#### Environ Health Perspect

### DOI: 10.1289/EHP9726

**Note to readers with disabilities:** *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

### **Supplemental Material**

# Ambient Air Pollution in Relation to SARS-CoV-2 Infection, Antibody Response, and COVID-19 Disease: A Cohort Study in Catalonia, Spain (COVICAT Study)

Manolis Kogevinas, Gemma Castaño-Vinyals, Marianna Karachaliou, Ana Espinosa, Rafael de Cid, Judith Garcia-Aymerich, Anna Carreras, Beatriz Cortés, Vanessa Pleguezuelos, Alfons Jiménez, Marta Vidal, Cristina O'Callaghan-Gordo, Marta Cirach, Rebeca Santano, Diana Barrios, Laura Puyol, Rocío Rubio, Luis Izquierdo, Mark Nieuwenhuijsen, Payam Dadvand, Ruth Aguilar, Gemma Moncunill, Carlota Dobaño, and Cathryn Tonne

## **Table of Contents**

**Table S1.** Distribution of air pollution concentrations (2018-2019 average) at residence in participants (N=9,605) vs non-participants (N=7,295), CoviCat cohort members with valid residences in 2018-2019.

**Table S2.** Characteristics of the COVICAT study population by COVID-19 case status (N=9605).

**Table S3.** Percentage infected in the Covicat cohort among participants with serological analyses by BMI, previous diagnosis of NCDs, population density and degree of urbanization (n=4103).

**Table S4.** Descriptive characteristics of individuals who agreed to participate in COVICAT serology testing compared to those who did not.

**Table S5.** Risk Ratios and 95% confidence interval from log-binomial regression models, between air pollution at residence and SARS-CoV-2 infection determined through serology. Changes reported by IQR. Sensitivity analyses for participants without changes in residence municipality, those recruited prior to July 31, 2020, excluding those with indeterminate serological results and adjusting for green spaces.

**Table S6.** Effect estimates corresponding to Figure 1. Association of air pollutants (NO2, PM2.5, BC, O3) with levels of IgG, IgM and IgA against five viral target antigens among participants those who were seropositive (n=743). Linear regression beta coefficients and 95% confidence intervals adjusted for potential confounders. CoviCat study.

**Table S7.** Association between air pollution and antibodies response for IgA and IgG by time since infection among participants with reported COVID-19 symptoms and serology (n=181). Linear regression beta coefficients and 95% confidence intervals adjusted for potential confounders. CoviCat study.

**Table S8.** Risk Ratios and 95% confidence interval from log-binomial regression models, between air pollution at residence and COVID-19 disease among the total COVICAT population and subgroups with serological testing and positive antibodies for SARS-CoV-2 infection adjusting also for green spaces.

**Table S9.** Association of prepandemic air pollution on SARS-CoV-2 infection by age (<60 / >=60), previous NCDs, Socioeconomic status indicators, obesity, degree of urbanization and population density. Risk Ratios and 95% confidence interval fromlog-binomial regression models, CoviCat study.

**Table S10.** Association of prepandemic air pollution on IgG RBD levels in participants with SARS-CoV-2 infection by age (<60 / >=60), previous NCDs, Socioeconomic status indicators, obesity, degree of urbanization and population density. Linear regression beta coefficients and 95% Confidence Intervals. CoviCat study.

**Table S11.** Effect of prepandemic air pollution on IgG NFL levels in participants with SARS-CoV-2 infection by age (<60 / >=60), previous NCDs, Socioeconomic status indicators, obesity, degree of urbanization and population density. Linear regression beta coefficients and 95% Confidence Intervals. CoviCat study.

Figure S1. Flow diagram describing participation in the COVICAT cohort at each study stage.

**Figure S2.** Epidemiological curves for SARS-CoV-2 positive tests over time by health region in Catalonia. The blue lines define the first period of sampling that includes approximately 75% of the CoviCat study population with serology. The green lines define the second sampling period with the remaining participants. Barcelona Ciutat, Catalunya Central, Girona, Lleida, Metropolita Nord, Metropolita Sud are the largest urban areas. The peak in Lleida was due to the influx of temporary agricultural workers after the end of lockdown and the lack of proventive measures for them.

**Figure S3.** Directed acyclic graph for analysis of SARS-CoV-2 infection and COVID-19 disease in the Covicat cohort. Potential confounders include: Demographics (age and sex); SES (education and deprivation index); lifestyle (smoking and physical activity); survey type; green spaces; and population density.

**Figure S4.** Map of residential location of total study population by COVID-19 disease status; participants with COVID-19 (blue triangles) and those non-diseased (yellow dots).

**Figure S5.** Map of residential location of study population with serology tested for infection to SARS-CoV-2 by COVID-19 disease status; participants with COVID-19 (blue triangles) and those non-diseased (yellow dots).

**Figure S6.** Generalized additive models (smoothed effects and 95% CI) for air pollution at residence (x-axis Interquartile Range) and prevalence of infection to SARS-CoV-2 measured through antibody response among the subpopulation serologically tested (N=4,103).

**Figure S7.** Generalized additive models (smoothed effects and 95% CI) for air pollution at residence (x-axis Interquartile Range) and COVID-19 disease among the total COVICAT population (N=9,605).

|                   |              | Participants        |             |
|-------------------|--------------|---------------------|-------------|
| µg/m³             | Mean (sd)    | GM (95% CI)         | p25-p75     |
| NO <sub>2</sub>   | 34.14 (9.16) | 32.55 (32.33,32.77) | 28.69-40.31 |
| PM <sub>2.5</sub> | 16.25 (1.48) | 16.18 (16.15,16.21) | 15.43-17.29 |
| BC                | 1.82 (0.39)  | 1.77 (1.76,1.78)    | 1.62-2.06   |
| O <sub>3</sub>    | 65.00 (6.95) | 64.65 (64.52,64.79) | 60.63-68.19 |
|                   |              | Non-participants    |             |
| µg/m³             | Mean (sd)    | GM (95% CI)         | p25-p75     |
| NO2               | 33.82 (9.33) | 32.14 (31.88,32.40) | 27.43-40.41 |
| PM2.5             | 16.17 (1.50) | 16.09 (16.06,16.13) | 15.25-17.26 |
| DC                |              |                     |             |
| ВС                | 1.80 (0.38)  | 1.75 (1.74,1.76)    | 1.61-2.04   |

Table S1. Distribution of air pollution concentrations (2018-2019 average) at residence in participants (N=9,605) vs non-participants (N=7,295), CoviCat cohort members with valid residences in 2018-2019.

