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METHODS 
 
Materials. All chemical reagents were of molecular biology grade and were obtained from Sigma. 

ATP and CTP were purchased from Roche Molecular Biochemicals. 

 
Protein overexpression and purification. Full length gene 4 protein (gp4, residues 1-566, 63 kDa) 

was overexpressed and purified as previously described (1). The T7 primase domain (residues 1–

271, 27 kDa) was overexpressed and purified as previously described (2).  

 
Design of the DNA library. The analysis was based on previously collected data (3,4), specifically, 

on 25,220 DNA sequences that include the T7 DNA-primase recognition sequence (5'-GTC-3'). The 

general pattern of each sequence was 5'-(N)17-GTC-(N)16-GTCTTGATTCGCTTGACGCTGCTG-3', 

where (N)17 and (N)16 represent the variable regions flanking the GTC recognition site. The above 

data Ωset contained accurate binding scores for T7 primase to each DNA sequence, obtained by 

PBMs as described previously (4). Data acquisition was performed using a GenePix 4400A scanner 

(Molecular Devices), and data was analyzed using custom scripts to obtain fluorescence intensities 

for all sequences represented on the array. 

 
Data preprocessing. Each PBM consisted of 5,076 unique sequences and 25,220 samples, 6 

repetitions per sequence, and overall 151,320 samples (instances). All scripts were written in Python 

(Python Software Foundation, version 3.7, http://www.python.org), Scikit learn (5), and the software 

PyCharm (community edition, https://www.jetbrains.com/pycharm/). The source code for the machine 

learning algorithms is available in the Github repository (https://github.com/csbarak/T7pdrs). This git 

repository also contains the data used for the analysis. 

 
By extracting the coefficient of variation (6) for scores associated with each sequence (6 repetitions), 

we observed that the stronger the score, the more stable the coefficient of variation (Supplementary 

Figure S1). Finally, each sequence's score was determined as its median score. For the stability 

evaluation, it was necessary to account for the different binding score ranges; thus, to eliminate the 

different scales of the standard deviation, we evaluated the binding score stability of each sequence 

by using the coefficient of determination (COD, Eq. 1):  
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𝐶𝑂𝐷(𝑥) =
𝜎(𝑥)

𝜇(𝑥)
            (1)  

where 𝑥 is a set of binding score repeats for a specific sequence; σ is the standard deviation of that 

sequence; and μ is the mean value of 𝑥. 

 

Method for sequence-based feature extraction. We tried out linear, quadratic and root weighting of 

the K-mers according to their distance from the GTC; e.g., while the 3-mer ‘ACA’ appears twice in the 

sequence ‘ACATGTCACAT’, the weighted linear count of ‘ACA’ would multiply its distance plus 1 

from the kernel (GTC). However, this approach did not improve the performance of the model. While 

proper usage of the mer's location might lead to different results, using advanced algorithms to 

produce a more complex connection between features would limit our work's explainability and further 

exploration of the mer's effect. We therefore used simple K-mer counts and normalized by the length 

of the sequence to increase the generalization and prevent bias.  

 
Principal component analysis. PCA is commonly used to reduce dimensions of datasets by de-

correlating the features and extracting the linear combinations that hold the greatest variance. Thus, 

non-informative features are dropped, and the remaining features consist of highly variant linear 

combinations (principal components) of the original features. We used PCA on overlapping K-mer 

count instances so as to visualize the projected distribution of binding scores upon the three most 

significant principal components. Features were obtained by counting every combination of dimers, 

trimers, and tetramers in the DNA sequence (K-mer, Supplementary Figure S2). Different K values 

were used for the K-mer feature extraction, and all experiments resulted in a clear 5-cluster construct 

for the entire dataset. To compare data between clusters, we applied MinMax normalization (Eq. 2) 

and colored each instance according to its relative strength.  

𝑦𝑖
′ =

𝑦𝑖−min(𝑦)

max(𝑦)−min⁡(𝑦)
     (2) 

where y = binding scores of the entire dataset, 𝒚𝒊 = the ith binding score.  

 
Conversion of the categorical DNA variables. The DNA data was converted to an array of integers 

by OHE, a process in which each nucleotide is represented by the following scheme: (A=[1000], 

C=[0100], G=[0010], T=[0001]). The N  4 matrix represents every DNA oligonucleotide, and is used 

as input for both the Kmeans model and the WD-based hierarchical clustering model (7). 

