
Supplementary Information for 
 

Mechanical forces drive a reorientation cascade leading to biofilm 
self-patterning 

 
Japinder Nijjer, Changhao Li, Qiuting Zhang, Haoran Lu, Sulin Zhang*, Jing Yan* 

*Corresponding authors. Email: jing.yan@yale.edu or suz10@psu.edu  
 

 
I. Cell segmentation algorithm 

 
After the deconvolved 3D image (Supplementary Fig. 2a, b) was binarized (Supplementary 

Fig. 2c), a number of different connected components (CCs), each containing multiple cells, were 
identified. The key difficulty in segmentation lies in the inferior resolution in the z-direction in 
confocal images as well as imperfect rejection of out-of-focus light, which makes the use of a 
single global threshold inadequate. Therefore, we developed an adaptive local thresholding 
algorithm for single-cell biofilm image analysis. Specifically, for each CC, we gradually increased 
the intensity threshold locally and therefore delete voxels whose intensities are below the 
threshold. After each local binarization step, we checked whether new CCs were generated. For 
each newly generated CC, if its volume was below a defined volume threshold, we extracted this 
CC from the image and considered this CC as the core of one individual cell. Information on this 
individual cell was stored and no further action was performed on this cell until the image-
restoration step. If the volume of the CC was still above the volume threshold, we locally increased 
the threshold until the volume fell below the threshold. After the adaptive local thresholding 
algorithm, we obtained the cores of all individual cells; however, these cores were smaller than 
the original cells; they did not represent accurately the location, orientation, and size of the original 
cells. Therefore, we added a volume restoration step in which the deleted voxels in the 
segmentation step were merged with the nearest core (Supplementary Fig. 2d, e). By performing 
the virtual shrinking-expansion step, we maintained the accuracy in both segmentation and in 
measuring the shape of each bacterium. 
 
 
II. Details of the agent-based simulations (ABSs) 
 
Single cell model  

We model the space occupied by a single cell and its surrounding extracellular matrix as a 

spherocylinder with length 𝐿, radius 𝑅 and therefore volume 𝑉 ൌ ସ

ଷ
π𝑅ଷ  π𝑅ଶ𝐿. We assume the 

cell only grows in length over time while the radius remains the same, where the volume growth 

obeys the exponential law 
ୢ

ୢ௧
ൌ 𝛾𝑉, with growth rate 𝛾. We introduce noise during cell growth and 

division, by assigning different cells with slightly different growth rates, taken from a normal 
distribution 𝛾 ∼ N൫𝛾,0.2𝛾൯. In the ABSs, cell growth is implemented by increasing the length 𝐿 

by the increment Δ𝐿 ൌ 𝛾 ቀସ
ଷ
𝑅  𝐿ቁΔ𝑡, where Δ𝑡 is the timestep.  



Cell division is modeled as the instantaneous replacement of a mother cell when it reaches 
length 𝐿୫ୟ୶ by two equal sized daughter cells. The slight volume loss after division is ignored to 
avoid contact overlapping which may cause unphysical reorientations. It follows that the initial 

length of a daughter cell is 𝐿 ൌ
ౣ౮

ଶ
െ 𝑅. Given the growth law, the doubling time can be 

calculated as 𝑡ୢ୭୳ୠ୪ୣ ൌ
ଵ

ఊ
log ቀଵோାబ

ସோାଷబ
ቁ. 

 
Cell-cell repulsion  

We only consider the repulsive, elastic contact forces between cells, mediated by the soft 
exopolysaccharides. Linear elastic Hertzian contact theory is applied to quantify the repulsive 
contact force on cell 𝑖 by cell 𝑗, written as  
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where 𝐸 is the effective cell stiffness, 𝛿 is the overlapping distance, and 𝐞ො is the unit vector 
parallel to the distance vector 𝐝. The distance vector is given by connecting two contact points 
characterizing the smallest distance between two cell centerlines, as shown in Supplementary Fig. 
6. The overlapping distance 𝛿 is then calculated by 
 

 𝛿 ൌ 2𝑅 െ |𝐝|,  (2) 
 

and contact only occurs if 𝛿  0. Taking the center of mass as the reference point, the moment 
of contact force is 
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where 𝐧ෝ is the cell director and 𝑠 is the parametric coordinate, along the center-line of the cell, 
of the contact point. 
 
