameter set that minimizes a percentage of unsatisfied labels for each

‘specific peak calling instance’. Each peak calling instance corresponds to distinct values of parameters

representative of signal-to-noise ratio, peak width etc. Final error score is the ratio of number of errors to the

total number of labels. SPAN iteratively varies parameter values to find the ones that optimally fit labeling

pattern of the specific sample. We found that number of labels sufficient for robust tuning procedure is ~50-

100.

SPAN – algorithm: creating unsupervised model of the data

Each chromosome is split into bins, default bin size is 200 nucleotide base pairs (other values can be

passed as SPAN parameter), which loosely corresponds to the size of DNA molecule curl (loop) around

histone protein complex. Unique tags coverage is calculated for each bin, producing an integer vector. Tags

are shifted according to the specified fragment size. If the control file is not specified, these vectors serve as

an input to the next step. If the control file is specified, the same procedure is done for control tags. The

treatment and control vectors are then combined through the following formula (adapted from DiffBind):
scale = min (1, treatment_library_depth / control_library_depth)

score_i = max (0, [treatment_i - control_i * scale])

 We then fit a 3-state HMM to the data from the previous step using a standard Baum-Welch method.

The states are denoted NULL, LOW and HIGH. The NULL state always emits zero, while LOW and HIGH

states have negative-binomially distributed emissions with parameters that are fitted. The idea here is that

NULL captures the bins that have zero coverage, for example, due to being located inside a genomic repeat

and thus not containing unique sequences, LOW captures the result of non-specific binding, i.e., noise, and

HIGH captures the specific binding, i.e., signal. Each vector is treated as an output of the same HMM.

P(score_i=x | state_i=NULL) ~ δ(0, x)

P(score_i=x | state_i=LOW) ~ NB(x; m_LOW, f_LOW)

P(score_i=x | state_i=HIGH) ~ NB(x; m_HIGH, f_HIGH)

where state_i and score_i is the state and score of the i-th bin, δ is Kronecker's delta symbol, and NB

denotes the discrete density function of a negative binomial distribution. We use a non-standard

parametrization for the negative binomial distribution, namely, through the mean m and the number of failures

f.

 The upside here is that the log-likelihood estimator for ‘m’ is directly calculable using a method of

moments. F estimator, on the other hand, is found via an iterative algorithm adapted from an article by Minka.

The iterative Baum-Welch algorithm stops when the log-likelihood change becomes smaller than 0.1. It can

happen, albeit very rarely, that the HIGH and LOW states get swapped during fitting so that HIGH state

captures low-coverage bins and vice versa. To account for this, we employ a semantic check after the

convergence and flip the states back if necessary.

 The fitted model is then used to estimate posterior probabilities of each state for each bin. Assuming

that the null hypothesis is that the state is not HIGH, we then calculate corresponding q-values and perform

FDR control according to the provided threshold. The bins that passed the FDR control procedure are then

aggregated: if two significant bins are separated by no more than GAP bins, they are merged, and all the bins

in between are added to the output. The adjacent bins are joined into peaks, and the resulting peaks are

saved to the provided output BED file.

SPAN – algorithm: peak calling instances

To distinguish the trained parameters of the underlying model and the user-supplied FDR control

threshold and GAP size parameters, the latter are called meta parameters, since they are extraneous to the

model itself and pertain only to the peak calling step. The meta parameters are optimized to minimize the

training error of the called peaks relative to annotated labels. This is done by a simple grid search: a finite set

of values is provided for each meta parameter, then the error rate is computed for every combination using

the provided label file. Finally, the meta parameters combination that minimizes the error is determined, and

the peaks called with that combination are returned as optimal.

By default, meta-parameters grid is as following (other values can be passed as parameters):
FDR: 1e-1, 1e-2, 1e-4, 1e-6, 1e-8, 1e-10, 1e-12;

GAP: 0, 5, 10, 20;

BIN: 200;

FRAGMENT: none, 150.

Example of command line:
java -jar span.jar --treatment control.bam --control treatment.bam --labels labels.bed --bed result.bed

In cases when several metaparameters combinations scores the same minimal error rate, we pick one

with the smallest FDR and the biggest GAP. Additional testing showed that this strategy increased overall

consistency, while preserving the same error rate. Importantly, even though multiple iterations are required to

find optimal sets of parameters, SPAN works much faster than MACS2 and SICER in all the conditions, since

it uses parallel computations for model training, both multithreading and specialized processor extensions like

SSE2, AVX, etc. The pipeline was designed to reuse all the intermediate results (trained model) making

optimization of meta-parameters blazing fast.

Parallel computations were performed using an open-source library for parallel matrices computations

in Kotlin programming language. The source code is available on GitHub: https://github.com/JetBrains-

Research/viktor.

