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SUPPLEMENTARY METHODS 
 
ChIP-Seq processing: samples overview 

Monocytes were isolated from blood samples from young (24-30 y.o.) and old (57-70 y.o.) Caucasian 

males as per the inclusion criteria listed in Figure 1A and in the methods section of the main manuscript. 

CD14+CD16- monocytes were extracted from blood. We used ULI-ChIP-seq to characterize age-associated 

changes in the five modifications of histone 3 (H3) tails (H3K4me3, H3K4me1, H3K27ac, H3K27me3, 

H3K36me3) for all donors (20 young and 20 old). Overall, we generated 40 donors x 5 histone marks = 200 

ChIP-seq datasets. All study participants identified themselves as Caucasians. We additionally confirmed the 

ancestry by comparing Single Nucleotide Polymorphisms (SNPs) from our ChIP-Seq data to SNPs commonly 

associated with Caucasians in 1000 Genomes dataset1. We pooled BAM files for all 5 modifications for each 

donor, called individual variants, merged them into group variants, and applied filtration DP ³ 3. Common 

SNPs were used to perform Principal Component Analysis (PCA) and build t-SNE on the first five components 

(Supplementary Figure 2A). 38 put of 40 donors were identified as Europeans according to 1000 genomes 

data, two were mixed European American descent, Supplementary Figure 2B.  

 

Establishing experimental QC pipeline (concentrations, primers, etc.) 

We used Ultra-Low-Input (ULI) ChIP-Seq protocol2 

(https://artyomovlab.wustl.edu/aging/methods.html). The typical ChIP-Seq experiment requires 1-5 million 

cells for each run, while ULI-ChIP-Seq requires only 100k cells. However, it has certain drawbacks such as 

high variability of signal-to-noise ratio between samples within one library preparation. During pilot stage, we 

focused on optimizing ULI-ChIP-Seq protocol for isolation conditions and cell type used in our study by 

selecting antibody concentrations that result in the best signal to noise ratio. Final concentrations of antibodies 

used in our studies were: 0.05 µg for H3K27ac, 0.3 µg for H3K27me3, 0.1 µg for H3K36me3, 0.2 µg for 

H3K4me1 and 0.03 µg for H3K4me3.  

 

 ChIP-qPCR Primer QC 

Using public data for CD14+CD16- monocytes in Roadmap Epigenomics Consortium and data pilot 

runs we developed a collection of positive and negative control primers. These primers were used to do an 

additional check of signal-to-noise ratio using real-time PCR (SYBR-green) before sequencing step (see 

Supplementary Table 15 for sequences and locations).  

 

Data generation, QC and basic processing 
Initial (raw) ULI-ChIP-Seq data were subjected to standard quality control and processing steps: (1) 

raw reads quality, length, duplication rate, GC-content were determined for all reads; (2) alignment of raw 



   
 

   
 

reads on reference human genome hg19; (3) visual inspection of tracks. Reads length was 51bp, average 

duplication level was less than 20%, GC content was about 47%, and sequencing depth was on average ~50 

million reads for all the histone modifications (Figure 4B). Full Reads QC data are available in the 

Supplementary Table 13.  

Reads quality control (step 1) revealed a problem with the first 5 base pairs (which were 

computationally trimmed) in all ULI-ChIP-Seq libraries, which we believe to be an artifact of the particular 

library preparation protocol (the same issue was observed for other cell types and species when using this 

protocol). Alignment on hg19 was performed using bowtie without multimappers and followed by sorting using 

samtools: 

 
bowtie -p 4 -St -m 1 -v 3 --trim5 5 --best --strata bowtie_index hg19 ${FILE}.fastq ${ID}.sam 
samtools view -bS ${ID}.sam -o ${ID}_not_sorted.bam 

samtools sort ${ID}_not_sorted.bam -o ${BAM_NAME} 

 

Full alignment statistics is available in Supplementary Table 13. Aligned BAM files were analyzed by 

fastqc and PeakQualTools software and evaluated in accord with ENCODE data standard guidelines v4. 