Cell-to-substrate interactions  

The experimental substrate is modeled as an infinite, two-dimensional rigid plane located 
at 𝑧 ൌ 0. We again assume linear elastic Hertzian contact mechanics to quantify the repulsive 
contact between cells and the substrate. We also add an attractive force which depends on the 
contact area to account for the matrix protein mediated cell-to-surface adhesion.  

To formulate the repulsive contact between the cells and the substrate, we apply a 
generalized Hertzian contact formula that smoothly accounts for the cell orientation dependent 
contact energy.  In this case, the elastic deformation energy is given by 𝐸ୣ୪, ൌ 𝐸𝑅ଵ/ଶ𝛿

ହ/ଶ and the 
equivalent penetration depth is given by 
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where 𝑛ୄ, is the projection of the 𝑖th cell director onto the 𝑧-axis. The overlap function 𝛿ሺ𝑠ሻ 
denotes the overlapping distance between the cell and the substrate at the local cell-body 
coordinate -𝐿/2  𝑠  𝐿/2. Then, the net force 𝐅ୣ୪, and moment 𝐌ୣ୪, from the cell-substrate 
elastic repulsion can be given by 
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where 𝐳ො is the unit vector perpendicular to the substrate.  
We take the adhesion energy between the cells and the substrate to be of the form 𝐸ୟୢ, ൌ

െΣ𝐴, where Σ is the adhesion energy density and 𝐴 is the equivalent contact area. The 
equivalent contact area is given by 
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where Hሺ⋅ሻ is the Heaviside step function. The net adhesive force 𝐅ୟୢ, and moment 𝐌ୟୢ, are:  
 

 
𝐅ୟୢ, ൌ െΣ න 𝐳ො 

1
2
𝑅ଵ/ଶ ቀ1 െ ห𝑛ୄ,ห

ଶ
ቁ 𝛿ିଵ/ଶሺ𝑠ሻ൨d𝑠 െ 𝐳ොΣπ𝑅ห𝑛ୄ,ห

ଶ
/ଶ

ି/ଶ
  (8) 

 
𝐌ୟୢ, ൌ െΣ න ሾ𝑠𝐧ෝ ൈ 𝐳ොሿ 

1
2
𝑅ଵ/ଶ ቀ1 െ ห𝑛ୄ,ห

ଶ
ቁ 𝛿ିଵ/ଶሺ𝑠ሻ൨d𝑠

/ଶ

ି/ଶ

െ ሾ𝑠𝐧ෝ ൈ 𝐳ොሿΣπ𝑅ห𝑛ୄ,ห
ଶ
 

(9) 

 

where 𝑠 denotes the cell-body coordinate such that δሺ𝑠ሻ ൌ 0.  
 
Viscosity  

We consider two sources of viscosity: a bulk viscous force due to the extracellular matrix 
environment and a surface viscous force due to the substrate. The environmental viscous force and 
moment are given by Stoke’s law,  

 𝐅ୱ୲୭୩ୣୱ, ൌ െ𝜂𝐮  (10) 
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where 𝜂 is the environmental viscosity, 𝐮 is the velocity of the center of mass, and 𝛚 is the angular 
velocity. The substrate viscous force and moment are taken to be of the form  
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where 𝜂ଵ is the viscous coefficient along the substrate.  
 
Equations of motion  

The equations of motion for each cell are given by Newton’s rigid body dynamics: 
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where 𝐅୬ୣ୲, and 𝐌୬ୣ୲, are the total force and moment vector, and 𝐈 is the moment of inertia. All 
of the variables are expressed in the body-fixed coordinate system, then transformed into the global 
coordinate system. We add a small random noise to the net force and moment vectors of the cells 
at every timestep (10ି𝐸𝑅ଶ for forces and 10ି𝐸𝑅ଷ for moments). 
 
Choice of parameters for cellular dynamics 

The list of physical constants, which were used to successfully capture the verticalization 
instability in biofilm-dwelling cells in prior work1, are used here and given in Table S2. 
 
