
1

Supplementary Information

Golem: An algorithm for robust experiment and process optimization

Matteo Aldeghi,1,2,3 Florian Häse,4,1,2,3 Riley J. Hickman,2,3 Isaac Tamblyn,1,5 Alán Aspuru-Guzik1,2,3,6

1Vector Institute for Artificial Intelligence, Toronto, ON, Canada
2Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada

3Department of Computer Science, University of Toronto, Toronto, ON, Canada
4Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA

5National Research Council of Canada, Ottawa, ON, Canada
6Lebovic Fellow, Canadian Institute for Advanced Research, Toronto, ON, Canada

S.1. FORMULATING GOLEM

Consider a sequential optimization in which the goal is to find a set of input conditions x ∈ X corresponding to
the global minimum of the function f : X 7→ R,

x∗ = argmin
x∈X

f(x). (5)

At each iteration k, we query parameter values xk ∈ X , where X is a compact subset of Euclidean space RD and
D ∈ N∗. However, while the desired query location x can be precisely controlled, uncertainty in the execution results
in x̃ = x + δ being the input realized, where δ is a random variable with probability density p(δ|x). Thus, after K

optimization iterations, we will have built a dataset D̃K = {xk, f(x̃k)}Kk=1, where uncertainty in the inputs causes
stochastic evaluations of the response function f(x). A noiseless dataset DK = {xk, f(xk)}Kk=1 can be obtained when
p(δ|x) is a delta function.

We seek a robustness measure g(xk) that will allow us to estimate the merit of each solution xk given its uncertainty.
This would not only allow for post-hoc rescaling of the merit of each parameter location based on its robustness, but
also to direct experiment planning algorithms towards robust optima during the optimization campaign.

A natural choice is to take the expectation of f(x̃k) by marginalizing over the input uncertainty, such that g(xk) =
E[f(x̃k)]. Consider xk to be the query location at iteration k, where we would like to evaluate f(xk). The location
actually realized, due to the uncertainty, is x̃k = xk + δ, where δ is a random variable with probability density
p(δ|xk). In principle, the expectation of f(x̃k) given p(x̃k) can be obtained as follows:

E[f(x̃k)] =

∫
RD

f(x)p(x̃k)dx (6)

=

∫
RD

f(x)p(xk + δ)dx, (7)

with integration over the support of p(x̃k), because p(δ|xk) may extend beyond the bounds of X . Here we assume
integration over RD without loss of generality. If physical bounds are present, this can be reflected in the support
of p(δ|xk); for instance, the uncertainty in volume of dispensed liquid may be modelled by a gamma distribution,
given that volume dispensed can only be equal to or greater than zero. Eq. 6 is another way to write the expectation
obtained by marginalising over the noise factors δ,

E[f(x̃k)] =

∫
RD

f(xk + δ)p(δ)dδ. (8)

More explicitly,

E[f(x̃k)] =

∫
RD

f(xk + t)pδ(t)dt. (9)

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2021

2

Defining x = xk + t, dx = dt, and given that pδ(x− xk) = pxk+δ(x),

E[f(x̃k)] =

∫
RD

f(x)pδ(x− xk)dx (10)

=

∫
RD

f(x)pxk+δ(x)dx. (11)

Eq. 6 as shown above is recovered when simplifying the notation with pxk+δ(x) = p(xk + δ). Finally, note that
other integrated measures of robustness can be defined, for instance considering higher moments of the objective
function.1,2

While f(x) is unknown, an approximation f̂(x) can be built from DK or D̃K . For simplicity, we assume f̂(x) ≈ f(x)

and from now on will refer to f̂(x) simply as f(x). If we can solve the above integral efficiently, we can then use
E[f(x̃k)] as the robust merit g(x) for each condition xk, and GK = {xk, gk}Kk=1 could be used with an experiment
planning algorithm of choice to solve the robust optimization problem as

x∗ = argmin
x∈X

g(x). (12)

However, there is no closed form solution of Eq. 6 for most combinations of f(x) and p(x̃k). Its numerical
approximation is expensive, becoming intractable with increasing dimensionality and number of samples.

A. Continuous input variables

The space over which p(x̃) is supported (here considered to be RD ⊃ X) can be partitioned into M ∈ N∗ non-
overlapping tiles {T Dm }Mm=1, with T Dm ⊂ RD ∀m ≤M , to create a D-dimensional tessellation. With this discretization,
Eq. 6 can be decomposed into a finite series with integration over each tile T Dm :

E[f(x̃k)] =

M∑
m=1

∫
T D
m

f(x)p(x̃k)dx. (13)

Assuming a piecewise constant model of f(x), such as a regression tree, f(x) is constant within the partition T Dm
and can be brought outside the integral:

E[f(x̃k)] =

M∑
m=1

fm

∫
T D
m

p(x̃k)dx. (14)

The integral over T Dm

∫
T D
m

p(x̃k)dx = P (x̃k ∈ T Dm) (15)

is the probability of xk being in tile m, given the uncertainty p(δk). Therefore, E[f(x̃k)] is effectively a weighted
average,

E[f(x̃k)] =

M∑
m=1

fm · P (x̃k ∈ T Dm), (16)

where all possible outcomes are weighted by their probability given the targeted parameter location xk. Assuming
independent input uncertainties, P (x̃k ∈ T Dm) can be factorized:

3

P (x̃k ∈ T Dm) =

D∏
d=1

P (x̃k,d ∈ Tm,d). (17)

The probability P (x̃k,d ∈ Tm,d) is obtained from the cumulative distribution function Fk,d of p(x̃k), evaluated at
the upper and lower bounds of tile m in dimension d,

P (x̃k,d ∈ Tm,d) = Fk,d(max
d
T Dm)− Fk,d(min

d
T Dm), (18)

where maxd T Dm and mind T Dm are the upper and lower bounds of tile m, respectively, in the d dimension. Fk,d(a) =∫ a
−∞ p(x̃k,d)dxd is the cumulative distribution function of p(x̃k) in the d dimension. It thus follows that, combining

Eq. 14-18, for a piecewise constant model f(x) and any parametric distribution p(x̃k) with known Fk, the desired
expectation can be computed as

E[f(x̃k)] =

M∑
m=1

fm

D∏
d=1

[Fk,d(max
d
T Dm)− Fk,d(min

d
T Dm)]. (19)

In this work, we model f(x) with single regression trees as well as their ensemble variants, like random forest and
extremely randomized trees.3,4 When ensembles are used, a different expectation E[ft(x̃k)] is obtained for each tree
t, in which case we take their average as the most reliable estimate of robustness:

E[f(x̃k)] =
1

T

T∑
t=1

M∑
m=1

ft,m

D∏
d=1

[Fk,d(max
d
T Dt,m)− Fk,d(min

d
T Dt,m)]. (20)