|                                                                         | COVID-19 Case | COVID-19 Case |         |
|-------------------------------------------------------------------------|---------------|---------------|---------|
|                                                                         | No            | Yes           |         |
|                                                                         | N(%)          | N(%)          | P value |
|                                                                         | N=9124        | N=481         |         |
| Current age (years); mean (SD)                                          | 55.4 (7.9)    | 53.5 (6.9)    | <0.001  |
| Gender                                                                  |               |               |         |
| Male                                                                    | 3785 (41.5)   | 164 (34.1)    |         |
| Female                                                                  | 5339 (58.5)   | 317 (65.9)    | 0.001   |
| Type of survey                                                          |               |               |         |
| Online                                                                  | 8586 (94.1)   | 463 (96.3)    |         |
| Telephone                                                               | 538 (5.9)     | 18 (3.7)      | 0.049   |
| Quintiles of deprivation index                                          |               |               |         |
| 1 Least deprived                                                        | 1828 (20.0)   | 97 (20.2)     |         |
| 2                                                                       | 1829 (20.0)   | 88 (18.3)     |         |
| 3                                                                       | 1829 (20.0)   | 92 (19.1)     |         |
| 4                                                                       | 1823 (20.0)   | 103 (21.4)    |         |
| 5 Most deprived                                                         | 1815 (19.9)   | 101 (21)      | 0.800   |
| Educational level                                                       |               |               |         |
| Less than primary                                                       | 132 (1.4)     | 5 (1.0)       |         |
| Primary                                                                 | 975 (10.7)    | 38 (7.9)      |         |
| Secondary                                                               | 3787 (41.5)   | 214 (44.5)    |         |
| University                                                              | 4230 (46.4)   | 224 (46.6)    | 0.181   |
| Baseline smoking status (before lockdown)                               |               |               |         |
| Never smoker                                                            | 3770 (41.4)   | 224 (46.6)    |         |
| Ex-smoker                                                               | 3851 (42.3)   | 198 (41.2)    |         |
| Smoker                                                                  | 1489 (16.3)   | 59 (12.3)     | 0.020   |
| n missing                                                               | 14            | 0             |         |
| Physical Activity, according to IPAQ categories                         |               |               |         |
| Low                                                                     | 1623 (18.8)   | 89 (20.0)     |         |
| Moderate                                                                | 3903 (45.1)   | 207 (46.4)    |         |
| High                                                                    | 3130 (36.2)   | 150 (33.6)    | 0.537   |
| n missing                                                               | 468           | 35            |         |
| Any chronic disease                                                     |               |               |         |
| No                                                                      | 6046 (66.3)   | 292 (60.7)    |         |
| Yes                                                                     | 3078 (33.7)   | 189 (39.3)    | 0.012   |
| Respiratory, cardiometabolic, kidney and immune related chronic disease |               |               |         |
| No                                                                      | 7508 (82.3)   | 372 (77.3)    |         |
| Yes                                                                     | 1616 (17.7)   | 109 (22.7)    | 0.006   |
| BMI before lockdown; mean (SD)                                          | 26.2 (4.2)    | 26.9 (4.6)    | 0.001   |
| n missing                                                               | 18            | 1             |         |
| Obesity before lockdown                                                 | -             |               |         |
| BMI<30                                                                  | 7589 (83.3)   | 366 (76.3)    |         |
| BMI≥30                                                                  | 1517 (16.7)   | 114 (23.8)    | <0.001  |
| n missing                                                               | 18            | 1             | -       |

## Table S2. Characteristics of the COVICAT study population by COVID-19 case status (N=9605)

Table S3. Percentage infected in the Covicat cohort among participants with serological analyses by BMI, previous diagnosis of NCDs, population density and degree of urbanization (n=4103)

|                        | N       | % infected |
|------------------------|---------|------------|
|                        | N=4,103 |            |
| BMI                    |         |            |
| <25                    | 1.813   | 16.8       |
| 25-30                  | 1.603   | 19.2       |
| >30                    | 681     | 19.1       |
| n missing              | 6       |            |
| NCDs                   |         |            |
| No                     | 3.349   | 18.0       |
| Yes                    | 754     | 18.6       |
| Population density     |         |            |
| Least dense            | 726     | 17.6       |
| 2                      | 766     | 17.5       |
| 3                      | 832     | 17.9       |
| 4                      | 881     | 19.1       |
| 5 Most dense           | 898     | 18.3       |
| Degree of urbanization |         |            |
| City                   | 3.742   | 18.1       |
| Town or suburb         | 311     | 17.7       |
| Rural area             | 50      | 20.0       |

|                                           | Participants NOT<br>willing to<br>participate in<br>serology | Participants<br>willing to<br>participate in<br>serology |         |
|-------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|---------|
|                                           | N(%)                                                         | N(%)                                                     | P value |
|                                           | N=699                                                        | N=8,906                                                  |         |
| Current age (years); mean (SD)            | 57.3 (9.4)                                                   | 55.2 (7.7)                                               | <0.001  |
| Gender                                    |                                                              |                                                          |         |
| Male                                      | 305 (43.6)                                                   | 3644 (40.9)                                              |         |
| Female                                    | 394 (56.4)                                                   | 5262 (59.1)                                              | 0.160   |
| Air pollution levels                      |                                                              |                                                          |         |
| NO <sub>2</sub> ; mean (SD)               | 34.9 (9.0)                                                   | 34.1 (9.2)                                               | 0.016   |
| PM <sub>2.5</sub> ; mean (SD)             | 16.3 (1.6)                                                   | 16.2 (1.5)                                               | 0.135   |
| BC; mean (SD)                             | 1.9 (0.4)                                                    | 1.8 (0.4)                                                | 0.006   |
| O₃; mean (SD)                             | 64.8 (7.0)                                                   | 65 (6.9)                                                 | 0.377   |
| Type of survey                            | 87 (12.4)                                                    | 469 (5.3)                                                | <0.001  |
| Online                                    | 612 (87.6)                                                   | 8437 (94.7)                                              |         |
| Telephone                                 | 87 (12.4)                                                    | 469 (5.3)                                                | <0.001  |
| Quintiles of deprivation index            | ( )                                                          | (                                                        |         |
| 1 Least deprived                          | 141 (20.2)                                                   | 1784 (20)                                                |         |
| 2                                         | 123 (17.6)                                                   | 1794 (20.1)                                              |         |
| 3                                         | 132 (18.9)                                                   | 1789 (20.1)                                              |         |
| 4                                         | 133 (19)                                                     | 1793 (20.1)                                              |         |
| 5 Most deprived                           | 170 (24.3)                                                   | 1746 (19.6)                                              | 0.037   |
| Educational level                         |                                                              |                                                          |         |
| Less than primary                         | 11 (1.6)                                                     | 126 (1.4)                                                |         |
| Primary                                   | 115 (16.5)                                                   | 898 (10.1)                                               |         |
| Secondary                                 | 292 (41.8)                                                   | 3709 (41.6)                                              |         |
| University                                | 281 (40.2)                                                   | 4173 (46.9)                                              | <0.001  |
| Baseline smoking status (before lockdown) |                                                              |                                                          |         |
| Never smoker                              | 299 (42.8)                                                   | 3695 (41.5)                                              |         |
| Ex-smoker                                 | 290 (41.5)                                                   | 3759 (42.3)                                              |         |
| Smoker                                    | 109 (15.6)                                                   | 1439 (16.2)                                              | 0.792   |
| n missing                                 | 1                                                            | 13                                                       |         |
| Physical Activity, according to IPAQ      |                                                              |                                                          |         |
| categories                                |                                                              |                                                          |         |
| Low                                       | 134 (20.5)                                                   | 15/8 (18.7)<br>2792 (44 9)                               |         |
| High                                      | 327 (30)<br>193 (29 5)                                       | 3087 (36 5)                                              | 0 001   |
| n missing                                 | 45                                                           | 458                                                      | 0.001   |
| Any chronic disease                       |                                                              |                                                          |         |
| No                                        | 431 (61.7)                                                   | 5907 (66.3)                                              |         |