Geometry of coarse-grained gel system  

We model the agarose gel using a coarse-grained particle-based approach. We treat the gel 
as a collection of spherical particles, each with radius 𝑅ୣ୪. We treat the interactions of the spheres 
using a spring network model to recapitulate the elastic behavior of the hydrogel. The pairwise 

interaction energy between the gel particles is 𝐸ୣ୪,ଶ ൌ Σ
ೝ
ଶ
൫𝜉 െ 𝜉൯

ଶ
, where 𝜉 is the distance 

between particle 𝑖 and 𝑗, 𝜉 is the equilibrium distance, and 𝑘 is the spring constant. Furthermore, 
to impart a shear modulus to the system, we also include a three-body interaction energy where 

𝐸ୣ୪,ଷ ൌ Σ
ಎ
ଶ
൫𝜁 െ 𝜁൯

ଶ
, where 𝜁 is the bond angle formed by particle 𝑖, 𝑗, and 𝑘.  

 
Interactions between gel particles and cells  

We again apply linear elastic Hertzian contact theory to describe the repulsive interaction 
between the coarse-grained gel particles and the cells. Similar to the contact between cells, the 

elastic contact energy can be written as 𝐸ୣ୪ିୡୣ୪୪, ൌ 𝐸ଵ ൬
ଵ

ோ
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ହ/ଶ, where 𝐸ଵ is the 

contact stiffness between gel and cell, and 𝛿 is the overlapping distance between the 𝑖th gel 

particle and 𝑗th cell. The contact stiffness 𝐸ଵ can be given by the relation 
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where 𝑌 and 𝜇 are Young’s modulus and Poisson’s ratio, respectively. 
 
Interactions between the gel particles and the substrate   

There exist two types of interactions between the coarse-grained gel particles and the 
substrate. First, the gel particles make elastic contact with the substrate, again described by 
Hertzian contact theory for the contact between a sphere and a flat surface, where the elastic 
contact energy is given by 𝐸ୣ୪ିୱ୳୰ୟୡୣ, ൌ 𝐸ଵ𝑅ୣ୪

ଵ/ଶ𝛿
ହ/ଶ. Second, we introduce adhesion between 

the gel particles and substrate which provides an energy barrier to delamination; we take the energy 
to be of the form 𝐸ୟୢ,ୣ୪, ൌ െΣଵ𝐴ୣ୪,, where Σଵ is the adhesion energy density. The equivalent 
contact area is given by 𝐴ୣ୪, ൌ π𝑅ୣ୪𝛿, where 𝛿 is the overlap between the gel particle and the 
substrate. 
 
Equation of motion  

We only consider the three translational degrees of freedom for gel particles, neglecting the 
rotational degrees of freedom. Therefore, the equations of motion are given by Newton’s second 



law 𝐅୲୭୲, ൌ 𝑚𝐚, where 𝐅୲୭୲, is the net force and 𝐚 is the acceleration. To prepare the initial 
amorphous stress-free geometry, we begin with a body-centered cubic crystalline geometry with 
lattice parameter 𝑎, where 𝑎 ൌ  1.3𝑅ୣ୪. Subsequently, we assigned the system with an initial 
temperature of 300𝐾 and annealed it until it reached a final configuration that is amorphous and 
stress-free.  
 
Choice of parameters 
The spring constant 𝑘 and equilibrium length 𝜉: The Young’s modulus of the coarse-grained gel 

system is given by 𝑌 ൌ ଵ
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ଶకబ
2, under the condition 𝑘 ≪ 𝑘. Generally, 

a smaller 𝜉 leads to a denser gel system and better approximation to a continuum solid. 
Here we choose 𝜉 ൌ 0.6 μm as a result of a trade-off between simulation quality and 

computational cost, as the simulation time is proportional to 
ଵ

కబ
య. This 𝜉 value leads to 

𝑘 ൌ 6 ൈ 10ିଷNmିଵ, corresponding to the experimentally measured 𝑌 ൌ 5𝑘𝑃𝑎. 
Radius of coarse-grained gel particle 𝑅ୣ୪: In order to mimic the continuum constraints posed by 

the hydrogel in the experiment, the coarse-grained system should not have significant 
defects larger than the volume of a single cell, which means that 𝑅ୣ୪ should be larger 
than 𝜉. On the other hand, 𝑅ୣ୪ cannot be significantly larger than the cell radius 𝑅, as 
this will introduce unphysical contacts at the biofilm-gel interface. Taking both 
requirements into consideration, we choose 𝑅ୣ୪ ൌ 1.0 μm, which is nearly double the 
equilibrium distance 𝜉 ൌ 0.6 μm and we keep 𝑅ୣ୪ ൎ 𝑅. 