Average alignment rate was about 85%, and most of the tracks met the standards for library depth, PCR 

bottlenecking coefficients, and non-redundant reads fraction. Complete code for technical ULI ChIP-Seq 

pipeline is available on GitHub: https://github.com/JetBrains-Research/washu 

 

Peak calling: golden standard tools 

 Next, we set to perform peak calling for the compendium of ULI ChIP-Seq experiments. In 191 libraries 

that passed QC described above, the peaks were distinctly visible by visual inspection, yet the signal-to-noise 

ratio varied considerably within the cohort (see Extended Data 6A). This variability can be observed directly 

by applying traditional peak calling approaches such as MACS2 and SICER, which yield difference in numbers 

of peaks, peaks consistency, etc. We used MACS2 for all modifications and SICER for broad ones only 

(H3K27me and H3K36me3).  

 

MACS2 parameters: 
macs2 callpeak -t ${FILE} -c ${INPUT} -f BAM -g hs –broad -q 1e-4 

 

SICER parameters: 
SICER.sh ${INPUT_FOLDER} ${FILE_BED} ${INPUT_BED} ${OUTPUT_FOLDER} hg19 1 200 150 2.7e9 600 1e-6 

 



   
 

   
 

Traditional peak calling approaches (MACS2, SICER) produced very inconsistent number of peaks for 

all histone marks (Extended Data 6B), which made it impossible to analyze the difference between two 

cohorts. We analyzed overlap between all pairs of donors and found that the average overlap rate was as low 

as 30% for some cases when samples were analyzed by MACS2 or SICER (Extended Data 6E), while visual 

data inspection suggested strong concordance between different samples. Therefore, we concluded that 

traditional peak calling approaches were not optimally suited for the analysis of large cohorts of ULI-ChIP-seq 

data.  

Hocking et al 3 proposed a method to estimate the best parameters of peak callers using supervised 

labels. In this approach, user manually creates peak labels and then this information is used to find optimal 

peak caller parameters for all samples. The original approach was designed for conventional ChIP-Seq 

experiments and generated a single set of parameters for the whole group of samples. While introducing 

labeling information aids significantly in amplifying the consistency of peak calling, having a single set of 

parameters across all samples cannot be used in the context of multiple ULI-ChIP-Seq samples due to high 

variability of the signal-to-noise ratio between ULI-ChIP-Seq samples. 

 Thus, based on the concepts proposed by Hocking et al, we developed SPAN – a novel semi-

supervised machine learning peak calling algorithm. In SPAN, we preprocess each sample separately to train 

the underlying statistical model. For each chromatin mark, the labeling set, that is common for all samples, is 

used to optimize parameters individually for each sample.  

 One of the major drawbacks of the semi-supervised methods is the technical difficulty of creating label 

annotations.  A researcher has to visualize tracks in a separate genome browser, find peaks, and create text 

file with labeling set separately. This precludes wide-spread usage and limits the reproducibility of the data 

analysis. Thus, we created a dedicated genome browser, JBR Genome Browser, where data exploration 

and annotation can be processed simultaneously within one environment inside a single application. 

We integrated SPAN and JBR Genome Browser to perform on-the-fly peak calling using uploaded 

SPAN model and either uploaded or created within the JBR Genome Browser labeling set. Such workflow 

allows for effortless semi-supervised peak calling and can serve as a scaffold for development of other semi-

supervised approaches. 

 

SPAN – algorithm: overview  
The pipeline consists of 3 main steps: (1) creating SPAN model (done with SPAN in command line 

environment starting from bam or wig files), (2) creating manual annotation labels (can be conveniently done 

in JBR Genome Browser or manually), and (3) performing SPAN tuning procedure for all the ULI-ChIP-Seq 

tracks independently.  

(1) Creating SPAN model: 



   
 

   
 

For each BAM file or pair of signal and input (control) BAM files SPAN creates a 3-state HMM model that best 

fits the data. This part is done in the command line environment and can be a part of standardized ChIP-Seq 

processing routine. 