Table S4. Descriptive characteristics of individuals who agreed to participate in COVICAT serology testing compared to those who did not.

| Yes                                      | 268 (38.3) | 2999 (33.7) | 0.012 |
|------------------------------------------|------------|-------------|-------|
| Respiratory, cardiometabolic, kidney and |            |             |       |
|                                          |            |             |       |
| No                                       | 546 (78.1) | 7334 (82.3) |       |
| Yes                                      | 153 (21.9) | 1572 (17.7) | 0.005 |
| BMI before lockdown; mean (SD)           | 26.3 (4.4) | 26.2 (4.3)  | 0.965 |
| n missing                                | 2          | 17          |       |
| Obesity before lockdown                  |            |             |       |
| BMI<30                                   | 571 (81.9) | 7384 (83.1) |       |
| BMI≥30                                   | 126 (18.1) | 1505 (16.9) | 0.438 |
| n missing                                | 2          | 17          |       |
| COVID-19 disease                         |            |             |       |
| No                                       | 678 (97)   | 8446 (94.8) |       |
| Yes                                      | 21 (3)     | 460 (5.2)   | 0.012 |

Table S5. Risk Ratios and 95% confidence interval from log-binomial regression models, between air pollution at residence and SARS-CoV-2 infection determined through serology. Changes reported by IQR. Sensitivity analyses for participants without changes in residence municipality, those recruited prior to July 31, 2020, excluding those with indeterminate serological results and adjusting for green spaces

|                                                                  | RR (95% CI) <sup>a</sup> |
|------------------------------------------------------------------|--------------------------|
| Participants without municipality changes (n=3,920)              |                          |
| NO <sub>2</sub>                                                  | 1.05 (0.95,1.16)         |
| PM <sub>2.5</sub>                                                | 1.03 (0.93,1.14)         |
| BC                                                               | 1.00 (0.92,1.09)         |
| O <sub>3</sub>                                                   | 0.98 (0.90,1.07)         |
| Participants recruited before 31 <sup>th</sup> july<br>(n=4,055) |                          |
| NO <sub>2</sub>                                                  | 1.07 (0.97,1.18)         |
| PM <sub>2.5</sub>                                                | 1.04 (0.95,1.15)         |
| BC                                                               | 1.01 (0.92,1.10)         |
| O <sub>3</sub>                                                   | 0.97 (0.89,1.06)         |
| Excluding indeterminated paricipants (n=3,360)                   |                          |
| NO <sub>2</sub>                                                  | 1.02 (0.90,1.16)         |
| PM <sub>2.5</sub>                                                | 0.95 (0.84,1.07)         |
| BC                                                               | 1.04 (0.93,1.17)         |
| O <sub>3</sub>                                                   | 1.02 (0.92,1.14)         |
| All participants adjusted for green spaces (n=4,103)             |                          |
| NO <sub>2</sub>                                                  | 1.06 (0.96,1.18)         |
| PM <sub>2.5</sub>                                                | 1.03 (0.93,1.14)         |
| BC                                                               | 1.00 (0.91,1.09)         |
| O <sub>3</sub>                                                   | 0.98 (0.89,1.06)         |

<sup>a</sup> Adjusted for age, sex, education (Less than primary/ Primary/ Secondary/ University), ip2011 (deprivation index, quintiles), population density and type of survey (online/telephone)

Table S6. Effect estimates corresponding to Figure 1. Association of air pollutants (NO2, PM2.5, BC, O3) with levels of IgG, IgM and IgA against five viral target antigens among participants those who were seropositive (n=743). Linear regression beta coefficients and 95% confidence intervals adjusted for potential confounders<sup>a</sup>. CoviCat study.

|           |               |                   | β (95% CI)1        |
|-----------|---------------|-------------------|--------------------|
| Participa | ints with SAR | S-CoV-2 infection | N=743              |
| lgM       | NFL           | NO <sub>2</sub>   | -0.03 (-0.07,0.02) |
| _         |               | PM <sub>2.5</sub> | -0.01 (-0.06,0.03) |
|           |               | BC                | -0.02 (-0.06,0.02) |
|           |               | O <sub>3</sub>    | 0.02 (-0.02,0.06)  |
|           | NCt           | NO <sub>2</sub>   | -0.01 (-0.04,0.03) |
|           |               | PM <sub>2.5</sub> | -0.01 (-0.05,0.03) |
|           |               | BC                | -0.01 (-0.04,0.02) |
|           |               | O <sub>3</sub>    | 0.01 (-0.02,0.04)  |
|           | RBD           | NO <sub>2</sub>   | 0.04 (-0.01,0.08)  |
|           |               | PM <sub>2.5</sub> | 0.03 (-0.02,0.08)  |
|           |               | BC                | 0.01 (-0.03,0.05)  |
|           |               | O <sub>3</sub>    | -0.04 (-0.08,0.00) |
|           | S             | NO <sub>2</sub>   | 0.02 (-0.02,0.07)  |
|           |               | PM <sub>2.5</sub> | 0.02 (-0.03,0.06)  |
|           |               | BC                | 0.01 (-0.03,0.04)  |
|           |               | O <sub>3</sub>    | -0.03 (-0.07,0.01) |
|           | S2            | NO <sub>2</sub>   | 0.04 (-0.01,0.08)  |
|           |               | PM <sub>2.5</sub> | 0.03 (-0.01,0.08)  |
|           |               | BC                | 0.00 (-0.04,0.04)  |
|           |               | O <sub>3</sub>    | -0.03 (-0.07,0.01) |
| IgA       | NFL           | NO <sub>2</sub>   | 0.03 (-0.02,0.09)  |
|           |               | PM <sub>2.5</sub> | 0.01 (-0.04,0.07)  |
|           |               | BC                | 0.02 (-0.03,0.07)  |
|           |               | O <sub>3</sub>    | -0.02 (-0.07,0.03) |
|           | NCt           | NO <sub>2</sub>   | 0.02 (-0.02,0.06)  |
|           |               | PM <sub>2.5</sub> | 0.01 (-0.03,0.04)  |
|           |               | BC                | 0.01 (-0.02,0.04)  |
|           |               | O <sub>3</sub>    | -0.01 (-0.05,0.02) |
|           | RBD           | NO <sub>2</sub>   | 0.04 (0.00,0.08)   |
|           |               | PM <sub>2.5</sub> | 0.03 (-0.01,0.07)  |
|           |               | BC                | 0.01 (-0.02,0.04)  |
|           |               | O <sub>3</sub>    | -0.03 (-0.06,0.00) |
|           | S             | NO <sub>2</sub>   | 0.04 (-0.01,0.08)  |
|           |               | PM <sub>2.5</sub> | 0.04 (-0.01,0.08)  |
|           |               | BC                | 0.01 (-0.03,0.05)  |