Cell-gel contact modulus 𝐸ଵ: Hertzian contact mechanics gives the equivalent contact modulus 

between two elastic bodies by 
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, where 𝑌 is the Young’s modulus 

and 𝜇 is Possion’s ratio of the two contacting elastic bodies. Given the bulk rheology 
measurement 𝑌ୡୣ୪୪ ൌ 500 Pa, μୡୣ୪୪ ൌ μୣ୪ ൌ 0.49, and 𝑌ୣ୪ ൌ 5 kPa3,4, it follows 𝐸ଵ ൌ
600 Pa. In the simulations, we choose 𝐸ଵ ൌ 1500 Pa, somewhat larger than 𝐸, to avoid 
the unphysical situation in which cells penetrate into the gel during growth.  

The three-body interaction parameter 𝑘 and equilibrium angle 𝜁: To make the amorphous coarse-
grained gel system stable, we choose 𝜁 ൌ 120° to force the system to deviate from its 
original cubic configurations. We select 𝑘 such that we attain incompressible solid 
behavior in the gel 𝐺 ൌ 𝑌/3 , where 𝐺 is the shear modulus and 𝑌 is Young’s modulus.  

These parameters are listed in Table S3. 
 
 
III. Single-cell surface adhesion stability analysis 

 
Previous studies have described how cells in 2D bacterial colonies can be peeled from the 

substrate through a buckling-like instability5–8; however, the reason why biofilm-dwelling cells 
self-organize into a verticalized core, that is, remain attached but oriented away from the substrate, 
remains to be shown. In this section, we consider the stability of surface-adhered cells subject to 
compression from neighboring cells to determine why surface adhesion facilitates stably surface-
anchored, verticalized cells. Specifically, we consider a minimal model examining the instability 
of a single spherocylindrical cell that is compressed by its neighbors, following the same physical 



model described in the agent-based simulation section above; however, in our theoretical analysis 
we neglect any external gel confinement, and only consider the effects of bulk viscosity for 
analytical tractability. We assume that the central cell is not growing and instead we mimic the 
effects of growth-induced compression by bringing neighboring cells closer together. The central 
cell initially starts out parallel to the substrate in close contact with its neighbors, and the peripheral 
neighboring cells are brought closer to each other to squeeze the central cell (see the schematic in 
Figure 2f). We find that the central cell evolves through four phases upon increasing compression: 
I. the cell remains horizontal and the elastic potential energy in the cell increases; II. the central 
cell rotates from horizontal to vertical and all potential energy is consequently released; III. the 
central cell remains vertical, and the elastic potential energy increases again when the outer cells 
touch the center cell again; and IV. the central cell becomes unstable and is ejected from the 
substrate. We confirm this sequence with a simple 2D agent-based model where cells are confined 
to the 𝑥-𝑧 plane. The transition from I to II corresponds to a “verticalization” instability1, from II 
to III corresponds to a trivial geometric transition, and from III to IV corresponds to a “pinch-off” 
instability. Note that the pinch-off instability is locally (marginally) stable, but under sufficiently 
large 𝑧-perturbations, the central cell gets ejected from the substrate. Experimentally, we expect 
that many factors could contribute to the perturbations including but not limited to: deviation of 
the cell shape from a perfect spherocylinder, fluctuating protein bonds, and variations in the 
adhesion protein concentration, etc. In what follows below, we consider these two instabilities in 
more detail paying specific attention to the role of the cell-to-surface adhesion.  