(2) Creating a labeling file in BED format:  
Four types of labels are used:  

• peaks: there is at least one peak in the labeled area 

• noPeaks: there are no peaks in the labeled area 

• peakStart: exactly one peak starts in the labeled area 

• peakEnd: exactly one peak ends in the labeled area 

The label peaks is satisfied by any positive number of peaks within the label area, and it guards against too 

conservative calling; noPeaks is satisfied by no peaks intersecting the area, and it guards against too liberal 

calling; peakStart and peakEnd are satisfied by exactly one peak starting or ending in the area and guards 

against calling peaks that are too narrow.  

(3) Producing final peaks optimized for signal-to-noise ratio: 

  BED file with labels is then passed as an input (control) file to SPAN tool whether in command line 

environment or within JBR Genome Browser. Given labeling BED file and model file, SPAN iterates through 

model parameters to find optimal parameter set that minimizes a percentage of unsatisfied labels for each 

‘specific peak calling instance’. Each peak calling instance corresponds to distinct values of parameters 

representative of signal-to-noise ratio, peak width etc. Final error score is the ratio of number of errors to the 

total number of labels. SPAN iteratively varies parameter values to find the ones that optimally fit labeling 

pattern of the specific sample. We found that number of labels sufficient for robust tuning procedure is ~50-

100. 

 

SPAN – algorithm: creating unsupervised model of the data 

Each chromosome is split into bins, default bin size is 200 nucleotide base pairs (other values can be 

passed as SPAN parameter), which loosely corresponds to the size of DNA molecule curl (loop) around 

histone protein complex. Unique tags coverage is calculated for each bin, producing an integer vector. Tags 

are shifted according to the specified fragment size. If the control file is not specified, these vectors serve as 

an input to the next step. If the control file is specified, the same procedure is done for control tags. The 

treatment and control vectors are then combined through the following formula (adapted from DiffBind):  
scale = min (1, treatment_library_depth / control_library_depth) 

score_i = max (0, [treatment_i - control_i * scale]) 

 

 We then fit a 3-state HMM to the data from the previous step using a standard Baum-Welch method. 

The states are denoted NULL, LOW and HIGH. The NULL state always emits zero, while LOW and HIGH 



   
 

   
 

states have negative-binomially distributed emissions with parameters that are fitted. The idea here is that 

NULL captures the bins that have zero coverage, for example, due to being located inside a genomic repeat 

and thus not containing unique sequences, LOW captures the result of non-specific binding, i.e., noise, and 

HIGH captures the specific binding, i.e., signal. Each vector is treated as an output of the same HMM.  

 
P(score_i=x | state_i=NULL) ~ δ(0, x) 

P(score_i=x | state_i=LOW) ~ NB(x; m_LOW, f_LOW) 

P(score_i=x | state_i=HIGH) ~ NB(x; m_HIGH, f_HIGH) 

 

where state_i and score_i is the state and score of the i-th bin, δ is Kronecker's delta symbol, and NB 

denotes the discrete density function of a negative binomial distribution. We use a non-standard 

parametrization for the negative binomial distribution, namely, through the mean m and the number of failures 

f.  

 The upside here is that the log-likelihood estimator for ‘m’ is directly calculable using a method of 

moments. F estimator, on the other hand, is found via an iterative algorithm adapted from an article by Minka. 

The iterative Baum-Welch algorithm stops when the log-likelihood change becomes smaller than 0.1. It can 

happen, albeit very rarely, that the HIGH and LOW states get swapped during fitting so that HIGH state 

captures low-coverage bins and vice versa. To account for this, we employ a semantic check after the 

convergence and flip the states back if necessary.   

 The fitted model is then used to estimate posterior probabilities of each state for each bin. Assuming 

that the null hypothesis is that the state is not HIGH, we then calculate corresponding q-values and perform 

FDR control according to the provided threshold. The bins that passed the FDR control procedure are then 

aggregated: if two significant bins are separated by no more than GAP bins, they are merged, and all the bins 

in between are added to the output. The adjacent bins are joined into peaks, and the resulting peaks are 

saved to the provided output BED file.   