JRB-browser – technical & basic tutorials
JBR Genome Browser is a new genome browser that brings together ability to browse and visualize

genomic data, perform manual peak labeling, and run semi-supervised peak calling using SPAN. Additional

important aspect of the browser is its extensibility: it is effortless for developers to create your own type of

track view from scratch. Asynchronous rendering with the effective event system and tasks management

makes it extremely fast. You can open up to a hundred different tracks and work with them without any

significant lags. JBR Genome Browser can be used for visual peak calling; it has dedicated peak annotation

mode for creating labels and peak calling. We provide a small example of the semi-supervised SPAN peak

calling pipeline. The browser and all necessary test files can be found here:

https://artyomovlab.wustl.edu/aging/jbr.html

Required files: file.bam, hg19.chrom.sizes.

(1) Train SPAN model for given BAM file:
java -jar span.jar analyze -t file.bam --cs hg19.chrom.sizes

(2) Launch the browser:
java -jar browser.jar

(3) Load BigWig visualization file and SPAN mode to browser:
File | Load BigWig file

File | Load Span Model file
(4) Turn on Peak Annotation mode using

View | Peaks Annotation Mode
(5) Create labeling set.

Select desired genomic regions and pressing a corresponding key (s for peakStart label, e for peakEnd label, p for peaks

label, n for noPeaks label) or clicking the corresponding buttons.
(6) Perform final optimized peak calling

Click “tune SPAN model” to optimize peak calling for created labeling set by iterating through FDR and GAP parameters

grid. Right click on labels toolbar and choose Export to *.bed to export markup.

SPAN peak calling – application to Aging data
All the peak calling summary information for individual donors with numbers of peaks, lengths, a

fraction of reads in peaks is available in the Supplementary Table 16. The statistics about labels used is

collected in Supplementary Table 17. BED files with labels are available at

https://artyomovlab.wustl.edu/aging/download_data.html#download-chipseq

JBR-browser for aging data

For data exploration convenience we prepared a set of Genome Browser sessions (for UCSC browser,

IGV browser and JBR browser), available at:

https://artyomovlab.wustl.edu/aging/explore_chipseq.html

Each session contains the following tracks: (1) median consensus, i.e. overlapping peaks, existing in

at least half of all samples, (2) weak consensus – overlapping peaks confirmed by at least 2 samples, (3)

section of Bigwigs with raw reads for young and old donors, low quality failed tracks are colored in gray, (4)

section of corresponding peaks produced by pipeline, (5) ENCODE track, (6) peaks for ENCODE track and

(7) – labels used for semi-supervised peak calling. IGV sessions can be opened in JBR Genome Browser as

well to make it easier to modify labeling (7) and redo peak calling after downloading preprocessed models.

SPAN study case 1: public ULI ChipSeq data (GSE63523)

As a benchmarking, we also applied SPAN peak calling approach to publicly available ULI ChIP-Seq

datasets. In the paper Chen C et al. presented an ultra-low-input micrococcal nuclease-based native ChIP

(ULI-NChIP) and sequencing method, to generate genome-wide histone mark profiles with high resolution

and reproducibility from as few as one thousand cells. They created data for both broad and narrow histone

marks from 10^3-10^6 cells. Among others in GSE63523, there are H3K4me3 tracks for 100, 10 and 5

thousand cells and H3K27me3 for 100, 10 and 1 thousand cells. We used these tracks to evaluate the semi-

supervised approach in extreme conditions.

SPAN pipeline yielded ~10 thousand H3K3me3 peaks and ~20 thousand H3K27me3 peaks for 100

thousand cells, which is comparable with ENCODE and aging study peaks. Also, we used MACS2 with default

settings FDR=0.05 and FDR=1e-6.

SPAN produced approximately the same number of peaks for H3K27me3 for 100 and 10 thousand

cells (~20000) and half of the peaks for 1 thousand cells, while MACS2 with relaxed FDR produces too many

peaks in all cases and too small number of peaks for 10 thousand (~7000). The situation is even worse for

H3K4me3 modification, MACS2 produced too many peaks for relaxed and too less for stringent FDR control,

while SPAN produced ~17000 peaks, which is comparable to what we see in other study cases and aging

project data. All the peak callers failed given smaller than 100 thousand cells for H3K4me3, which suggests

that this is a minimum required for high-quality peak calling.

Labels, reads, and peaks visualization are available in the sessions at

https://artyomovlab.wustl.edu/aging/study_cases.html#span-usage-uli

SPAN study case 2: public McGill dataset

SPAN tuning mode was inspired by the article by T. D. Hocking et al. Authors investigated the benefits

of tuning approach for golden standard peak callers. Since the authors were affiliated with McGill University

(Montréal, Canada) and used the McGill Epigenomics Mapping Centre data, we will further refer to this

research as “the McGill experiment.”

 The Hocking et al. experimental data consisted of 37 human cell samples. T cells, B cells, and

monocytes were grouped as "immune" (27 samples), and kidney, skeletal muscle, and leukemic B cells were

grouped as "other" (10 samples). Each sample was subjected to H3K4me3-specific ChIP-seq procedure, and

29 samples were additionally subjected to the H3K36me3-specific procedure (21 immune and eight other).