|     |     | O <sub>3</sub>    | -0.04 (-0.08,0.00)  |
|-----|-----|-------------------|---------------------|
|     | S2  | NO <sub>2</sub>   | 0.06 (-0.01,0.12)   |
|     |     | PM <sub>2.5</sub> | 0.04 (-0.03,0.10)   |
|     |     | BC                | -0.01 (-0.06,0.05)  |
|     |     | O <sub>3</sub>    | -0.06 (-0.12,0.00)  |
| lgG | NFL | NO <sub>2</sub>   | 0.07 (0.01,0.12)    |
|     |     | PM <sub>2.5</sub> | 0.06 (0.00,0.12)    |
|     |     | BC                | 0.03 (-0.02,0.08)   |
|     |     | O <sub>3</sub>    | -0.06 (-0.12,-0.01) |
|     | NCt | NO <sub>2</sub>   | 0.05 (-0.01,0.11)   |
|     |     | PM <sub>2.5</sub> | 0.05 (-0.01,0.11)   |
|     |     | BC                | 0.03 (-0.02,0.08)   |
|     |     | O <sub>3</sub>    | -0.05 (-0.10,0.00)  |
|     | RBD | NO <sub>2</sub>   | 0.11 (0.02,0.19)    |
|     |     | PM <sub>2.5</sub> | 0.10 (0.01,0.19)    |
|     |     | BC                | 0.03 (-0.04,0.11)   |
|     |     | O <sub>3</sub>    | -0.08 (-0.16,-0.01) |
|     | S   | NO <sub>2</sub>   | 0.11 (0.02,0.20)    |
|     |     | PM <sub>2.5</sub> | 0.09 (0.00,0.18)    |
|     |     | BC                | 0.04 (-0.04,0.12)   |
|     |     | O <sub>3</sub>    | -0.08 (-0.16,0.00)  |
|     | S2  | NO <sub>2</sub>   | 0.09 (0.01,0.16)    |
|     |     | PM <sub>2.5</sub> | 0.07 (0.00,0.15)    |
|     |     | BC                | 0.02 (-0.04,0.08)   |
|     |     | O <sub>3</sub>    | -0.06 (-0.12,0.00)  |

<sup>a</sup> Adjusted for age, sex, education (less than primary/ primary/ secondary/ university), deprivation index (quintiles), population density, type of survey (online/telephone) and batch

#### Footnote:

IgG: immunoglobulin G; IgM: immunoglobulin M; IgA: immunoglobulin A SARS-CoV-2 antigens: spike full protein (S); S2 fragment (S2); receptor-binding domain (RBD); nucleocapsid full protein (NFL); nucleocapsid C-terminal region (NCt) Table S7. Association between air pollution and antibodies response for IgA and IgG by time since infection among participants with reported COVID-19 symptoms and serology (n=181). Linear regression beta coefficients and 95% confidence intervals adjusted for potential confounders<sup>a</sup>. CoviCat study. CoviCat study