 

SPAN – algorithm: peak calling instances  

To distinguish the trained parameters of the underlying model and the user-supplied FDR control 

threshold and GAP size parameters, the latter are called meta parameters, since they are extraneous to the 

model itself and pertain only to the peak calling step. The meta parameters are optimized to minimize the 

training error of the called peaks relative to annotated labels. This is done by a simple grid search: a finite set 

of values is provided for each meta parameter, then the error rate is computed for every combination using 

the provided label file. Finally, the meta parameters combination that minimizes the error is determined, and 

the peaks called with that combination are returned as optimal.  



   
 

   
 

 

By default, meta-parameters grid is as following (other values can be passed as parameters):  
FDR: 1e-1, 1e-2, 1e-4, 1e-6, 1e-8, 1e-10, 1e-12;  

GAP: 0, 5, 10, 20;  

BIN: 200;  

FRAGMENT: none, 150. 

 

Example of command line: 
java -jar span.jar --treatment control.bam --control treatment.bam --labels labels.bed --bed result.bed 

 

In cases when several metaparameters combinations scores the same minimal error rate, we pick one 

with the smallest FDR and the biggest GAP. Additional testing showed that this strategy increased overall 

consistency, while preserving the same error rate. Importantly, even though multiple iterations are required to 

find optimal sets of parameters, SPAN works much faster than MACS2 and SICER in all the conditions, since 

it uses parallel computations for model training, both multithreading and specialized processor extensions like 

SSE2, AVX, etc. The pipeline was designed to reuse all the intermediate results (trained model) making 

optimization of meta-parameters blazing fast.  

Parallel computations were performed using an open-source library for parallel matrices computations 

in Kotlin programming language. The source code is available on GitHub: https://github.com/JetBrains-

Research/viktor. 

 

JRB-browser – technical & basic tutorials 
JBR Genome Browser is a new genome browser that brings together ability to browse and visualize 

genomic data, perform manual peak labeling, and run semi-supervised peak calling using SPAN. Additional 

important aspect of the browser is its extensibility: it is effortless for developers to create your own type of 

track view from scratch. Asynchronous rendering with the effective event system and tasks management 

makes it extremely fast. You can open up to a hundred different tracks and work with them without any 

significant lags. JBR Genome Browser can be used for visual peak calling; it has dedicated peak annotation 

mode for creating labels and peak calling. We provide a small example of the semi-supervised SPAN peak 

calling pipeline. The browser and all necessary test files can be found here: 

https://artyomovlab.wustl.edu/aging/jbr.html  
 

Required files: file.bam, hg19.chrom.sizes.  

(1) Train SPAN model for given BAM file: 
java -jar span.jar analyze -t file.bam --cs hg19.chrom.sizes 



   
 

   
 

(2) Launch the browser: 
java -jar browser.jar 

(3) Load BigWig visualization file and SPAN mode to browser:  
File | Load BigWig file  

File | Load Span Model file  
(4) Turn on Peak Annotation mode using  

View | Peaks Annotation Mode  
(5) Create labeling set. 

Select desired genomic regions and pressing a corresponding key (s for peakStart label, e for peakEnd label, p for peaks 

label, n for noPeaks label) or clicking the corresponding buttons.  
(6) Perform final optimized peak calling 

Click “tune SPAN model” to optimize peak calling for created labeling set by iterating through FDR and GAP parameters 

grid. Right click on labels toolbar and choose Export to *.bed to export markup. 