 
Kmeans. In the initial step of Kmeans, the distances of the sequence vectors in the training set from 

randomly located centroids are measured, with the number of centers (K) being considered as a 

hyperparameter. Then, the distance of every sequence from the centroid is computed using the 

Euclidean distance (𝑑(𝑥) = min
𝑗=0,1,…,𝐾

∥ 𝑥 − 𝜇𝑗 ∥𝑙2). For the optimization step, each centroid's position 

(
𝑗
) is moved to its own cluster's geometric mean. This process is repeated until a stop condition is 

met, which is usually determined by an improvement in the loss function. The loss function of the 𝑖th 

iteration is the sum of the distances between all instances and their matching centroids (Eq. 3): 

𝐿𝑖(𝑋, 𝜇𝑖) = ∑ 𝑑(𝑥)𝑥∈𝑋      (3) 
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where 𝑖 is the iteration number, 𝑋 denotes the entire data matrix, 𝑥 represents an OHE vector, and 𝜇𝑖 

represents the set of centroids at the beginning of the 𝑖th iteration.  

An optimized model is obtained when the difference in the value of the loss function between 

consecutive iterations is small enough (typically 10−4) or the maximal number of iterations has been 

reached.  

 
Hierarchical clustering. Ward's criterion is used to determine which clusters should be merged by 

creating new data partitions in such a way that the sum of cluster variances of the newly offered 

partitions is kept low; in our case, it amounts to the smallest number of nucleotide changes between 

same-cluster sequences. Since the sum of the squared errors is minimized when each "word" acts as 

its own cluster, the common way to choose the number of clusters 𝐾 is to choose the 𝐾 that 

maximizes the WD gap. Using this method, we can extract both 𝐾 and the evolutionary stages of 

each cluster. WD calculates the similarity of two clusters (𝐶𝑎 , 𝐶𝑏) as the normalized distance of their 

corresponding cluster means (𝜇𝑎 , 𝜇𝑏, Eq. 4): 

𝑊𝐷(𝐶𝑎 , 𝐶𝑏) =
|𝜇𝑎−𝜇𝑏|𝑙2

2

|𝐶𝑎||𝐶𝑏|
    (4) 

The first step of the method initiates a cluster for each instance, and the second seeks the two most 

similar clusters in terms of WD. When found, these two clusters are united, and the second step is 

repeated until only one cluster remains. 

 

Supervised learning – linear regression with L1 regularization (Lasso). The Lasso algorithm 

performs liner regression under L1 regularization. Its output is a closed form equation that is 

generated under the constraint of having the smallest number of variables as possible. The algorithm 

complies with this constraint by applying a penalty for each variable taken into account in the closed 

form equation. Simple linear regression uses a weighted combination of features to generate a 

prediction based on (Eq. 5): 

𝑌 = ∑ 𝑤𝑖𝑥𝑖𝑖=1,2,…,𝑝 + 𝑏    (5) 

where 𝑥𝑖 is the ith feature chosen from 𝑝 features, while 𝑤𝑖 and 𝑏 are the learned weights (usually 

found by minimizing the mean square error over the training set) and the learned bias, respectively.  

While a simple linear model uses the entire set of features, Lasso applies a loss function on the 

number of features. Moreover, compared to L2 regularization, L1 regularization facilitates the zeroing 

out of features rather than minimizing their weights, leading to the selection of a smart subset of 

features. Using Lasso on our data required two preprocessing stages; the first was extracting K-mer 

counts for obtaining a simple and general solution, and the second was applying a square root on the 

binding scores to better match their values for linear regression. The MinMax-wise normalized scores 

yielded a cross-validated result with a mean absolute error (MAE) value of 0.10, calculated using 

(Eq. 6):  

MAE 𝐸(𝑋) = ∑𝑝𝑥𝑖 ∗ 𝑥𝑖    (6) 

where 𝑥𝑖  is the MAE of bin 𝑖 of the bins obtained by Kmeans, and 𝑝𝑥𝑖⁡ is the percentage of samples in 

that bin out of the entire data set.  
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We evaluated the results with MAE, and obtained the expected error in terms of a weighted MAE, 

where the weights refer to the percentage of clustered sequences (Eq. 7).  