|     |     |                   | β (95% CI)ª                               | β (95% CI)ª                             | p value <sup>b</sup> |
|-----|-----|-------------------|-------------------------------------------|-----------------------------------------|----------------------|
|     |     |                   | Time since infection<br><120 days<br>N=67 | Time since infection<br>>120 days N=114 |                      |
| IgA | NFL | NO <sub>2</sub>   | -0.05 (-0.27,0.17)                        | -0.07 (-0.21,0.06)                      | 0.823                |
|     |     | PM <sub>2.5</sub> | 0.03 (-0.17,0.22)                         | -0.08 (-0.24,0.08)                      | 0.351                |
|     |     | BC                | 0.16 (0.02,0.31)                          | -0.02 (-0.13,0.10)                      | 0.034                |
|     |     | O <sub>3</sub>    | 0.17 (-0.02,0.36)                         | 0.06 (-0.06,0.18)                       | 0.261                |
|     | NCt | NO <sub>2</sub>   | 0.00 (-0.12,0.12)                         | 0.04 (-0.03,0.12)                       | 0.531                |
|     |     | PM <sub>2.5</sub> | 0.00 (-0.11,0.11)                         | 0.03 (-0.06,0.12)                       | 0.584                |
|     |     | BC                | 0.04 (-0.04,0.13)                         | 0.03 (-0.04,0.09)                       | 0.726                |
|     |     | O <sub>3</sub>    | 0.04 (-0.07,0.14)                         | -0.02 (-0.09,0.04)                      | 0.270                |
|     | RBD | NO <sub>2</sub>   | 0.06 (-0.12,0.24)                         | -0.03 (-0.14,0.08)                      | 0.315                |
|     |     | PM <sub>2.5</sub> | 0.05 (-0.11,0.21)                         | -0.04 (-0.17,0.09)                      | 0.344                |
|     |     | BC                | 0.10 (-0.02,0.22)                         | 0.01 (-0.08,0.10)                       | 0.184                |
|     |     | O <sub>3</sub>    | 0.05 (-0.10,0.21)                         | 0.06 (-0.04,0.16)                       | 0.921                |
|     | S   | NO <sub>2</sub>   | 0.05 (-0.16,0.27)                         | -0.06 (-0.19,0.07)                      | 0.333                |
|     |     | PM <sub>2.5</sub> | 0.04 (-0.15,0.24)                         | -0.07 (-0.23,0.09)                      | 0.315                |
|     |     | BC                | 0.12 (-0.03,0.26)                         | 0.01 (-0.10,0.12)                       | 0.211                |
|     |     | O <sub>3</sub>    | 0.10 (-0.08,0.28)                         | 0.04 (-0.08,0.16)                       | 0.557                |
|     | S2  | NO <sub>2</sub>   | -0.05 (-0.34,0.24)                        | 0.03 (-0.15,0.21)                       | 0.603                |
|     |     | PM <sub>2.5</sub> | -0.05 (-0.32,0.21)                        | 0.00 (-0.21,0.21)                       | 0.704                |
|     |     | BC                | 0.00 (-0.19,0.20)                         | 0.08 (-0.07,0.23)                       | 0.501                |
|     |     | O <sub>3</sub>    | 0.21 (-0.03,0.46)                         | -0.02 (-0.18,0.14)                      | 0.070                |
| lgG | NFL | NO <sub>2</sub>   | -0.12 (-0.36,0.13)                        | 0.00 (-0.15,0.14)                       | 0.375                |
|     |     | PM <sub>2.5</sub> | -0.01 (-0.23,0.21)                        | -0.02 (-0.20,0.16)                      | 0.936                |
|     |     | BC                | 0.04 (-0.13,0.20)                         | 0.07 (-0.06,0.20)                       | 0.755                |
|     |     | O <sub>3</sub>    | 0.21 (0.00,0.41)                          | 0.02 (-0.12,0.15)                       | 0.078                |
|     | NCt | NO <sub>2</sub>   | -0.10 (-0.36,0.15)                        | -0.02 (-0.18,0.13)                      | 0.555                |
|     |     | PM <sub>2.5</sub> | 0.02 (-0.21,0.25)                         | -0.03 (-0.22,0.15)                      | 0.681                |
|     |     | BC                | 0.05 (-0.12,0.22)                         | 0.06 (-0.07,0.19)                       | 0.931                |
|     |     | O <sub>3</sub>    | 0.17 (-0.05,0.38)                         | 0.00 (-0.14,0.14)                       | 0.149                |
|     | RBD | NO <sub>2</sub>   | -0.10 (-0.48,0.29)                        | -0.03 (-0.26,0.20)                      | 0.743                |
|     |     | PM <sub>2.5</sub> | 0.02 (-0.33,0.37)                         | -0.11 (-0.39,0.17)                      | 0.506                |
|     |     | BC                | 0.10 (-0.16,0.36)                         | 0.07 (-0.13,0.27)                       | 0.833                |
|     |     | O <sub>3</sub>    | 0.29 (-0.04,0.61)                         | 0.07 (-0.14,0.28)                       | 0.208                |
|     | S   | NO <sub>2</sub>   | -0.16 (-0.55,0.23)                        | 0.02 (-0.21,0.26)                       | 0.365                |
|     |     | PM <sub>2.5</sub> | -0.05 (-0.40,0.31)                        | -0.05 (-0.34,0.24)                      | 0.983                |
|     |     | BC                | 0.04 (-0.23,0.30)                         | 0.11 (-0.09,0.31)                       | 0.612                |

|    | O <sub>3</sub>    | 0.33 (0.00,0.66)   | 0.02 (-0.19,0.23)  | 0.074 |
|----|-------------------|--------------------|--------------------|-------|
| S2 | NO <sub>2</sub>   | -0.13 (-0.45,0.18) | 0.14 (-0.06,0.33)  | 0.104 |
|    | PM <sub>2.5</sub> | -0.02 (-0.31,0.27) | 0.06 (-0.17,0.29)  | 0.607 |
|    | BC                | 0.01 (-0.20,0.23)  | 0.15 (-0.02,0.31)  | 0.277 |
|    | O <sub>3</sub>    | 0.28 (0.01,0.55)   | -0.07 (-0.24,0.10) | 0.013 |

<sup>a</sup> Adjusted for age, sex, education (Less than primary/ Primary/ Secondary/ University), ip2011 (deprivation index, continuous), population density and type of survey (online/telephone)

<sup>b</sup> p-value for likelihood ratio test for interaction

Table S8. Risk Ratios and 95% confidence interval from log-binomial regression models, between air pollution at residence and COVID-19 disease among the total COVICAT population and subgroups with serological testing and positive antibodies for SARS-CoV-2 infection adjusting also for green spaces

|                                        | RR (95% CI) <sup>a</sup> | RR (95% CI) <sup>b</sup> |
|----------------------------------------|--------------------------|--------------------------|
| Total population                       | N=9,605                  | N=9,088                  |
| NO2 (per IQR)                          | 1.18 (1.03,1.35)         | 1.21 (1.05,1.39)         |
| PM2.5 (per IQR)                        | 1.21 (1.06,1.37)         | 1.20 (1.05,1.38)         |
| BC (per IQR)                           | 1.00 (0.89,1.13)         | 1.01 (0.89,1.14)         |
| O3 (per IQR)                           | 0.91 (0.81,1.02)         | 0.90 (0.80,1.01)         |
| Participants with serology             | N=4,103                  | N=3,922                  |
| NO2 (per IQR)                          | 1.29 (1.04,1.61)         | 1.35 (1.08,1.68)         |
| PM2.5 (per IQR)                        | 1.28 (1.03,1.59)         | 1.28 (1.02,1.59)         |
| BC (per IQR)                           | 0.95 (0.79,1.15)         | 0.97 (0.80,1.17)         |
| O3 (per IQR)                           | 0.83 (0.68,1.00)         | 0.81 (0.67,0.99)         |
| Participants with SARS-CoV-2 infection | N=743                    | N=702                    |
| NO2 (per IQR)                          | 1.18 (0.91,1.53)         | 1.21 (0.95,1.56)         |
| PM2.5 (per IQR)                        | 1.15 (0.89,1.48)         | 1.09 (0.85,1.39)         |
| BC (per IQR)                           | 1.03 (0.83,1.28)         | 1.03 (0.83,1.28)         |
| O3 (per IQR)                           | 0.92 (0.74,1.14)         | 0.90 (0.73,1.12)         |

<sup>a</sup> Adjusted for age, sex, education (Less than primary/ Primary/ Secondary/ University), ip2011 (deprivation index, quintiles), population density and type of survey (online/telephone) <u>and</u> <u>green spaces</u>

<sup>b</sup> Adjusted for age, sex, education (Less than primary/ Primary/ Secondary/ University), ip2011 (deprivation index, quintiles), population density, smoking (never/ex/smoker),

physical activity (low/moderate/high) and type of survey (online/telephone) and green spaces

Table S9. Association of prepandemic air pollution on SARS-CoV-2 infection by age (<60 / >=60), previous NCDs, Socioeconomic status indicators, obesity, degree of urbanization and population density. Risk Ratios and 95% confidence interval fromlog-binomial regression models, CoviCat study.