 

SPAN peak calling – application to Aging data 
All the peak calling summary information for individual donors with numbers of peaks, lengths, a 

fraction of reads in peaks is available in the Supplementary Table 16. The statistics about labels used is 

collected in Supplementary Table 17. BED files with labels are available at  

https://artyomovlab.wustl.edu/aging/download_data.html#download-chipseq 

 
JBR-browser for aging data 

For data exploration convenience we prepared a set of Genome Browser sessions (for UCSC browser, 

IGV browser and JBR browser), available at: 

https://artyomovlab.wustl.edu/aging/explore_chipseq.html 

Each session contains the following tracks: (1) median consensus, i.e. overlapping peaks, existing in 

at least half of all samples, (2) weak consensus – overlapping peaks confirmed by at least 2 samples, (3) 

section of Bigwigs with raw reads for young and old donors, low quality failed tracks are colored in gray, (4) 

section of corresponding peaks produced by pipeline, (5) ENCODE track, (6) peaks for ENCODE track and 

(7) – labels used for semi-supervised peak calling.  IGV sessions can be opened in JBR Genome Browser as 

well to make it easier to modify labeling (7) and redo peak calling after downloading preprocessed models.  

 

SPAN study case 1: public ULI ChipSeq data (GSE63523) 

As a benchmarking, we also applied SPAN peak calling approach to publicly available ULI ChIP-Seq 

datasets. In the paper Chen C et al. presented an ultra-low-input micrococcal nuclease-based native ChIP 

(ULI-NChIP) and sequencing method, to generate genome-wide histone mark profiles with high resolution 



   
 

   
 

and reproducibility from as few as one thousand cells. They created data for both broad and narrow histone 

marks from 10^3-10^6 cells. Among others in GSE63523, there are H3K4me3 tracks for 100, 10 and 5 

thousand cells and H3K27me3 for 100, 10 and 1 thousand cells. We used these tracks to evaluate the semi-

supervised approach in extreme conditions.  

SPAN pipeline yielded ~10 thousand H3K3me3 peaks and ~20 thousand H3K27me3 peaks for 100 

thousand cells, which is comparable with ENCODE and aging study peaks. Also, we used MACS2 with default 

settings FDR=0.05 and FDR=1e-6. 

SPAN produced approximately the same number of peaks for H3K27me3 for 100 and 10 thousand 

cells (~20000) and half of the peaks for 1 thousand cells, while MACS2 with relaxed FDR produces too many 

peaks in all cases and too small number of peaks for 10 thousand (~7000). The situation is even worse for 

H3K4me3 modification, MACS2 produced too many peaks for relaxed and too less for stringent FDR control, 

while SPAN produced ~17000 peaks, which is comparable to what we see in other study cases and aging 

project data. All the peak callers failed given smaller than 100 thousand cells for H3K4me3, which suggests 

that this is a minimum required for high-quality peak calling.  

Labels, reads, and peaks visualization are available in the sessions at 

https://artyomovlab.wustl.edu/aging/study_cases.html#span-usage-uli 

 

SPAN study case 2: public McGill dataset 

SPAN tuning mode was inspired by the article by T. D. Hocking et al. Authors investigated the benefits 

of tuning approach for golden standard peak callers. Since the authors were affiliated with McGill University 

(Montréal, Canada) and used the McGill Epigenomics Mapping Centre data, we will further refer to this 

research as “the McGill experiment.”   

  The Hocking et al. experimental data consisted of 37 human cell samples. T cells, B cells, and 

monocytes were grouped as "immune" (27 samples), and kidney, skeletal muscle, and leukemic B cells were 

grouped as "other" (10 samples). Each sample was subjected to H3K4me3-specific ChIP-seq procedure, and 

29 samples were additionally subjected to the H3K36me3-specific procedure (21 immune and eight other).  

 Each of the four participating researchers then created one or several datasets, comprising all tracks 

for a single histone modification (H3K4me3 or H3K36me3) and a single cell group (immune or other). A set 

of cell-type specific labels was created for each dataset. Each label belongs to one of the same four types 

that we use for tuning SPAN (peaks, noPeaks, peakStart, peakEnd). For example, the 

H3K36me3_AM_immune dataset consists of 83 labels created by a researcher codenamed AM for the 21 

H3K36me3 tracks created from immune cell samples. In total, seven datasets were generated.  