B. Discrete input variables

Tree-based machine learning approaches can also take discrete and categorical variables as features, such that
uncertainty in these types of inputs can also be handled by Golem. When optimizing over a discrete space X ⊂ ND,
both x ∈ X and δ ∈ ND are discrete and the expectation of f is expressed as a sum over ND,

E[f(x̃k)] =
∑
ND

f(x)p(x̃k), (21)

where p(x̃k) is a discrete probability distribution. The ND space supporting this distribution can be partitioned
into M ∈ N∗ non-overlapping tiles {T Dm }Mm=1, with T Dm ⊂ ND ∀ m ≤M ,

E[f(x̃k)] =

M∑
m=1

∑
T D
m

f(x)p(x̃k). (22)

For a model that takes a constant fm value within each tile T Dm ,

E[f(x̃k)] =

M∑
m=1

(
fm
∑
T D
m

p(x̃k)
)

(23)

=

M∑
m=1

fm · P (x̃k ∈ T Dm). (24)

As for continuous variables, we assume independent uncertainty across input variables, such that P (x̃k ∈ T Dm)
factorises. The rest of the derivation then follows the same argument as for continuous variables. Thus, the only
difference to continuous variables is that x̃ and its probability distributions are discrete.

4

C. Categorical input variables

If the optimization occurs over a D-dimensional space with C ∈ N∗ categorical options, at each iteration we query a
point xk ∈ SD×C that selects a category zd for each dimension d. This information can be encoded as C-dimensional

one-hot encoded vectors, SD×C = {z ∈ RD×C |zd,c ∈ {0, 1};
∑C
c=1 zd,c = 1 ∀ d ≤ D}. The uncertainty over categorical

variables can then be represented by any suitable probability distribution on the simplex, p(x̃k) ∈ ∆D×(C−1) =

{p(z) ∈ RD×C |p(zd,c) ∈ [0, 1];
∑C
c=1 p(zd,c) = 1 ∀ d ≤ D}. In this scenario, the expectation of f queried at location

xk and considering the uncertainty due to δk is

E[f(x̃k)] =
∑
SD×C

f(x)p(x̃k). (25)

Similar to what was done before, we partition the space SD×C in M ∈ N∗ non-overlapping tiles {T D×Cm }Mm=1, with
T D×Cm ⊂ SD×C ∀ m ≤M :

E[f(x̃k)] =

M∑
m=1

∑
T D×C
m

f(x)p(x̃k). (26)

For a model that assumes a constant fm values within each tile T D×Cm ,

E[f(x̃k)] =

M∑
m=1

(
fm

∑
T D×C
m

p(x̃k)
)

(27)

=

M∑
m=1

fm · P (x̃k ∈ T D×Cm). (28)

Assuming independent uncertainty across input variables,

P (x̃k ∈ T D×Cm) =

D∏
d=1

P (x̃k,d ∈ T 1×C
m,d). (29)

The probability of x̃k,d being in the 1 × C dimensional tile T 1×C
m,d can be readily computed from the user-defined

probabilities p(zd,c) indicating the uncertainty over categorical variables, such that

P (x̃k,d ∈ T 1×C
m,d) =

C∑
c=1

p(zd,c) · I(zd ∈ T 1×C
m,d), (30)

where I is the indicator function, taking the value of 1 if the category zd is in tile T 1×C
m,d and 0 otherwise. In our

implementation, we build trees until leaves are pure, which means that each tile T 1×C
m,d will contain a single category

(when at least one sample per category is present). However, this does not necessarily need to be the case and one
might decide to limit tree depth for computational efficiency.

D. Multi-objective optimization

In addition to computing the expectation of f(x), one can also consider its variance. As lower variance favors

reproducibility, one might be interested in minimizing both E[f(x̃k)] and σ[f(x̃k)] = V ar[f(x̃k)]
1
2 . The variance can

easily be obtained as V ar[f(x̃k)] = E[f(x̃k)2]−E[f(x̃k)]2. With both E[f(x̃k)] and σ[f(x̃k)] available, one can carry
out a multi-objective optimization by building a robust merit g(x) that takes both objectives into account, using any
scalarizing function of choice. Figure S1 shows an example where a robust merit function is built via a weighted sum.

5

x0

x 1
Objective

2
4

6

6

8 8

8

8

10 10

1012

x0

Surrogate
f(x)

2

4

6

6

8

8

10 10
10

12

12
x0

Robust surrogate
[f(x)]

3

4
5

6

6

7

7

7
7

8

8

8
8

9 9

9

x0

Surrogate variance
[f(x)]

1

2
2

23

3

3

3

44
4

x0

Robust merit
0.4 × [f] + 0.6 × [f]

3

3

3

4

4

45 5

5

6
6

FIG. S1. Multi-objective optimization with Golem. The first plot on the left shows the Cliff objective function (section
S.2.A). Golem’s surrogate model was built using the 64 samples marked as black crosses. The model, in this case, was a
forest of 100 extremely randomized trees4. The robust surrogate was built assuming normally distributed input noise, in both
dimensions, and with unit standard deviation. The variability of the objective function under this noise model was computed

as σ[f(x̃)] = (E[f(x̃)2]−E[f(x̃)]2))
1
2 . The two objectives were combined into a single function to be optimized via the weighted

sum g(x) = 0.4× E[f(x̃)] + 0.6× σ[f(x̃)], where 0.4 and 0.6 are user-defined coefficients.

E. Golem’s assumptions

Golem relies on three fundamental assumptions for its derivation as well as successful deployment. First, it is
assumed that a piece-wise constant model, such as those obtained with tree-based algorithms, is able to provide an
accurate surrogate model of the underlying objective function f(x). In addition, it is assumed that such a surrogate

model can be built from finite datasets DK or D̃K . It is expected that building an accurate surrogate model will be

more challenging when using a noisy dataset D̃K based on stochastic queries of input conditions, than when using a
noiseless dataset DK based on deterministic ones. Second, it is assumed that the user knows and is able to accurately
model input uncertainty via a parametric probability distribution p(x). Finally, a necessary assumption in the above
Golem’s derivation is that the uncertainties of different input conditions are independent, such that, for instance,
p(xi, xj) = p(xi)p(xj) where i and j are two different input dimensions. This assumption might not always be satisfied
depending on the input conditions and experimental setup. For instance, imagine that some uncertainty is associated
with both target temperature and dispensed volume of liquid for a hypothetical experiment. If the liquid is first
dispensed at room temperature and then heated to the desired target temperature, the errors in volume dispensed
and target temperature are indeed likely independent. However, if the liquid is heated to a target temperature before
dispensing, the (unknown, realized) temperature might affect viscosity, which in turn will have an effect on dispensing
errors. That said, Golem allows for the uncertainty in one input variable to depend on the query location of all input
variables, such that one can define p(x̃i | xi, xj). Using the same example from above, it is thus possible to specify
how the dispensing uncertainty depends upon the target temperature, though not the realized, unknown one.