𝑊𝑀𝐴𝐸𝑝𝑟𝑖𝑚𝑜 = ∑
|𝐶𝑖|

|𝑑𝑎𝑡𝑎𝑠𝑒𝑡|
𝑀𝐴𝐸𝐶𝑖

4
𝑖=0    (7) 

where 𝐶𝑖 is the ith cluster, |𝐶𝑖| is the number of sequences belonging to the ith cluster, |𝑑𝑎𝑡𝑎𝑠𝑒𝑡|⁡is the 

size of the entire dataset and 𝑀𝐴𝐸𝐶𝑖 is the mean absolute error of the ith  cluster. 

 
Our main goal was to develop a predictive model with as small an error as possible, while maintaining 

model explainability and simplicity. Examining the results of different regression models 

(Supplementary Table S1), we see that the smallest error was achieved using XGBoost, yet the 

difference between the errors of XGBoost and those of Lasso is about 0.5% MAE. In contrast to the 

decision-tree-based XGBoost, Lasso generates a closed predictive equation (i.e., 𝑠𝑐𝑜𝑟𝑒 = 𝛼0 +

𝛼1𝑀𝐸𝑅1 + 𝛼2𝑀𝐸𝑅2 …), and combined with Lasso's L1 regularization, it constrains the number of 

features and the coefficients needed for the prediction. In addition, in contrast to support-vector-

machine (SVM)-based models, Lasso enables limiting the coefficients to positive values, which could 

lead to a meaningful K-mer addition approach. Lastly, with Lasso the bias can be neutralized, 

meaning that the prediction is dependent solely on the K-mer count. Increasing the bias further 

enables a decrease in the variance and therefore a precise prediction. 

 
In summary, in this study, we chose to use Lasso, since it provides good performance and a closed 

predictive expression that is short and (intentionally) consists of non-negative coefficients. Other 

regression models also generated an expected error that was less than 10% MAE (Supplementary 

Table S1), meaning that the data collection and preprocessing techniques were highly informative 

regarding the researched binding score.  

 

Oligoribonucleotide synthesis assay. Synthesis of oligoribonucleotides by DNA primase was 

performed as described previously (4). The reaction mixture contained 5 µM DNA sequences 

generated by our machine-learning prediction algorithms described above, 1 mM ATP, 1 mM [α-

32P]ATP, and T7 primase in a buffer containing 40 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 10 mM DTT, 

and 50 mM potassium glutamate. After incubation at room temperature for 10 min, the reaction was 

terminated by adding an equal volume of sequencing buffer containing 98% formamide, 0.1% 

bromophenol blue, and 20 mM EDTA. The samples were loaded onto 25% polyacrylamide 

sequencing gel containing 7 M urea and visualized using autoradiography. 
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Figure S1. Diagonal correlation matrix of features representing oligonucleotide composition. 

This correlation presents the insignificant effect of hand-crafted features on the binding score of T7 

primase. These features were calculated from the sequence of oligonucleotides in the DNA-protein 

microarray (PBM). Binding score of T7 primase was determined by PBM.  

 

 

 
 
Figure S2. Illustration of K-mer features. Left: The term K-mer refers to all of a sequence's 

subsequences of length k, such that the sequence AGAT would have four monomers (A, G, A, and 

T), three 2-mers (AG, GA, AT), two 3-mers (AGA and GAT). Right: Higher k number is characterized 

with low frequency of occurrences on the genome. 
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Figure S3. Effect of nucleotide position outside the ‘GTC’ on primase binding. A gradient boosting 

machine (GBM) was trained on a different sliding "window" of nucleotide positions before and after 

the labeled GTC-containing sequences. The results are represented by the measured errors (MAE 

score) between paired nucleotides  on the test data.  
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Figure S4. Template-directed RNA primer synthesis catalyzed by the T7 DNA primase. 