The equations of motion for the position 𝐫 ൌ ሺ𝑥,𝑦, 𝑧ሻ, and director  𝐧ෝ ൌ ൫𝑛௫,𝑛௬,𝑛௭൯ ൌ
𝐧∥  𝑛ୄ𝐳ො of a cell written using Lagrangian mechanics, are: 
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where 𝜆 is a Lagrange multiplier corresponding to the constraint 𝐹 ൌ |𝐧ෝ| െ 1 ൌ 0. Here ∑𝐸 ൌ
𝐸  𝐸ௗ  𝐸ି is the total potential energy and includes cell-to-cell repulsion, as well as 
cell-to-surface adhesion and repulsion terms. These surface interaction terms are given by 
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In phase I, in the absence of any compression from neighboring cells, the balance of surface 

adhesion and repulsion leads to an equilibrium cell configuration 𝑛ୄ ൌ 0 at an apparent height  
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where  𝐴ሚ ൌ Σ/𝑅𝐸 is the dimensionless adhesion coefficient. In the presence of compression, we 
consider perturbations away from this stable point.  



 
To simplify the analysis, we assume that all neighboring cells compress and lead equally to a build-
up of elastic energy or pressure in the central cell of interest (𝐸ୡୡ ൌ 𝐸𝑅ଵ/ଶ𝛿ହ/ଶ where 𝛿 is the 
overlap distance between two cells). We assume hexagonal close packing around the caps of the 
cell and square close packing around the cylindrical portion of the cell leading to a maximum of 
∼ 6  𝐿୫ୟ୶/𝑅 neighbors compressing the central cell (see schematic in Supplementary Fig 10a). 
Finally, we make the simplifying assumption that the dominant compression that leads to 
verticalization is due to the two neighbors pushing on the two ends of the central cell. Note that in 
practice the exact configuration around the central cell will vary, leading to a stochastically varying 
stress field; our analysis is meant to provide an estimate of the relative energy barriers between the 
verticalization and pinch-off instabilities. 
 

Combining the cell-surface adhesion, cell-surface repulsion, and cell-cell repulsion terms, 
we find the evolution equation for small 𝑛ୄ is given by 
 

 𝑛ሶୄ ൌ Ωሺ𝛿ሻ𝑛ୄ, (18) 
 

where the sign of Ω determines the stability of the fixed-point. Supplementary Figure 10c shows 
plots of Ω for different dimensionless adhesion coefficients. For small values of 𝐴ሚ, which are most 
physically relevant, the zeros of Ω are only weakly dependent on 𝐴ሚ. This analysis suggests that the 
verticalization instability only weakly depends on adhesion, that is, the energy barrier to 
verticalization is nearly constant. This counterintuitive result arises because for  𝐴ሚ ≪ 1, adhesion 
does not impart a significant torque on the cell. Instead, while compression from peripheral cells 
is destabilizing, cell-surface repulsion acts to provide a stabilizing torque.   

In phase III, again assuming no compression from neighboring cells, the balance of surface 
adhesion and repulsion leads to an equilibrium verticalized configuration 𝑛ୄ ൌ 1 with height 
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Note that the effective penetration depth (the degree to which the soft cell is flattened against the 
substrate) is larger for verticalized cells than for horizontal cells. This difference in penetration 
depth occurs due to the difference in geometry between a hemispherical cap and a cylindrical body 
and how the cell-surface adhesion and cell-surface repulsion energies scale with the penetration 
depths.  

Again, we consider compression due to neighboring cells (at a height 𝑧,). In this case, the 
footprint of the verticalized cell is a circle and so we assume 6 neighboring cells that are 
hexagonally closed packed around it (Supplementary Fig 10b). In this configuration all neighbors 
contribute equally to the pinch-off of the central cell. Here we look for finite-sized perturbations 
away from the fixed point; the evolution equation of the height of the cell of interest is given by  
 

 𝑧ሶ ൌ 𝑤ሺ𝛿, 𝑧ሻ. (20) 
 

We look for points ሺ𝛿, 𝑧ሻ such that 𝑤ሺ𝛿, 𝑧ሻ  0. We only consider points 0  

ଶ
 𝑅 െ 𝑧 ൏

𝑅 െ 𝑧, as points 𝑧 െ 

ଶ
൏ 𝑧, results in no net vertical force such that the cell of interest remains 



stably attached to the substrate. Specifically, we focus on points very close to 𝑧 ൌ 𝐿/2  𝑅 to 
determine the critical energy required to produce marginally unstable cells. Supplementary Figure 
10d shows plots of 𝑤ሺ𝛿, 𝐿/2  0.999𝑅ሻ for different adhesion coefficients. In contrast to the 
verticalization transition, in this case we find a strong dependence of the zeros of 𝑤 on  𝐴ሚ; 
therefore, the energy barrier to pinch-off depends strongly on cell-to-surface adhesion.  