F. Computational scaling

To obtain the estimate of the robust merit for an input location x, Golem evaluates Eq. 20 after having fitted the
tree-based surrogate model. For S input locations, this involves performing operations over all input dimensions D,
number of tiles M , and number of trees T . The time complexity of the algorithm (given an already trained tree-based
model) thus scales linearly with respect to all these variables, O(S×T ×M×D). If the trees are allowed to grow until
each leaf contains a single observation, as done in our Golem implementation, the number of tiles M corresponds to
the number of observations K in the dataset DK . Typically, these are the observations for which one would like to
re-evaluate the merits. In addition, we expect the number of trees T and the input dimensionality D to generally be
small with respect to the number of observations. Hence, in a typical asymptotic scenario we have that M = S � T,D
with Golem displaying a quadratic runtime O(n2) that depends on the number of observations collected. The time
complexity can, however, be further reduced to O(S) by defining a maximum tree depth that would bound M . Figure
S2 shows Golem’s run time when varying S, T , M , and D as discussed above. Note that, despite the quadratic
scaling of the implementation, the run time has a small prefactor. In practice, robust merits for thousands of samples
can be estimated on a single CPU core in a matter of seconds. For instance, evaluating the robust merits of 2500
samples using a surrogate model with 10 trees, for a two-dimensional problem, takes approximately 7 seconds on a
single core of a 1.4 GHz Quad-Core Intel Core i5-8257U processor.

6

0 20000 40000
S

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
[s

]

T = 1
M = 100
D = 2

0 500 1000
T

0.00

0.25

0.50

0.75

1.00
S = 100
M = 100
D = 2

0 20000 40000
M

0.0

0.1

0.2

0.3

0.4

0.5 S = 100
T = 1
D = 2

0 200 400
D

0.0

0.2

0.4

0.6
S = 100
T = 1
M = 1000

0 5000 10000
M = S

0

2

4

6

8

10 T = 1
D = 2

S = # samples T = # trees M = # tiles/observations D = # dimensions

FIG. S2. Computational scaling of Golem with respect to the number of predicted samples (S), number of trees used as part
of the surrogate model (T), number of leaves in each tree, which, in our implementation correspond to the number observations
in the dataset used for training (M), and dimensionality of the optimization task (D).

S.2. SYNTHETIC BENCHMARKS

In the following, information regarding the synthetic benchmark functions used to evaluate Golem’s performance,
additional analyses, and the details of all results obtained, are provided.

A. Benchmark functions

In this work, we use three objective functions, which, given different assumed input uncertainties, create the different
robust objective functions used as synthetic benchmarks. We refer to these three objective functions as Bertsimas,
Cliff, and Sine. The Bertsimas function is taken from previous work on robust optimization by Bertsimas et al.5. It
corresponds to the following nonconvex polynomial function for x ∈ [−1, 3.2] and y ∈ [−0.5, 4.4]:

f(x, y) = 2x6 − 12.2x5 + 21.2x4 + 6.2x− 6.4x3 − 4.7x2 + y6 − 11y5 + 43.3y4 − 10y − 74.8y3

+ 56.9y2 − 4.1xy − 0.1y2x2 + 0.4y2x+ 0.4x2y. (31)

In this work we place an upper bound to the function codomain, such that the Bertsimas function used in practice is
min(f(x, y), 80). This was done to avoid the extremely large values present outside its optimization domain. The Cliff
function is introduced in this work and is defined as follows, with x ∈ [0, 5]D, where D is the number of dimensions:

f(x) =

D∑
d=1

10

1 + 0.3e6xd
+ 0.2x2d. (32)

The Sine function is also introduced in this work and is defined as follows, with x ∈ [−1, 1]D:

f(x) =

D∑
d=1

sin(2πx2d) + x2d + 0.2xd. (33)

The global minimum of the Bertsimas function is at (x∗, y∗) = (2.8, 4.0), the minimum of Cliff is at x∗ = (1.02874)D,
and that of Sine is at x∗ = (−0.85297)D.

Discrete versions of Bertsimas and Cliff were obtained by discretizing and scaling their domain onto a 22×22 grid,
such that x ∈ N | 1 ≤ x ≤ 22 and y ∈ N | 1 ≤ y ≤ 22. In these cases, the gobal minima are found at (x∗, y∗) = (20, 20)
and (x∗, y∗) = (5, 5) for the Discrete Bertsimas and Discrete Cliff functions, respectively.

The robust objective functions S1–S8 are obtained by transforming the above functions based on specific input
distributions, as shown in Figure 3 and detailed in Table S1. For continuous functions, we used the Normal, Gamma,
and Uniform distributions with various scales. For discrete functions, we used the Poisson and Discrete Laplace6

distributions. However, note that any parametric distribution can in principle be used to model input uncertainty. In
our Golem package, we implemented a Gamma distribution parametrized by its standard deviation and with variable

7

lower or upper bounds. Similarly, we allow shifting the Poisson distribution such that any lower bound can be chosen.
Details of these implementations can be found in Golem’s GitHub repository7.

For all objective functions in Table S1, a close numerical approximation of their corresponding robust objective
was obtained with Golem using a dense grid of 40, 000 samples. These samples extended beyond the optimization
domain of each objective function, to be able to accurately model the objective function across all accessible regions of
input space. For surfaces associated with unbounded probability distributions, samples were taken up to two standard
deviations away from the optimization domain boundaries.

Label Function Optimization domain Probability distribution Scale† Support Improvement‡

S1 Cliff xi ∈ [0, 5] Normal 1.0 xi ∈ R 25%
S2 Cliff xi ∈ [0, 5] Gamma 2.0 xi ∈ (−∞, 5] 51%
S3 Bertsimas x0 ∈ [−1, 3.2]

x1 ∈ [−0.5, 4.4]
Uniform 1.5 x0 ∈ [−1.75, 3.95]

x1 ∈ [−1.25, 5.15]
34%

S4 Bertsimas x0 ∈ [−1, 3.2]
x1 ∈ [−0.5, 4.4]

Normal 0.8 xi ∈ R 53%

S5 Sine xi ∈ [−1, 1] Uniform 0.5 xi ∈ [−1.25, 1.25] 26%
S6 Sine xi ∈ [−1, 1] Normal 0.2 xi ∈ R 26%
S7 Discrete Cliff xi ∈ N | 1 ≤ x ≤ 22 Discrete Laplace 3 xi ∈ N 18%
S8 Discrete Bertsimas xi ∈ N | 1 ≤ x ≤ 22 Poisson n.a. xi ∈ N | x ≥ 1 74%

TABLE S1. Details of the synthetic benchmark functions used to evaluate Golem. †One standard deviation for Normal,
Gamma, and Discrete Laplace distributions; range for Uniform distributions; not applicable to Poisson distributions as not
parametrized by scale. ‡ Measure of the improvement in robustness between the minimum of the objective function and that
of the robust objective function, relative to the range of the co-domain of the robust objective function.