Oligonucleotide synthesis by the T7 DNA primase. The reactions contained oligonucleotides with the 

primase recognition sequence as indicated, and 32P--ATP, ATP, CTP, UTP, and GTP in the 

standard reaction mixture. After incubation, the radioactive products were analyzed by electrophoresis 

through a 25% polyacrylamide gel containing 7 M urea, and visualized using autoradiography.  
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Figure S5. Template-directed RNA primer synthesis catalyzed by the T7 primase domain and 

full length T7 gp4. (a) SDS-PAGE analysis of pure T7 primase domain (27 kDa, residues 1-271) and 

full-length T7 gp4 helicase primase (63kDa, residues 1-566). (b) Oligonucleotide synthesis; 

comparison between T7 gp4 proteins: primase domain (left) and full length helicase-primase gp4 

(right). The reactions contained oligonucleotides with the primase recognition sequence as indicated 

(Supplementary Table S3), and [32P]-ATP, ATP, CTP, UTP, and GTP in the standard reaction 

mixture; protein was added to a final concentration of 300 nM. After incubation, the radioactive 

products were analyzed by electrophoresis through a 25% polyacrylamide gel containing 7 M urea, 

and visualized using autoradiography. Longer RNA primers were formed on DNA templates that were 

predicted to have higher binding affinity to the primase.  
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Figure S6. RNA primer synthesis by the full-length gene 4 helicase-primase on selected DNA 

templates from different clusters obtained by unsupervised learning. The experiment was 

performed as described in Figure 5 with one exception: the protein used for primase activity was the 

full length gp4 (helicase-primase) from bacteriophage T7. The reactions contained selected 

oligonucleotide sequences from clusters #0 and #4 obtained by unsupervised analysis (Figure 3). (a) 

Table summarizes the DNA template sequences used for the biochemical validation and their 

corresponded values. Three DNA sequences from each of the Kmeans clusters #0 and #4 that 

predicted the 10th, 50th, and 90th percentile binding scores were selected in each cluster. (b) Top: 

Distribution of binding values for the two clusters. Note that cluster #0 shows stronger primase binding 

values, on average, than cluster #4. Bottom: Oligoribonucleotide synthesis by T7 primase. The 

standard reaction mixture contained oligonucleotides with the primase recognition sequence, a control 

oligonucleotide 5'-GGGTCA10-3', and [-32P]ATP, CTP, GTP, and UTP. After incubation, the 

radioactive products were analyzed by electrophoresis on a 25% polyacrylamide gel containing 7 M 

urea, and visualized using autoradiography. (c) illustration of the effect of primase-DNA binding 

affinity on the size of RNA primers. Note that the pattern of primase activity of the full length T7 gp4 

remained identical to that obtained by T7 primase domain of bacteriophage T7 (Figure 5). 
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Table S1. Comparative analysis of different regressors, where K = 3, after clustering  

Model KNN 
RBF-

SVM 

Linear-

SVM 
RF XGBOOST LASSO 

MAE 0.096 0.093 0.091 0.094 0.088 0.093 

 

Table S2. Test data 

Sequence Empirical 
results 

Predicted 
binding 

AAAAAGGGAGGGAAGGGGTCAGGGAAAAGAGAGAAG 2016 0.358 

AAGAAAGGAAGGGAGGAGTCAAGGAAGAGGAGAGGA 1956.5 0.232 

AAGGAAGGGGAAGGAGAGTCAGAAAAAGGAGGAGGA 2570 0.295 

GAAGGGAAGGGGAGGAAGTCAGAAAAGAAAGAGGAG 2365 0.293 

GGAGAAGAAGGAGGAGAGTCAAGGAGAAAAGGAGGA 1650 0.244 

GGAGGGAAAGAGAAGAGGTCAAAAGAGGAGAGGGAA 1904.5 0.317 

GGGAAGAGGGAGAAGAGGTCAAAGAAGGAGAGAAGA 1859 0.292 

GGGGAGGAAAAGAAGGAGTCAGAAGAAGAAGAGGAG 1895 0.283 

GGGGTGGGTTGTTGGTGGTCTGTTTGTGTTTGTTTG 48919.5 0.785 

GGGGTGGTTTTGTTGGTGTCTGTTGTTGTTGTGGTG 49672 0.807 

GGGGTGTGGTGGGTGGTGTCTTTTTTTTTGGTTGTG 48331.5 0.815 

GGTGGGTTTGTGTTGTGGTCTTTTGTGGTGTGGGTT 45403 0.797 

GGTGTTGTTGGTGGTGTGTCTTGGTGTTTTGGTGGT 41314.5 0.822 

TTGGTTGGGGTTGGTGTGTCTGTTTTTGGTGGTGGT 43744 0.746 

TTGTTTGGTTGGGTGGTGTCTTGGTTGTGGTGTGGT 41522 0.791 

TTTTTGGGTGGGTTGGGGTCTGGGTTTTGTGTGTTG 51845.5 0.659 

 
Table S3. DNA sequences from a generative algorithm, their binding prediction to primase, 

and their free energy prediction of folding. 
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P  GGGTCAAAAAAAAAA  unfolded none 0.00 0.00 
min  