 Each of the four participating researchers then created one or several datasets, comprising all tracks

for a single histone modification (H3K4me3 or H3K36me3) and a single cell group (immune or other). A set

of cell-type specific labels was created for each dataset. Each label belongs to one of the same four types

that we use for tuning SPAN (peaks, noPeaks, peakStart, peakEnd). For example, the

H3K36me3_AM_immune dataset consists of 83 labels created by a researcher codenamed AM for the 21

H3K36me3 tracks created from immune cell samples. In total, seven datasets were generated.

 Authors selected several peak callers and fixed a parameter grid for each of them. They then called

the peaks for each ChIP-seq track of each dataset for each parameter value of each caller. Our proposed

tuning method somewhat differs from that employed by Hocking et al. Namely, we tune each track individually,

meaning we assign an individual optimal meta parameter value to each track in each dataset, while the McGill

experiment selects single meta parameter that optimizes the total dataset error. Our approach offers tangible

benefits for SPAN since it has been empirically confirmed that different quality tracks require different FDR

cutoffs. Other peak callers seemed to benefit from this as well; the optimal parameter value varied widely from

track to track for all the golden standard peak callers, and the total error was significantly improved by

individual tuning, see Supplementary Table 18.

 The IGV and UCSC sessions for the relevant data can be downloaded at

https://artyomovlab.wustl.edu/aging/study_cases.html#span-usage-mcgill

Differential ChIP-Seq

The section below briefly describes parameters used for all the differential ChIP-Seq tools:

DiffBind requires predefined peaks for every donor. We used peaks previously called by SPAN

pipeline and parameters:
score = DBA_SCORE_TMM_MINUS_FULL

fragmentSize = 125

ChIPDiff doesn’t support biological replicates so pooled samples were used as input. BAM was

converted to TAG file using fragmentSize = 125. Default parameters were used:
maxIterationNum 500

minP 0.95
maxTrainingSeqNum 10000

minFoldChange 3

minRegionDist 1000

ChIPDiff Y_tags.tag O_tags.tag hg19.chrom.sizes config.txt ${NAME}

MACS2 bdgdiff used BedGraph files produced by MACS2 on samples polled by cohort.
macs2 bdgdiff \

 --t1 Y_treat_pileup.bdg --c1 Y_control_lambda.bdg \

 --t2 O_treat_pileup.bdg --c2 O_control_lambda.bdg \

 --d1 ${CONTROL_Y} --d2 ${CONTROL_O} --o-prefix ${NAME}

DiffReps has different regimes for broad and narrow peaks, we used pooled BAM converted to BED.

Parameters used for broad peaks:

diffReps.pl \

 -co YD*.bed --bco YD_input.bed \

 -tr OD*.bed --btr OD_input.bed \

 --chrlen hg19.chrom.sizes \
 -re diff.nb.txt \

 --mode block --nsd broad \

 --nproc 8

For narrow peaks we used parameters:
diffReps.pl \

 -co YD*.bed --bco YD_input.bed \

 -tr OD*.bed --btr OD_input.bed \

 --chrlen hg19.chrom.sizes \

 -re diff.nb.txt \
 -me nb \

 --nproc 8

We explored the output of differential ChIP-Seq peak calling visually and were not able to detect any

significant changes in chromatin modifications between two cohorts. The lack of the difference was confirmed

by all of the peak callers used except diffReps. Visual analysis of top significant diffReps peaks suggests that

those found are method artifacts rather than real difference.

Following images show regions with top p-value differential peaks reported by diffReps
(Supplementary Figure 1):
H3K27ac chr13:50204201-50205200
H3K27me3 chr10:102098001-102108000

H3K4me1 chr10:103597001-103607000
H3K4me3 chr1:33391201-33392200

H3K36me3 chr10:126385001-126396000

Supplementary Figure 1: Visualization peaks reported by diffReps as the most changing between young

and old cohorts. (A) H3K4me1 (B) H3K27me3 (C) H3K4me3 (D) H3K36me3 (E) H3K27ac.

A B

С D

E

Supplementary Figure 2: (A) Scheme of SNP calling analysis pipeline (B) tSNE plot for samples from the

1000 genome data and donors participating in this study (black dots)

ChIP-Seq SNPs analysis

H3K4me3
H3K4me1

H3K36me3
H3K27me3
H3K27ac

BAM

BAM BAMBAM

H3K4me3
H3K4me1

H3K36me3
H3K27me3
H3K27ac

BAM

H3K4me3
H3K4me1

H3K36me3
H3K27me3
H3K27ac

BAM. . .
Pooling

VCF

VCF

VCF

VCFVCF

Consolidated VCF

PCA

Common SNP

Call variants
for group

Call variants
per donor

Filtration
DP < 3

VCF

Filtration
MAF > 0.05

donor 1 donor 2 donor 40

1000 genomes VCF

A

B

SUPPLEMENTARY INFORMATION REFERENCES

1. Genomes Project, C., et al. A global reference for human genetic variation. Nature 526, 68-74 (2015).
2. Brind'Amour, J., et al. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare

cell populations. Nat Commun 6, 6033 (2015).
3. Hocking, T.D., et al. Optimizing ChIP-seq peak detectors using visual labels and supervised machine

learning. Bioinformatics 33, 491-499 (2017).