We combine these two stability analyses into a single plot of the energy landscape 
experienced by the central cell for different adhesion energies (Supplementary Figure 10e). We 
see that for very small adhesion energies, pinch-off is energetically favored over verticalization, 
whereas for larger adhesion energies, pinch-off is energetically more costly than verticalization. 
Importantly, we find that for the parameters listed in Table S2, the critical energy corresponding 
to the verticalization instability is much smaller than that of the pinch-off instability, leading to 
preferential verticalization of horizontal cells rather than pinch-off of verticalized cells in a 
population of cells in the basal layer (Fig. 2f). This analysis explains the observed positive 
correlation between the adhesion energy and the fraction of stably verticalized cells 
(Supplementary Fig. 5, 7, 8): adhesion energy affects the stability of cells with respect to the pinch-
off instability but much less so to the verticalization instability.  
 
 
IV. Continuum model for growth-induced macroscopic cell ordering  

 
In this section, we present a minimal coarse-grained description to explain the growth and 

self-organization observed in the basal layer of V. cholerae biofilms. We first consider the simpler 
case with one population of cells that either generate in-plane growth or not, before considering 
the complete two-phase model which accounts for pressure-dependent cell verticalization and out-
of-plane growth.  

 
Theoretical framework 

We limit our consideration to the basal plane of the biofilm and assume it is a growing, 
quasi-2D system with mesoscopic nematic order tensor 𝐐 ൌ 2〈𝐧ෝ⨂𝐧ෝ െ 𝐈/2〉9. Based on its 
symmetries, in 2D, 𝐐 can also be written as  
 

 𝐐 ൌ 𝑞 
cosሺ2𝜃ሻ sinሺ2𝜃ሻ
sinሺ2𝜃ሻ െcosሺ2𝜃ሻ

൨ (21) 
 

where 𝜃 is the angle of the average head-less director and q is the scalar order parameter, which 
quantifies the degree to which the cells are locally ordered. In the analysis below we will assume 
that this scalar order parameter is constant.  

We assume the bacterial cells grow with a uniform growth rate 𝛾 but that the growth can 
be out-of-plane, resulting in a spatially varying in-plane growth rate 𝑔ሺ𝐫ሻ. Taking the cell density 
as 𝑐, and the coarse-grained growth-induced velocity field as 𝐮, mass conservation requires 

 

 𝜕௧𝑐  ∇ ⋅ ሺ𝑐𝐮ሻ ൌ 𝑔𝑐. (22) 
 

The density is nearly uniform in the experiment, that is, 𝑐ሺ𝐫ሻ ൌ 𝑐  𝜖𝑐ଵሺ𝐫ሻ, where 𝜖 ≪ 1. To 
leading order, Eq. (22) becomes 
 

 𝛻 ⋅ 𝐮 ൌ 𝑔. (23) 
 



The growth-induced velocity field is found by integrating the spatially dependent growth rate. In 
this analysis, we will neglect density fluctuations 𝑐ଵ, but it can be related to the fluctuation in local 
pressure due to varying local configurations.  

The evolution of the nematic order tensor is described by the Beris-Edward equation10 
 

 ሺ𝜕௧  𝐮 ⋅ ∇ሻ𝐐 ൌ 𝜆𝐄 െ ሺ𝛚 ⋅ 𝐐 െ 𝐐 ⋅ 𝛚ሻ  Γ𝐇, (24) 
 

where 𝜆 is the flow-alignment parameter and 𝜆  0 for rod-shaped objects that tend to align in 