B. Bias due to boundary effects

When the input parameters are noisy, the realized location of the queries does not correspond to that of the
requested location. As a consequence, while one requests only locations within the bounds of the defined optimization
domain, objective function evaluations outside of these bounds are possible. To know the true robustness of each
solution within the optimization domain, one would thus need to know how the objective function behaves outside
of the bounds of the optimization. As we approximate the objective function with a machine learning model, based
on a dataset that has no samples outside the optimization domain, the surrogate model built is likely to be poor
far outside the boundaries of the optimization domain. This lack of information results in a biased robust surrogate
model also in the limit of infinite sampling within the optimization domain. This effect is exemplified by Figure S3, in
which a surrogate robust objective was built with Golem using a dataset containing 10, 000 samples equally spaced
within the optimization domain only. Another consequence of this boundary effect is that Golem’s estimates of the
robust objective tend to be less accurate for points close to the boundaries of the optimization domain (Figure S4).

FIG. S3. Converged robust surrogate estimates. The first row shows the true robust objective functions, which depend on
the behavior of the objective function also outside the optimization domain shown. The second row shows converged robust
surrogate estimates based on a regular grid of 10, 000 points within the optimization domain. Spearman’s correlation (ρ)
between the robust objective and its surrogate model are shown for each benchmark surface. Deviations from the ideal ρ = 1
correlation are due to the inability of Golem’s surrogate model (in this case, a single regression tree) to accurately capture the
objective function’s behavior beyond the optimization domain due to a lack of data in those regions.

8

0.0 0.5 1.0 1.5 2.0
Distance from boundary [a.u.]

0.0

0.5

1.0

1.5

Ab
so

lu
te

 e
rro

r [
a.

u.
] = 0.92* *

S1 [Cliff, p Normal]

0.0 0.5 1.0 1.5 2.0
Distance from boundary [a.u.]

0.5

1.0

1.5

2.0

2.5

3.0

3.5 = 0.28*

S2 [Cliff, p Gamma]

0.0 0.5 1.0 1.5
Distance from boundary [a.u.]

0

5

10

15

20

25

30 = 0.85* *

S3 [Bertsimas, p Uniform]

0.0 0.5 1.0 1.5
Distance from boundary [a.u.]

0

10

20

30 = 0.87* *

S4 [Bertsimas, p Normal]

0.0 0.2 0.4 0.6 0.8
Distance from boundary [a.u.]

0.0

0.1

0.2

0.3

Ab
so

lu
te

 e
rro

r [
a.

u.
]

= 0.17
S5 [Sine, p Normal]

0.0 0.2 0.4 0.6 0.8
Distance from boundary [a.u.]

0.05

0.10

0.15

= 0.17
S6 [Sine, p Uniform]

0 2 4 6 8
Distance from boundary [a.u.]

0.0

0.2

0.4

0.6

0.8

1.0

1.2 = 0.94* *

S7 [D.Cliff, p D. Laplace]

0 2 4 6 8
Distance from boundary [a.u.]

0

10

20

30
= 0.67* *

S8 [D.Bertsimas, p Poisson]

FIG. S4. Relationship between distance from optimization boundaries and robustness estimate error. The data shown are
for 64 points uniformly sampled on a grid, as shown in the fourth row of Figure 3. The errors are the difference between
the robustness estimates obtained with Golem based on 64 datapoints and the ground truth estimate obtained as described
in section S.2.A. On each plot we report the Spearman’s correlation (ρ) between the errors and distances. Correlations with
p-values less than 0.05 are marked with one star, and those less than 0.01 are marked with two. In the majority (six out of
eight) of the test surfaces considered, there is a significant negative correlation between boundary distance and absolute errors.

C. Cumulative robust regret as performance measure

To compare the relative optimization performance of all algorithms tested on specific benchmark functions f(·) we
used the following definition of cumulative robust regret:

K∑
k=1

g
(

argmin
x∈x1:k

ĝ(x1:k)
)
, (34)

where x1:k are all samples collected up to iteration k, ĝ(·) is the estimate of the robust merits obtained with Golem
after training on D1:k, and g(·) is the true robust objective function. The true robust objective is obtained as an
accurate Golem estimate by using a dense grid of 40, 000 samples, as mentioned in section S.2.A. To measure the
performance of each optimization algorithm without Golem as the baseline, the original values of the merits, as
obtained from the objective function f(·), were used instead of those derived with ĝ(·). Effectively, at each iteration,
after having collected one additional sample, we estimate which one (among all samples collected thus far) has the
best robust merit as estimated by Golem. Then, we take the true robust merit of this sample. All true robust
merits obtained in this way for k = 1 to k = K, where K is the total number of samples, are then summed. This
measure quantifies the speed at which the optimization algorithm has discovered better robust solutions. Given we are
performing minimizations, the lower the cumulative regret, the better performing the algorithm is. For visualization
and interpretation purposes, we normalize the values of cumulative regrets obtained in this way for each test on
a specific benchmark surface. Hence, within each plot (e.g., in Figure 4), a value of zero corresponds to the best
cumulative regret observed for that surface, and a value of one to the worst. Note that, because this measure is not
normalized across benchmark surfaces, comparisons are meaningful only with respect to a specific surface.

9

D. Impact of uniformity and sampling of the boundaries

In the optimization benchmarks carried out we noted that Grid generally performed better than Random. We
hypothesized this might be caused by one or two features of these approaches. First, the difference in performance
could be due the more uniform sampling of input space that is guaranteed with Grid. To test this hypothesis, we
performed optimizations, in the noiseless setting, with a Sobol sequence (we refer to this approach as Sobol), which
samples input space more uniformly than Random but less than Grid. Second, the performance difference could be
due to the fact Grid guarantees good sampling of the boundaries of the optimization domain. As discussed in section
S.2.B, boundaries effect are present due to the lack of information on the objective function’s behavior outside the
optimization domain. To test this hypothesis, we benchmarked two additional approaches, in which we augmented
Random and Sobol with samples at exactly the optimization domain boundaries. We placed these samples at the same
locations of those in Grid. We refer to these two approaches as Sobol-Edge and Random-Edge. In all cases, we allowed
196 objective function evaluations in total, as in the benchmarks described in section V. Figure S5 summarizes the
results obtained with the above approaches against benchmark functions S1–S6. We found that the unlikely sampling
of the boundaries was the primary factor negatively impacting the performance of Random when used in conjunction
with Golem. The sampling of the boundaries present in Sobol-Edge and Random-Edge allowed Golem to better
estimate the robustness of the input parameters collected, resulting in better performance for these two approaches as
compared to Sobol and Random. The effect of uniform sampling was not noticeable in S1–S4, with Grid, Sobol-Edge,
and Random-Edge performing equally well. A small difference in performance was noticeable only for the rougher
surfaces S5 and S6. There, Grid performed better than Sobol-Edge, which in turn was better than Random-Edge, as
expected if sampling uniformity were beneficial to robust optimizations with Golem.