GACGAAGACGACGAAGAGTC 
CGAGGAAGCAGACGAA 

0 folded weak -3.32 -3.23 

max  
TGTGGTGGGTGTGTGTGGTC 
TTTTGTTTGTGGTGGT 

1 unfolded none 0.00 0.00 
0a 0 

TTTTTTTTTTTGGGGGGGTC 
GGGTTTGGGGTGGGGT 

0.670 unfolded none 0.00 0.00 

0b 0 
TTGTGTGGGGTCTTGTGGTC 
TTTGTGTGTTGGGTGT 

0.806 unfolded none 0.00 0.00 

1a 1 
CCTCCCTTTTTTTTTTTGTC 
CTCTCCTCCTTTCCCC 

0.316 unfolded none 0.00 0.00 
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1b 1 
TTCCACCACTCCATTCTGTC 
AACGTATTCTTCACCC 

0.509 unfolded none 0.00 0.00 

2a 2 
CTTCGAAGCAACCAAAGGTC 
GCAAGTTGAATAAGAC 

0.468 
semi-
folded 

moderate -2.72 -2.67 

2b 2 
CGATGCTGTTCCGTTTGGTC 
AACTAAAGACCATGAT 

0.502 folded strong -5.10 -3.66 

3a 3 
CCCAAAAAACCCCAAAAGTC 
TCCACCAACCCCAAAA 

0.472 unfolded none 0.00 0.00 
3b 3 

CCAAAACAAACCCAACAGTC 
ACCACCCCACCCTAAA 

0.630 unfolded none 0.00 0.00 
4a 4 

AAGGAAGGAGAAGAGAAGTC 
GAGGGAGAGCGAGGAA 

0.137 
semi-
folded 

weak -1.73 -0.73 
4b 4 

GGAGAAGAGGAGGAGGTGTC 
AGAAGAAAAAGAAAGG 

0.242 unfolded none 0.00 -0.13 

0-10 0 
TGGGTTGTGTGGATTTTGTC 
GGTGTGGGTGTTTGTG 

0.588 unfolded none -0.01 0.00 
0-50 0 

TGGGTTTGTGGGGTTGTGTC 
GGGTTGTTGTTTGGTG 

0.643 unfolded none 0.00 0.00 
0-90 0 

TTGTGGTGTGGTGTTTGGTC 
TGGTGTGTCTTTTGGG 

0.825 unfolded none 0.00 0.00 
4-10 4 

AGAGAAGAGAGAAGAGAGTC 
GTAGAGAGAGAGAGAG 

0.107 unfolded none -0.01 -0.21 
4-50 4 

AGGAAAGAAGAGGAGAGGTC 
GGAGTAAAGGAAGAAG 

0.229 unfolded none 0.00 0.00 
4-90 4 

GGGGAAAGAGGGAGGAGGTC 
AGGAAAAGAAAGGGAA 

0.368 unfolded none 0.00 -0.32 
1Normalized scores that predict the outcome of T7 primase-DNA binding for a given DNA sequence. 
Strong binding values are colored red, and weak binding are colored blue. Machine learning analysis 
allowed quantitative prediction scoring after several steps of algorithm development (including 
preparation of benchmark data, clustering DNA sequences, training a regression model, predicting 
scores of new sequences, and biochemical validation). 2Among the web applications that exist to 
calculate minimum free energies of probable DNA secondary structures and to predict the possibility 
of their formation under different conditions, we used: 3Sigma-Aldrich cloud-based informatics 
platform (OligoEvaluator™, http://www.oligoevaluator.com/LoginServlet). 4A web-based 
oligonucleotide analysis tool that predicts secondary structure formation and minimum free energies 
(Benchling, https://benchling.com), and 5a web application for the analysis and design of nucleic acid 
structures (NUPACK (8)), https://piercelab-caltech.github.io/nupack-docs/). 
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