|                                     | RR (95% CI) <sup>a</sup>  | RR (95% CI) <sup>a</sup> | p value <sup>b</sup> |
|-------------------------------------|---------------------------|--------------------------|----------------------|
| Age                                 | Age<60 (N=2,784)          | Age≥60 (N=1,319)         |                      |
| NO <sub>2</sub>                     | 1.09 (0.98,1.22)          | 1.01 (0.86,1.19)         | 0,410                |
| PM <sub>2.5</sub>                   | 1.06 (0.95,1.18)          | 0.99 (0.84,1.17)         | 0,509                |
| BC                                  | 1.02 (0.92,1.13)          | 0.96 (0.84,1.11)         | 0,492                |
| O <sub>3</sub>                      | 0.97 (0.88,1.06)          | 0.98 (0.85,1.13)         | 0,825                |
| Gender                              | Female (N=2,381)          | Male (N=1,722)           |                      |
| NO <sub>2</sub>                     | 1.07 (0.95,1.20)          | 1.06 (0.92,1.23)         | 0,958                |
| PM <sub>2.5</sub>                   | 1.02 (0.91,1.15)          | 1.06 (0.92,1.23)         | 0,686                |
| BC                                  | 0.98 (0.88,1.09)          | 1.04 (0.92,1.18)         | 0,434                |
| O <sub>3</sub>                      | 0.94 (0.85,1.05)          | 1.01 (0.90,1.14)         | 0,371                |
| Educational level <sup>c</sup>      | High (N=1,953)            | Low (N=2,150)            |                      |
| NO <sub>2</sub>                     | 0.99 (0.86,1.14)          | 1.13 (1.00,1.27)         | 0,158                |
| PM <sub>2.5</sub>                   | 0.98 (0.86,1.12)          | 1.08 (0.96,1.22)         | 0,266                |
| BC                                  | 0.95 (0.84,1.07)          | 1.05 (0.94,1.18)         | 0,163                |
| O <sub>3</sub>                      | 1.00 (0.89,1.13)          | 0.95 (0.85,1.05)         | 0,426                |
| Area-level deprivation <sup>d</sup> | High (N=1,748)            | Low (N=2,355)            |                      |
| NO <sub>2</sub>                     | 1.06 (0.92,1.23)          | 1.07 (0.95,1.20)         | 0,979                |
| PM <sub>2.5</sub>                   | 0.98 (0.85,1.14)          | 1.07 (0.95,1.20)         | 0,372                |
| BC                                  | 0.99 (0.88,1.12)          | 1.01 (0.90,1.13)         | 0,858                |
| O <sub>3</sub>                      | 1.02 (0.90,1.16)          | 0.95 (0.86,1.05)         | 0,369                |
| Previous diagnosis of               |                           |                          |                      |
| chronic disease <sup>e</sup>        | No (N=3,349)              | Yes (N=754)              |                      |
| NO <sub>2</sub>                     | 1.11 (1.00,1.24)          | 0.87 (0.71,1.07)         | 0,032                |
| PM <sub>2.5</sub>                   | 1.09 (0.98,1.21)          | 0.83 (0.68,1.02)         | 0,020                |
| BC                                  | 1.03 (0.94,1.13)          | 0.87 (0.73,1.05)         | 0,107                |
| O <sub>3</sub>                      | 0.94 (0.85,1.03)          | 1.13 (0.96,1.32)         | 0,043                |
| Obesity (BM≥30)                     | No (N=3,416)              | Yes (N=681)              |                      |
| NO <sub>2</sub>                     | 1.07 (0.97,1.19)          | 1.03 (0.84,1.27)         | 0,735                |
| PM <sub>2.5</sub>                   | 1.04 (0.93,1.15)          | 1.04 (0.84,1.28)         | 0,995                |
| BC                                  | 1.00 (0.91,1.09)          | 1.03 (0.85,1.24)         | 0,754                |
| O <sub>3</sub>                      | 0.97 (0.89,1.06)          | 0.99 (0.83,1.19)         | 0,814                |
| Desuge of unbergineties             | Suburb or rural $(N-2C1)$ | C(4, 1) = 2, 7, 12       |                      |
| Degree of urbanization              | (N=361)                   | City (N=3,742)           | 0.000                |
|                                     | 1.20 (0.83,1.72)          | 1.09 (0.97,1.22)         | 0,608                |
| PIM <sub>2.5</sub>                  | 1.03 (0.77,1.39)          | 1.06 (0.94,1.18)         | 0,901                |
|                                     | 1.09 (0.66,1.80)          | 1.00 (0.92,1.10)         | 0,740                |
| $U_3$                               | 0.95 (0.76,1.21)          | 0.96 (0.86,1.06)         | 0,984                |
| Population density <sup>1</sup>     | Low (N=2,324)             | High (N=1,779)           |                      |

| NO <sub>2</sub>   | 1.12 (0.90,1.39) | 1.05 (0.94,1.17) | 0,596 |
|-------------------|------------------|------------------|-------|
| PM <sub>2.5</sub> | 1.14 (0.93,1.40) | 1.01 (0.90,1.12) | 0,281 |
| BC                | 1.15 (0.95,1.38) | 0.96 (0.87,1.06) | 0,083 |
| O <sub>3</sub>    | 0.89 (0.73,1.09) | 0.99 (0.90,1.08) | 0,344 |
|                   |                  |                  |       |

a Adjusted for age, sex, education (Less than primary/ Primary/ Secondary/ University), ip2011 (deprivation index, continuous), population density and type of survey (online/telephone)

b p-value for likelihood ratio test for interaction

c University is considered as high educational level

d Low Deprivation: Q3-Q5 of deprivation score; High deprivation: Q1-Q2 of deprivation score

e Previous diagnosis of any of the following: respiratory, cardiometabolic, kidney or immune related diseases

f Low density: Q1-Q3 of population density; High density: Q4-Q5 of population density

Table S10. Association of prepandemic air pollution on IgG RBD levels in participants with SARS-CoV-2 infection by age (<60 / >=60), previous NCDs, Socioeconomic status indicators, obesity, degree of urbanization and population density. Linear regression beta coefficients and 95% Confidence Intervals. CoviCat study.