Gr
id

So
bo

l
So

bo
l-E

dg
e

Ra
nd

om
Ra

nd
om

-E
dg

e

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

re
gr

et

S1

Gr
id

So
bo

l
So

bo
l-E

dg
e

Ra
nd

om
Ra

nd
om

-E
dg

e

S2

Gr
id

So
bo

l
So

bo
l-E

dg
e

Ra
nd

om
Ra

nd
om

-E
dg

e

S3
Gr

id
So

bo
l

So
bo

l-E
dg

e
Ra

nd
om

Ra
nd

om
-E

dg
e

S4

Gr
id

So
bo

l
So

bo
l-E

dg
e

Ra
nd

om
Ra

nd
om

-E
dg

e

S5

Gr
id

So
bo

l
So

bo
l-E

dg
e

Ra
nd

om
Ra

nd
om

-E
dg

e

S6

FIG. S5. Optimization performance of different design of experiment approaches when used with Golem. Box plots show
the distributions of cumulative regrets obtained across 50 optimization repeats. The boxes show the first, second, and third
quartiles of the data, with whiskers extending up to 1.5 times the interquartile range. Boxes for approaches that sampled the
boundaries of the optimization domain are shown in purple, while those for approaches that did not sample boundaries exactly
are shown in yellow.

E. Influence of approximate surrogate model

As discussed in section V.B, when queries are noisy, building an accurate surrogate model is challenging because

the objective function is not evaluated at the desired queried locations. As a consequence, the data D̃K = {xk, f̃k}Kk=1
available to train the surrogate model is mismatched. However, while Golem does not take into account input noise
at training time, it does so at the inference stage when estimating robustness (i.e., g(x)). Golem may be seen as

trying to estimate where the value of f̃k for the query xk might have come from. Because of this, Golem is able to

recover reasonably accurate estimates of g(x) even when the correlation between true, fk, and observed, f̃k, objective
function values is lost. This effect is shown in Figure S6. The first row shows the true robust objective functions that

we introduced in Figure 3, while the other rows show three Golem estimates based on a dataset D̃K comprised of 64
datapoint collected under severe input uncertainty (as defined in Table S1). As a consequence, the correlation between
true and observed objective function values, for the chosen queries locations is low, and in some cases effectively lost.
However, Golem manages to recover moderate (0.4 − 0.7) to strong (0.7 − 0.9) correlations between its robustness
estimates and the true robust objective values.

10

Ro
bu

st
 o

bj
ec

tiv
e

S1
Cliff, p Normal

15

30

45

45

60 60

60

60

75

75

75

S2
Cliff, p Gamma

15

30

4560

75

S3
Bertsimas, p Uniform

15

15

30

30 4560

60

75

75

75

S4
Bertsimas, p Normal

1530

4560

75 75

75

S5
Sine, p Normal

15

1515

30

30

30

30 30

30

45

45

45

45

45

45

60 60 60

60 60

60

60 60

60

6060

60 60

75
75

75 75 75

75

S6
Sine, p Uniform

15

15

15
30 30

30

45

45 45

45

45

45

60

60

60

60

60 60

75

S7
D.Cliff, p D. Laplace

S8
D.Bertsimas, p Poisson

Ro
bu

st
 su

rro
ga

te

15

30

45
45

45

60 60

60

60

75

75
90

f = 0.45
g = 0.89

15

30

45

60

75
90

f = 0.08
g = 0.75

15

15

30

30

45 45

45

60 60

60

60

60 60

75

75

75

75

75

90 90

f = 0.41
g = 0.69

15

15

30 30

30

45
60

75 75 90

f = 0.03
g = 0.52

15

15

15

30

30

30

30

4545

45

45

45 45

45 45

60

60 6075
f = 0.55
g = 0.51

1530

30

45

45 45

45

45

60

60
60

75

75

90

90

f = 0.52
g = 0.80

f = 0.58
g = 0.87

f = 0.43
g = 0.87

Ro
bu

st
 su

rro
ga

te

15
30

30

30

30

45

45

45

60

75

f = 0.30
g = 0.86

15

30

45

60

75
90

f = 0.23
g = 0.94

15

15

30

30

30

30

45 45

45

45
45

60

60
60

75

75

75

90

90
f = 0.39
g = 0.68

15

30

45

45
60

60

75

75

90

90

f = 0.34
g = 0.56

15

15

15

30

30

30

30

30

45 45

45

45 45

60
60

60

60

60

75

75

f = 0.34
g = 0.41

15

15 15

30
30

30
45

45 45

45
6060

75

90f = 0.27
g = 0.70

f = 0.43
g = 0.88

f = 0.43
g = 0.87

Ro
bu

st
 su

rro
ga

te

15

30

30

45

45

45

60

60

60

75

75

f = 0.60
g = 0.91

1530

45

60
75

90

f = 0.06
g = 0.84

15

30

45

45

45

60

60

60

60

75

75

75

75 75

90

90

f = 0.64
g = 0.66

15
30

30

45

45

45

60

60
75

75 75
90

f = 0.25
g = 0.80

15 30
30

30

30

45 45

45 45

60
60

60

60

75

75

f = 0.42
g = 0.54

15

15

15 30

30

30
45

45 45

45

60

60 60

75

75

75
f = 0.35
g = 0.45

f = 0.56
g = 0.70

f = 0.30
g = 0.82

FIG. S6. Golem’s robustness estimates based on noisy data. The first row shows the true robust objective functions. The

other rows show Golem estimates based on three different noisy datasets D̃K . In all cases, 64 datapoints were sampled under
severe input noise, according to the uncertainties defined in Table S1. On each plot, the Spearman’s correlation between true
and observed objective function values for these 64 datapoints is reported as ρf . The correlation between Golem’s robustness
estimates (based on these noisy datapoints) and the true robust objective values is reported as ρg. In the vast majority of
cases, ρg was much larger than ρf , which means that Golem was able to recover correlations with the robust objective despite
having to rely on poorly informative samples of the objective function. The most striking example was observed for surface
S2, where in one case there was a negative correlation between the true and sampled objective function values (ρf = −0.08),
while Golem’s predictions showed a strong positive correlation (ρg = 0.75).

F. Influence of the type and size of tree ensemble

Golem can be used with several tree ensemble algorithms. We tested the performance of Golem where the
surrogate function is modeled with regression trees, random forest3, and extremely randomized trees4. The scikit-
learn8 implementations of these algorithms were used (DecisionTreeRegressor, RandomForestRegressor, and
ExtraTreesRegressor, respectively). In addition to testing the performance of a single regression tree, we also
fitted ensembles of 10, 20, and 50 trees for all above-mentioned algorithms. Note that the regression tree algorithm
used is not fully deterministic, such that different trees in the ensemble can correspond to different surrogate models.
While the input dataset is not bootstrapped (like in random forest)3 and thresholds for splitting nodes are not chosen
at random (like in extremely randomized trees)4, multiple splits can provide the same mean-square-error improvement,
and a specific split is then chosen at random among these.