  Authors selected several peak callers and fixed a parameter grid for each of them. They then called 

the peaks for each ChIP-seq track of each dataset for each parameter value of each caller.  Our proposed 

tuning method somewhat differs from that employed by Hocking et al. Namely, we tune each track individually, 



   
 

   
 

meaning we assign an individual optimal meta parameter value to each track in each dataset, while the McGill 

experiment selects single meta parameter that optimizes the total dataset error. Our approach offers tangible 

benefits for SPAN since it has been empirically confirmed that different quality tracks require different FDR 

cutoffs. Other peak callers seemed to benefit from this as well; the optimal parameter value varied widely from 

track to track for all the golden standard peak callers, and the total error was significantly improved by 

individual tuning, see Supplementary Table 18.  

 The IGV and UCSC sessions for the relevant data can be downloaded at  

https://artyomovlab.wustl.edu/aging/study_cases.html#span-usage-mcgill 

  

Differential ChIP-Seq   

The section below briefly describes parameters used for all the differential ChIP-Seq tools:  

 

DiffBind requires predefined peaks for every donor. We used peaks previously called by SPAN 

pipeline and parameters:  
score = DBA_SCORE_TMM_MINUS_FULL 

fragmentSize = 125 

 

ChIPDiff doesn’t support biological replicates so pooled samples were used as input. BAM was 

converted to TAG file using fragmentSize = 125. Default parameters were used: 
maxIterationNum   500 

minP              0.95 
maxTrainingSeqNum 10000 

minFoldChange     3 

minRegionDist     1000 

 
ChIPDiff Y_tags.tag O_tags.tag hg19.chrom.sizes config.txt ${NAME} 

 

MACS2 bdgdiff used BedGraph files produced by MACS2 on samples polled by cohort. 
macs2 bdgdiff \ 

   --t1 Y_treat_pileup.bdg --c1 Y_control_lambda.bdg \ 

   --t2 O_treat_pileup.bdg --c2 O_control_lambda.bdg \ 

   --d1 ${CONTROL_Y} --d2 ${CONTROL_O} --o-prefix ${NAME} 

 

DiffReps has different regimes for broad and narrow peaks, we used pooled BAM converted to BED. 

 

Parameters used for broad peaks:  



   
 

   
 

diffReps.pl \ 

      -co YD*.bed --bco YD_input.bed \ 

      -tr OD*.bed --btr OD_input.bed \ 

      --chrlen hg19.chrom.sizes \ 
      -re diff.nb.txt \ 

      --mode block --nsd broad \ 

      --nproc 8 

For narrow peaks we used parameters:  
diffReps.pl \ 

      -co YD*.bed --bco YD_input.bed \ 

      -tr OD*.bed --btr OD_input.bed \ 

      --chrlen hg19.chrom.sizes \ 

      -re diff.nb.txt \ 
      -me nb \ 

      --nproc 8 

 

We explored the output of differential ChIP-Seq peak calling visually and were not able to detect any 

significant changes in chromatin modifications between two cohorts. The lack of the difference was confirmed 

by all of the peak callers used except diffReps. Visual analysis of top significant diffReps peaks suggests that 

those found are method artifacts rather than real difference.   

 

Following images show regions with top p-value differential peaks reported by diffReps 
(Supplementary Figure 1):  
H3K27ac chr13:50204201-50205200 
H3K27me3 chr10:102098001-102108000 

H3K4me1 chr10:103597001-103607000 
H3K4me3 chr1:33391201-33392200 

H3K36me3 chr10:126385001-126396000 

 

 



   
 

   
 

 

Supplementary Figure 1: Visualization peaks reported by diffReps as the most changing between young 

and old cohorts. (A) H3K4me1 (B) H3K27me3 (C) H3K4me3 (D) H3K36me3 (E) H3K27ac. 

A B
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Supplementary Figure 2: (A) Scheme of SNP calling analysis pipeline (B) tSNE plot for samples from the 

1000 genome data and donors participating in this study (black dots)  
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