|                                     | β (95% CI)ª         | β (95% CI)ª         | p value <sup>b</sup> |
|-------------------------------------|---------------------|---------------------|----------------------|
| Age                                 | Age<60 (N=496)      | Age≥60 (N=247)      |                      |
| NO <sub>2</sub>                     | 0.14 (0.02,0.26)    | 0.14 (-0.04,0.33)   | 0,970                |
| PM <sub>2.5</sub>                   | 0.16 (0.03,0.29)    | 0.05 (-0.13,0.22)   | 0,284                |
| BC                                  | 0.07 (-0.04,0.17)   | 0.02 (-0.13,0.17)   | 0,572                |
| O <sub>3</sub>                      | -0.11 (-0.21,0.00)  | -0.10 (-0.26,0.06)  | 0,956                |
| Gender                              | Female (N=433)      | Male (N=310)        |                      |
| NO <sub>2</sub>                     | 0.17 (0.04,0.30)    | 0.09 (-0.07,0.25)   | 0,403                |
| PM <sub>2.5</sub>                   | 0.17 (0.04,0.31)    | 0.05 (-0.11,0.20)   | 0,191                |
| BC                                  | 0.07 (-0.04,0.18)   | 0.02 (-0.13,0.16)   | 0,516                |
| O <sub>3</sub>                      | -0.15 (-0.27,-0.04) | -0.03 (-0.17,0.10)  | 0,154                |
| Educational level <sup>c</sup>      | High (N=344)        | Low (N=399)         |                      |
| NO <sub>2</sub>                     | 0.14 (-0.01,0.29)   | 0.14 (0.00,0.28)    | 0,989                |
| PM <sub>2.5</sub>                   | 0.10 (-0.05,0.25)   | 0.14 (0.00,0.28)    | 0,660                |
| BC                                  | 0.03 (-0.09,0.16)   | 0.07 (-0.05,0.18)   | 0,702                |
| O <sub>3</sub>                      | -0.15 (-0.28,-0.02) | -0.06 (-0.18,0.06)  | 0,291                |
| Area-level deprivation <sup>d</sup> | High (N=377)        | Low (N=406)         |                      |
| NO <sub>2</sub>                     | 0.08 (-0.09,0.25)   | 0.15 (0.03,0.28)    | 0,477                |
| PM <sub>2.5</sub>                   | 0.02 (-0.14,0.18)   | 0.17 (0.04,0.31)    | 0,117                |
| BC                                  | -0.03 (-0.16,0.10)  | 0.10 (-0.02,0.22)   | 0,106                |
| O <sub>3</sub>                      | -0.06 (-0.20,0.09)  | -0.12 (-0.23,-0.01) | 0,482                |
| Previous diagnosis of               |                     |                     |                      |
| chronic disease <sup>e</sup>        | No (N=603)          | Yes (N=140)         |                      |
| NO <sub>2</sub>                     | 0.17 (0.06,0.29)    | -0.02 (-0.26,0.22)  | 0,123                |
| PM <sub>2.5</sub>                   | 0.12 (0.00,0.24)    | 0.15 (-0.09,0.39)   | 0,823                |
| BC                                  | 0.06 (-0.04,0.16)   | -0.01 (-0.23,0.20)  | 0,511                |
| O <sub>3</sub>                      | -0.13 (-0.23,-0.03) | 0.01 (-0.19,0.22)   | 0,179                |
| Obesity (BM≥30)                     | No (N=612)          | Yes (N=130)         |                      |
| NO <sub>2</sub>                     | 0.15 (0.04,0.27)    | 0.07 (-0.15,0.30)   | 0,516                |
| PM <sub>2.5</sub>                   | 0.13 (0.01,0.25)    | 0.10 (-0.12,0.31)   | 0,787                |
| BC                                  | 0.04 (-0.06,0.14)   | 0.09 (-0.12,0.30)   | 0,675                |
| O <sub>3</sub>                      | -0.11 (-0.21,-0.01) | -0.07 (-0.27,0.14)  | 0,700                |
| Degree of urbanization              | Suburb or rural     | City(N-679)         |                      |
|                                     | (10-03)             | C(ty(1)=078)        | 0.220                |
|                                     | 0.38 (-0.03,0.80)   | 0.12 (0.00,0.25)    | 0,228                |
| PIM <sub>2.5</sub>                  | 0.05(-0.26,0.37)    | 0.13(0.00, 0.26)    | 0,670                |
|                                     | -0.21 (-0.74,0.31)  |                     | 0,322                |
| $U_3$                               | -0.08 (-0.36,0.19)  | -0.10 (-0.22,0.01)  | 0,899                |
| Population density <sup>1</sup>     | Low (N=411)         | High (N=332)        |                      |

| NO <sub>2</sub>   | 0.13 (0.01,0.25)   | 0.17 (-0.05,0.39)  | 0,774 |
|-------------------|--------------------|--------------------|-------|
| PM <sub>2.5</sub> | 0.09 (-0.03,0.22)  | 0.23 (0.00,0.47)   | 0,285 |
| BC                | 0.04 (-0.06,0.15)  | 0.07 (-0.13,0.28)  | 0,804 |
| O <sub>3</sub>    | -0.10 (-0.20,0.00) | -0.14 (-0.35,0.08) | 0,741 |
|                   |                    |                    |       |

a Adjusted for age, sex, education (Less than primary/ Primary/ Secondary/ University), ip2011 (deprivation index, continuous), population density and type of survey (online/telephone)

b p-value for likelihood ratio test for interaction

c University is considered as high educational level

d Low Deprivation: Q3-Q5 of deprivation score; High deprivation: Q1-Q2 of deprivation score

e Previous diagnosis of any of the following: respiratory, cardiometabolic, kidney or immune related diseases

f Low density: Q1-Q3 of population density; High density: Q4-Q5 of population density

Table S11. Effect of prepandemic air pollution on IgG NFL levels in participants with SARS-CoV-2 infection by age (<60 / >=60), previous NCDs, Socioeconomic status indicators, obesity, degree of urbanization and population density. Linear regression beta coefficients and 95% Confidence Intervals. CoviCat study.