Figures S7 and S8 provide a summary of Golem’s relative performance when using (i) different tree-based machine
learning models (regression trees, random forest, and extremely randomized trees), and (ii) ensemble of trees of
different sizes (1, 10, 20, 50). Figures S7 shows the normalized cumulative regret values (section S.2.C) for the results
obtained with the six optimization algorithms tested, on the eight benchmark functions employed, and in the noiseless
query setting. Figures S8 shows the same results, but for optimizations in the noisy query setting. Note that, because
of the normalization of the cumulative regrets, results can be compared only within, and not across, subplots.

Figures S9 and S10 provide a summary of Golem’s relative performance when using different tree-based models
of different size, on high-dimensional benchmark surfaces. All these surfaces are higher-dimensional versions of the
surface S1 (from three to six dimensions), where the first two dimensions are uncertain, while the additional ones are
always considered to be noiseless. In these high-dimensional tests, it is possible to notice how surrogate models based
on random forest and extremely randomized trees provided slightly better performance than regression trees.

11

0.00

0.25

0.50

0.75

1.00

Gr
yf

fin

S1
Regression trees Random forest Extremely randomized trees

S2 S3 S4 S5 S6 S7 S8

0.00

0.25

0.50

0.75

1.00

GP
yO

pt

0.00

0.25

0.50

0.75

1.00

Hy
pe

ro
pt

0.00

0.25

0.50

0.75

1.00

Ge
ne

tic

0.00

0.25

0.50

0.75

1.00

Gr
id

1 10 20 50
trees

0.00

0.25

0.50

0.75

1.00

Ra
nd

om

1 10 20 50
trees

1 10 20 50
trees

1 10 20 50
trees

1 10 20 50
trees

1 10 20 50
trees

1 10 20 50
trees

1 10 20 50
trees

FIG. S7. Influence of the type and size of tree ensemble on Golem’s performance for optimizations in the noiseless query setting.
Shown are cumulative regret values, normalized within each subplot, and averaged across 50 repeated optimization runs. Each
subplot refers to optimizations performed on a different benchmark surface and with a different algorithm in conjunction with
Golem.

12

0.00

0.25

0.50

0.75

1.00

Gr
yf

fin

S1
Regression trees Random forest Extremely randomized trees

S2 S3 S4 S5 S6 S7 S8

0.00

0.25

0.50

0.75

1.00

GP
yO

pt

0.00

0.25

0.50

0.75

1.00

Hy
pe

ro
pt

0.00

0.25

0.50

0.75

1.00

Ge
ne

tic

0.00

0.25

0.50

0.75

1.00

Gr
id

1 10 20 50
trees

0.00

0.25

0.50

0.75

1.00

Ra
nd

om

1 10 20 50
trees

1 10 20 50
trees

1 10 20 50
trees

1 10 20 50
trees

1 10 20 50
trees

1 10 20 50
trees

1 10 20 50
trees

FIG. S8. Influence of the type and size of tree ensemble on Golem’s performance for optimizations in the noisy query setting.
Shown are cumulative regret values, normalized within each subplot, and averaged across 50 repeated optimization runs. Each
subplot refers to optimizations performed on a different benchmark surface and with a different algorithm in conjunction with
Golem.

13

0.0

0.2

0.4

0.6

0.8

1.0

Gr
yf

fin
Cu

m
ul

at
iv

e
re

gr
et

3D 2U Cliff (S1)

Regression trees Random forest Extremely randomized trees

4D 2U Cliff (S1) 5D 2U Cliff (S1) 6D 2U Cliff (S1)

0.0

0.2

0.4

0.6

0.8

1.0

GP
yO

pt
Cu

m
ul

at
iv

e
re

gr
et

1 10 20 50
trees

0.0

0.2

0.4

0.6

0.8

1.0

Hy
pe

ro
pt

Cu
m

ul
at

iv
e

re
gr

et

1 10 20 50
trees

1 10 20 50
trees

1 10 20 50
trees

FIG. S9. Influence of the type and size of tree ensemble on Golem’s performance for high-dimensional optimizations in the
noiseless query setting. The distributions of cumulative regret values, normalized within each subplot, across 50 repeated
optimization runs are shown. Each subplot refers to optimizations performed on surfaces of increasing dimensionality and with
a different algorithm.

14

0.0

0.2

0.4

0.6

0.8

1.0

Gr
yf

fin
Cu

m
ul

at
iv

e
re

gr
et

3D 2U Cliff (S1)

Regression trees Random forest Extremely randomized trees

4D 2U Cliff (S1) 5D 2U Cliff (S1) 6D 2U Cliff (S1)

0.0

0.2

0.4

0.6

0.8

1.0

GP
yO

pt
Cu

m
ul

at
iv

e
re

gr
et

1 10 20 50
trees

0.0

0.2

0.4

0.6

0.8

1.0

Hy
pe

ro
pt

Cu
m

ul
at

iv
e

re
gr

et

1 10 20 50
trees

1 10 20 50
trees

1 10 20 50
trees

FIG. S10. Influence of the type and size of tree ensemble on Golem’s performance for high-dimensional optimizations in
the noisy query setting. The distributions of cumulative regret values, normalized within each subplot, across 50 repeated
optimization runs are shown. Each subplot refers to optimizations performed on surfaces of increasing dimensionality and with
a different algorithm.

G. Influence of the number of uncertain variables

The larger the dimensionality of the problem, and the larger the number of uncertain input variables, the more
challenging the robust optimization task is. We tested how Golem’s performance is affected by the presence of
additional noise-free and noisy input variables. All surfaces used in these tests are higher-dimensional versions of
the surface S1 (from three to six dimensions), where between one and all of the available input variables are noisy.
Figures S11 and S12 show the normalized cumulative regrets obtained for optimizations in the noiseless and noisy
query setting, respectively. These results are discussed in V.C. In summary, we find that Golem is effective also on
higher-dimensional surfaces. In fact, the benefits of using Golem become more marked the higher the number of
uncertain inputs present in the optimization domain (i.e., the more uncertainty being present overall). On the other
hand, given a fixed number of uncertain input variables, additional noiseless variables make it harder for Golem to
enhance the performance of the optimization algorithm used. Importantly, Golem was almost never (one out of 108
tests) found to be detrimental to optimization performance.

15

�� �� �� ��
��

��
��

��

��

��

FIG. S11. Relative comparison of optimization performance obtained with and without Golem on the surface S1 with varying
dimensions (3D−6D) and number of uncertain inputs (1U−6U) in the noiseless query setting. The regret distributions shown
were obtained from optimizations that used Golem with an ensemble of 50 extremely randomized trees as the surrogate model.
The boxes show the first, second, and third quartiles of the data, with whiskers extending up to 1.5 times the interquartile
range. Results obtained with Golem are shown in purple, and those obtained without Golem in yellow. The probability of
obtaining better performance with Golem, with the algorithms tested, is reported above each box. Statistically significant
results (α = 0.05) are highlighted in green (significant improvement when using Golem) and red (significant deterioration
when using Golem).

16

�� �� �� ��
��

��
��

��

��

��

FIG. S12. Relative comparison of optimization performance obtained with and without Golem on the surface S1 with varying
dimensions (3D−6D) and number of uncertain inputs (1U−6U) in the noisy query setting. The regret distributions shown were
obtained from optimizations that used Golem with an ensemble of 50 extremely randomized trees as the surrogate model.
The boxes show the first, second, and third quartiles of the data, with whiskers extending up to 1.5 times the interquartile
range. Results obtained with Golem are shown in purple, and those obtained without Golem in yellow. The probability of
obtaining better performance with Golem, with the algorithms tested, is reported above each box. Statistically significant
results (α = 0.05) are highlighted in green (significant improvement when using Golem) and red (significant deterioration
when using Golem).

17

S.3. ANALYSIS AND OPTIMIZATION OF AN HPLC PROTOCOL

In this section we provide more details on the setup and results concerning the example application on the calibration
of an HPLC protocol. In this example, the experimental HPLC response depends on six tunable parameters. These
controllable input parameters (shown in Figure 7a) are the following: (P1) volume of the sample loop and internal
volume of the 2-way 6-port valve; (P2) volume required to draw the sample to the 2-way 6-port valve; (P3) volume
required to drive the sample plug from the sample loop, through the in-line mixer, and to the second valve; (P4)
draw rate of the sample pump; (P5) push rate of the push pump; (P6) time waited after drawing sample and before
switching the first selection valve (to allow for equilibration of cavitation bubbles in the sample line and syringe). As
discussed in the main text, Golem may be used to retrospectively analyze the experimental results, or to optimize
the protocol assuming no prior knowledge.

A. Interaction between input uncertainties and optimum location

The uncertainty present in one input parameter affects the robustness merit of the solutions across the whole search
space. As such, uncertainty in one parameter might affect the optimal setting for other parameters too. Figure
S13 shows such an example to visually clarify this statement. Based on a surrogate model built on 1386 HPLC
experiments, we can use Golem to investigate how the response surface is affected by uncertainty in the parameters
P1 and P3. For ease of visualization, Figure S13 shows surfaces only with respect to P1 and P3, with the other
parameters fixed according to the best performing sample collected (P2 ≈ 0.03 mL, P4 ≈ 2.4 mL/min, P5 ≈ 107
Hz, P6 ≈ 6.2 s). We consider the presence of input uncertainty in P1 and P3 individually, and then in P1 and P3
together. In all cases, we assume a normally distributed uncertainty with standard deviation corresponding to 10%
of the parameter range (i.e., 0.008 for P1 and 0.08 for P3). The distribution is furthermore truncated at zero to
avoid non-physical values of P1 or P3. Assuming uncertainty only in P1, the location of the optimum is shifted to
slightly higher values of P1 (Figure S13). However, when assuming uncertainty in P3, the location of the optimum
is shifted considerably towards higher values of P1, while leaving almost unaffected the location with respect to P3,
the uncertain parameter. This effect is due to objective function dropping slightly more steeply towards zero at low
P3 values also when P1 is low, while having a slightly broader maxima in the P3 dimension for higher values of P1.
The net result of this effect is that, when considering uncertainty in both P1 and P3, the location of the optimum is
shifted primarily in P1, yet it is determined mainly by the uncertainty in P3. These types of interactions between
variables are difficult to discover by simple visual inspection of the surrogate model, and is one of the tasks in which
the use of Golem proves useful.

Uncertain P1 Uncertain P3 Uncertain P1 and P3

FIG. S13. Effect of uncertainty in P1 and P3 on the optimum location of the HPLC protocol. Golem’s surrogate models are
shown against the input parameters P1 and P3, while the other parameters are fixed. The plot on the left-hand side shows
Golem’s surrogate model, while the other plots show the robust counterpart when assuming uncertainty in P1, P3, and P1
and P3. We assume a normally distributed uncertainty with standard deviation corresponding to 10% of the parameter range
(0.008 for P1 and 0.08 for P3). The distribution is furthermore truncated at zero to avoid non-physical values of P1 or P3. The
location of the non-robust optimum is indicated by a gray star (as found by the experimental sample collected with highest
peak area), while the location of the robust optima is indicated by a white star (as computed with Golem). These results show
how uncertainty in P3 results in a large shift in optimum location along P1.

18

B. Optimization of a noisy HPLC protocol

In this example application, we assumed the presence of noise in parameters P1 and P3 while attempting to optimize
the HPLC sampling protocol. We assumed this noise to be normally distributed and truncated at zero, with standard
deviation of 0.008 mL for P1, and 0.08 mL for P3. The HPLC experiments were simulated with Olympus9, which
emulates the experimental HPLC response based on its six tunable parameters via a Bayesian Neural Network. The
goal of the optimization was to achieve a protocol returning an expected peak area, E[Area], of at least 1000 a.u.
As a secondary objective, we wanted to minimize the output variability, σ[Area], as much as possible, as long as
E[Area] > 1000 a.u. Golem was used to estimate both the E[Area] and σ[Area] during the optimization (Figure
8a), using 200 extremely randomized trees4 as the surrogate model. The Chimera10 scalarizing function was used to
create a robust, multi-objective function to be optimized.

Similar to what we did to obtain a ground truth for the robust objectives for the analytical surfaces (Section S.2.A),
a close numerical approximation of E[Area] and σ[Area] was obtained by using a dense grid of uniformly distributed
samples across the optimization domain. In this case, we sampled 86 = 262, 144 points from the Olympus experiment
emulator to build a reference Golem model. These samples were extended beyond the optimization domain in P1
and P3 by two standard deviations. The approximate location of true robust optimum (Figure S14) was found with
Hyperopt by optimizing the true robust, multi-objective function directly over 1000 iterations.

FIG. S14. Location of the true robust optimum identified and behavior of E[Area] and σ[Area] around this optimum. The
location of the global optimum is marked by a white star. It is located at P1 ≈ 0.052 mL, P2 ≈ 0.012 mL, P3 ≈ 0.35 mL, P4
≈ 2.20 mL/min, P5 ≈ 84 Hz, P6 ≈ 5.9 s, where E[Area] = 1256 and σ[Area] = 288.

[1] Hans Georg Beyer and Bernhard Sendhoff. Robust optimization - A comprehensive survey. Computer Methods in Applied
Mechanics and Engineering, 196(33-34):3190–3218, 2007.

[2] Justin J Beland and Prasanth B Nair. Bayesian Optimization Under Uncertainty. 31st Conference on Neural Information
Processing Systems (NIPS 2017) Workshop on Bayesian optimization (BayesOpt 2017), (1):1–5, 2017.