|                                     | β (95% CI)ª         | β (95% CI)         | p value <sup>b</sup> |
|-------------------------------------|---------------------|--------------------|----------------------|
| Age                                 | Age<60 (N=496)      | Age≥60 (N=247)     |                      |
| NO <sub>2</sub>                     | 0.01 (-0.07,0.09)   | 0.06 (-0.06,0.17)  | 0,473                |
| PM <sub>2.5</sub>                   | 0.03 (-0.05,0.11)   | 0.04 (-0.07,0.16)  | 0,842                |
| BC                                  | 0.01 (-0.06,0.08)   | 0.03 (-0.07,0.12)  | 0,752                |
| O <sub>3</sub>                      | -0.02 (-0.09,0.05)  | -0.06 (-0.16,0.04) | 0,452                |
| Gender                              | Female (N=433)      | Male (N=310)       |                      |
| NO <sub>2</sub>                     | 0.00 (-0.09,0.08)   | 0.06 (-0.04,0.17)  | 0,306                |
| PM <sub>2.5</sub>                   | 0.01 (-0.07,0.10)   | 0.06 (-0.04,0.17)  | 0,433                |
| BC                                  | 0.01 (-0.06,0.09)   | 0.02 (-0.08,0.11)  | 0,990                |
| O <sub>3</sub>                      | -0.01 (-0.09,0.06)  | -0.06 (-0.15,0.02) | 0,331                |
| Educational level <sup>c</sup>      | High (N=344)        | Low (N=399)        |                      |
| NO <sub>2</sub>                     | 0.00 (-0.10,0.09)   | 0.05 (-0.04,0.14)  | 0,386                |
| PM <sub>2.5</sub>                   | 0.00 (-0.10,0.10)   | 0.06 (-0.03,0.15)  | 0,355                |
| BC                                  | 0.01 (-0.08,0.09)   | 0.02 (-0.05,0.10)  | 0,736                |
| O <sub>3</sub>                      | -0.04 (-0.13,0.04)  | -0.02 (-0.10,0.05) | 0,679                |
| Area-level deprivation <sup>d</sup> | High (N=377)        | Low (N=406)        |                      |
| NO <sub>2</sub>                     | -0.01 (-0.12,0.10)  | 0.05 (-0.03,0.13)  | 0,426                |
| PM <sub>2.5</sub>                   | -0.03 (-0.13,0.07)  | 0.09 (0.00,0.17)   | 0,065                |
| BC                                  | 0.00 (-0.08,0.08)   | 0.04 (-0.04,0.11)  | 0,495                |
| O <sub>3</sub>                      | 0.00 (-0.09,0.10)   | -0.06 (-0.13,0.01) | 0,263                |
| Previous diagnosis of               |                     | V (N- 140)         |                      |
| chronic disease                     | NO (N=603)          | Yes (N=140)        |                      |
| NO <sub>2</sub>                     | 0.02 (-0.06,0.09)   | 0.06 (-0.09,0.22)  | 0,559                |
| PM <sub>2.5</sub>                   | 0.01 (-0.07,0.08)   | 0.19 (0.03,0.34)   | 0,030                |
| BC                                  | 0.01 (-0.06,0.07)   | 0.06 (-0.08,0.19)  | 0,489                |
| $O_3$                               | -0.03(-0.09,0.04)   | -0.06(-0.19,0.07)  | 0,613                |
| Obesity (BIVI230)                   | NO (N=612)          | Yes (N=130)        | 0.204                |
|                                     | 0.01 (-0.07,0.08)   | 0.09 (-0.05,0.24)  | 0,284                |
| PM <sub>2.5</sub>                   | 0.03 (-0.05,0.10)   | 0.05 (-0.09,0.19)  | 0,774                |
| BC                                  | 0.00 (-0.07,0.06)   | 0.10 (-0.03,0.24)  | 0,140                |
| O <sub>3</sub>                      | -0.02 (-0.08,0.04)  | -0.09 (-0.23,0.04) | 0,291                |
| Degree of urbanization              | (N=65)              | City (N=678)       |                      |
| NO <sub>2</sub>                     | 0.25 (-0.02,0.51)   | -0.01 (-0.09,0.07) | 0,063                |
| PM <sub>25</sub>                    | 0.19 (0.00.0.39)    | -0.01 (-0.09.0.08) | 0.061                |
| BC                                  | -0.02 (-0.35,0.32)  | 0.01 (-0.05,0.07)  | 0,867                |
| O <sub>3</sub>                      | -0.20 (-0.37,-0.02) | 0.01 (-0.07,0.08)  | 0,030                |
| Population density <sup>f</sup>     | Low (N=411)         | Hiah (N=332)       | ,                    |

| NO <sub>2</sub>   | 0.07 (-0.07,0.21)  | 0.01 (-0.07,0.09)  | 0,465 |
|-------------------|--------------------|--------------------|-------|
| PM <sub>2.5</sub> | 0.08 (-0.07,0.23)  | 0.02 (-0.06,0.10)  | 0,485 |
| BC                | 0.04 (-0.09,0.17)  | 0.01 (-0.06,0.08)  | 0,650 |
| O <sub>3</sub>    | -0.02 (-0.15,0.12) | -0.04 (-0.10,0.03) | 0,798 |

a Adjusted for age, sex, education (Less than primary/ Primary/ Secondary/ University), ip2011 (deprivation index, continuous), population density and type of survey (online/telephone)

b p-value for likelihood ratio test for interaction

c University is considered as high educational level

d Low Deprivation: Q3-Q5 of deprivation score; High deprivation: Q1-Q2 of deprivation score

e Previous diagnosis of any of the following: respiratory, cardiometabolic, kidney or immune related diseases

f Low density: Q1-Q3 of population density; High density: Q4-Q5 of population density

# Figure S1. Flow diagram describing participation in the COVICAT cohort at each study stage



Figure S2. Epidemiological curves for SARS-CoV-2 positive tests over time by health region in Catalonia. The blue lines define the first period of sampling that includes approximately 75% of the CoviCat study population with serology. The green lines define the second sampling period with the remaining participants. Barcelona Ciutat, Catalunya Central, Girona, Lleida, Metropolita Nord, Metropolita Sud are the largest urban areas. The peak in Lleida was due to the influx of temporary agricultural workers after the end of lockdown and the lack of proventive measures for them

#### Data retrieved from website:

https://app.powerbi.com/view?r=eyJrIjoiOGlyNjgzYjctYjA0Ny00ZDRmLWIxNjctM2RkZWZhMD Q0ZjRiliwidCl6ljNiOTQyN2RjLWQzMGUtNDNiYy04YzA2LWZmNzl1MzY3NmZlYyIsImMiOjh9



Figure S3. Directed acyclic graph for analysis of SARS-CoV-2 infection and COVID-19 disease in the Covicat cohort. Potential confounders include: Demographics (age and sex); SES (education and deprivation index); lifestyle (smoking and physical activity); survey type; green spaces; and population density.





Figure S4. Map of residential location of total study population by COVID-19 disease status; participants with COVID-19 (blue triangles) and those non-diseased (yellow dots)

Figure S5. Map of residential location of study population with serology tested for infection to SARS-CoV-2 by COVID-19 disease status; participants with COVID-19 (blue triangles) and those non-diseased (yellow dots)







<sup>a</sup> All models are with 2 degrees of freedom and there is no departure from linearity. All models adjusted for age, sex, education (Less than primary/ Primary/ Secondary/ University), ip2011 (deprivation index, quintiles), population density and type of survey (online/telephone)



Figure S7. Generalized additive models (smoothed effects and 95% CI) for air pollution at residence (x-axis Interquartile Range) and COVID-19 disease among the total COVICAT population (N=9,605)  $^{a}$ 

<sup>a</sup> All models are with 2 degrees of freedom and there is no departure from linearity. All models adjusted for age, sex, education (Less than primary/ Primary/ Secondary/ University), ip2011 (deprivation index, quintiles), population density and type of survey (online/telephone)