[3] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.
[4] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine Learning, 63(1):3–42, 2006.
[5] Dimitris Bertsimas, Omid Nohadani, and Kwong Meng Teo. Robust Optimization for Unconstrained Simulation-Based

Problems. Operations Research, 58(1):161–178, 2009.
[6] Seidu Inusah and Tomasz J. Kozubowski. A discrete analogue of the laplace distribution. Journal of Statistical Planning

and Inference, 136(3):1090 – 1102, 2006.
[7] M. Aldeghi, F. Häse, R.J. Hickman, I. Tamblyn, and A. Aspuru-Guzik. Golem: An algorithm for robust experiment and

process optimization. GitHub, https://github.com/aspuru-guzik-group/golem, 2021.
[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[9] Florian Häse, Matteo Aldeghi, Riley J. Hickman, Löıc M. Roch, Melodie Christensen, Elena Liles, Jason E. Hein, and
Alán Aspuru-Guzik. Olympus: a benchmarking framework for noisy optimization and experiment planning, 2020.

[10] Florian Häse, Löıc M Roch, and Alán Aspuru-Guzik. Chimera: enabling hierarchy based multi-objective optimization for
self-driving laboratories. Chemical Science, 9(39):7642–7655, 2018.

19

FIG. S15. Results of 50 optimization repeats performed with (a) GPyOpt and (b) Hyperopt. In both cases, optimization traces
for the primary and secondary objectives are shown (average and standard deviation). All objective function values sampled
during the optimization runs are shown in the bottom-left panels. Objective function values sampled during an example
optimization run are shown in the bottom-right panels, with each experiment color-coded (yellow to dark green) to indicate at
which stage of the optimization it was performed.

1 50 100 150 200
experiments

0

250

500

750

1000

1250

1500

1750

Ar
ea

's
ex

pe
ct

at
io

n
[a

.u
.]

Gryffin

[Area]

1 50 100 150 200
experiments

0

250

500

750

1000

1250

1500

1750

Ar
ea

's
ex

pe
ct

at
io

n
[a

.u
.]

GPyOpt

[Area]

1 50 100 150 200
experiments

0

250

500

750

1000

1250

1500

1750
Ar

ea
's

ex
pe

ct
at

io
n

[a
.u

.]
Hyperopt

[Area]

1 50 100 150 200
experiments

200

300

400

500

600

700

Ar
ea

's
st

an
da

rd
 d

ev
ia

tio
n

[a
.u

.]

[Area]

1 50 100 150 200
experiments

200

300

400

500

600

700

Ar
ea

's
st

an
da

rd
 d

ev
ia

tio
n

[a
.u

.]

[Area]

1 50 100 150 200
experiments

200

300

400

500

600

700

Ar
ea

's
st

an
da

rd
 d

ev
ia

tio
n

[a
.u

.]

[Area]

FIG. S16. Traces of 50 optimization repeats in which the primary objective was constrained to a lower-bound estimate of the
peak area’s expectation, E[Area]−1.96×σ(E[Area]), corresponding to the lower bound of the 95% confidence interval of Golem’s
estimates. After 200 experiments, Gryffin, GPyOpt, and Hyperopt all correctly identified solutions with E[Area] > 1000 a.u.
in all 50 repeated optimization runs.

20

1 50 100 150 200
experiments

0

250

500

750

1000

1250

1500

1750

Ar
ea

's
ex

pe
ct

at
io

n
[a

.u
.]

Gryffin

[Area]

1 50 100 150 200
experiments

0

250

500

750

1000

1250

1500

1750

Ar
ea

's
ex

pe
ct

at
io

n
[a

.u
.]

GPyOpt

[Area]

1 50 100 150 200
experiments

0

250

500

750

1000

1250

1500

1750

Ar
ea

's
ex

pe
ct

at
io

n
[a

.u
.]

Hyperopt

[Area]

1 50 100 150 200
experiments

200

300

400

500

600

700

Ar
ea

's
st

an
da

rd
 d

ev
ia

tio
n

[a
.u

.]

[Area]

1 50 100 150 200
experiments

200

300

400

500

600

700

Ar
ea

's
st

an
da

rd
 d

ev
ia

tio
n

[a
.u

.]

[Area]

1 50 100 150 200
experiments

200

300

400

500

600

700

Ar
ea

's
st

an
da

rd
 d

ev
ia

tio
n

[a
.u

.]

[Area]

FIG. S17. Traces of 50 optimization repeats in which all six input parameters were noisy. The primary objective was constrained
to a lower-bound estimate of the peak area’s expectation, E[Area]−1.96×σ(E[Area]), corresponding to the lower bound of the
95% confidence interval of Golem’s estimates. With more overall noise in the input experimental conditions, the optimization
takes longer than in the previous example with only two noisy variables. However, with Golem, all approaches still managed
to optimize the peak area’s expectation (i.e., E[Area] increases with more experiments performed and, on average, reaches the
targeted value of 1000 a.u.). After 200 experiments, Gryffin correctly identified solutions with E[Area] > 1000 a.u. in 42% of
the optimization runs, GPyOpt in 70% of the optimization runs, and Hyperopt in 78%.

	Golem: An algorithm for robust experiment and process optimization
	Abstract
	Introduction
	Background and related work
	Robust optimization

	Formulating Golem
	General formalism
	Multi-objective optimization

	Benchmark surfaces and basic usage
	Overview of the benchmark surfaces
	Reweighting previous results

	Optimization Benchmarks
	Noiseless queries with uncertainty in future experiments
	Noisy queries with uncertainty in current experiments
	Effect of forest size and higher input dimensions

	Chemistry Applications
	Analysis of prior experimental results
	Optimization of a noisy HPLC protocol

	Conclusion
	Data availability
	Author contributions
	Conflicts of interest
	Acknowledgments
	References
	References
	Supplementary Information6pt Golem: An algorithm for robust experiment and process optimization6pt Matteo Aldeghi,1,2,3 Florian Häse,4,1,2,3 Riley J. Hickman,2,3 Isaac Tamblyn,1,5 Alán Aspuru-Guzik1,2,3,6 6pt 1Vector Institute for Artificial Intelligence, Toronto, ON, Canada 2Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, Canada 3Department of Computer Science, University of Toronto, Toronto, ON, Canada 4Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 5National Research Council of Canada, Ottawa, ON, Canada 6Lebovic Fellow, Canadian Institute for Advanced Research, Toronto, ON, Canada

	Formulating Golem
	Continuous input variables
	Discrete input variables
	Categorical input variables
	Multi-objective optimization
	Golem's assumptions
	Computational scaling

	Synthetic benchmarks
	Benchmark functions
	Bias due to boundary effects
	Cumulative robust regret as performance measure
	Impact of uniformity and sampling of the boundaries
	Influence of approximate surrogate model
	Influence of the type and size of tree ensemble
	Influence of the number of uncertain variables

	Analysis and optimization of an HPLC protocol
	Interaction between input uncertainties and optimum location
	Optimization of a noisy HPLC protocol

	References