shear. Here 𝐄 ൌ ଵ

ଶ
ሺ∇𝐮  ∇𝐮் െ ሺ∇ ⋅ 𝐮ሻ𝐈ሻ and 𝛚 ൌ ଵ

ଶ
ሺ∇𝐮 െ ∇𝐮ሻ are the traceless strain-rate and 

vorticity tensors and 𝐇 is the molecular field. Γ𝐇 relaxes 𝐐 towards a bulk state with minimal 
spatial variation in the director. However, we do not expect Γ𝐇 to play an important role in biofilm 
ordering because biofilm-dwelling cells secrete exopolysaccharides which are soft and deformable 
and act as a “cushion” between cells. This can be seen in the biofilm from the ∆BC mutant (Fig. 
1e) in which minimal local alignment was observed. Contrast this with the ∆vpsL mutant and other 
bacterial colonies11–13 where there is significant local alignment (Fig. 1f) when no 
exopolysaccharides are present. Finally, force balance requires  

 

 ∇ ⋅ 𝚷 ൌ 𝜂𝐮, (25) 
 

where 𝚷 is the stress tensor in the biofilm, whose divergence is balanced by surface friction. Here 
we have assumed that energy dissipation is dominated by surface friction rather than viscous 
dissipation inside the biofilm, corresponding to the so-called “dry” limit14. We take the frictional 
force density to be linearly proportional to the velocity and the friction coefficient 𝜂 to be isotropic 
and constant. In many active nematic systems, the active stress is anisotropic and dependent on 𝐐. 
For instance, in motile cell colonies, cells generate anisotropic active stresses15–17 while in growing 
bacterial colonies a number of different constitutive relations have been proposed11,12,18,19. 
Although at the microscopic scale, these forces may be anisotropic, on the mesoscopic scale 
pertaining to our theory, they are expected to be isotropic on average. This leads to the assumption 
of an isotropic stress field which is balanced by surface friction, 
 

 ∇𝑝 ൌ 𝜂𝐮. (26) 
 

Pressure in this system arises due to compression from neighboring cells, mediated by the 
exopolysaccharides, which arises from cell proliferation.  

To close the model, we impose the following set of boundary and initial conditions. By 
symmetry, we expect that the velocity goes to zero at the center of the biofilm,  
 

 𝐮ሺ𝟎, 𝑡ሻ ൌ 𝟎, (27) 
 

that is, the center of the biofilm does not move and  
 

 𝜕𝐐
𝜕𝑟

ሺ𝟎, 𝑡ሻ ൌ 𝟎. (28) 
 

We also assume that the pressure accumulates towards the center of the biofilm and that at the 
outer edge of the biofilm the pressure is zero,  
 

 𝑝ሺ𝑟 ൌ 𝑟, 𝑡ሻ ൌ 0, (29) 
 

where 𝑟 denotes the edge of the biofilm. The outer radius evolves through the kinematic condition 
 



 𝑑𝑟
𝑑𝑡

ൌ 𝑢ሺ𝑟ሻ. (30) 
 

Finally, we assume that the orientation of the biofilm is described by some initial order parameter 
tensor 
 

 𝐐ሺ𝑟,𝜓, 𝑡 ൌ 0ሻ ൌ 𝐐𝟎ሺ𝑟,𝜓ሻ, (31) 
 

which can also be written as 𝜃ሺ𝑟,𝜓, 𝑡 ൌ 0ሻ ൌ 𝜃ሺ𝑟,𝜓ሻ. 
Equations (23), (24), (26) and boundary conditions and initial conditions Eq. (27)-(31) 

form the basis of the theoretical model. In the following subsections, we consider a few idealized 
cases to determine under which conditions biofilms self-organize into an aster pattern. Throughout, 
we will also make the simplifying assumption that all variables except for 𝑸 are axisymmetric and 
that there is no azimuthal flow, 𝐮 ൌ 𝑢�̂�.  
 
Uniform growth limit 

If all growth is in-plane, then 𝑔 ൌ 𝛾 is uniform and constant. Integrating Eq. (23) we find 
the velocity field is  

 

 𝑢 ൌ
𝛾𝑟
2

 , (32) 
 

and the strain-rate and vorticity tensors are exactly zero,  𝐄 ൌ 𝛚 ൌ 𝟎. Solving Eq. (24) yields 
 

 𝐐ሺ𝑟,𝜓, 𝑡ሻ ൌ 𝐐 ൬𝑟𝑒
ିఊ௧ଶ ,𝜓൰. (33) 

 

In this case, 𝐐 is simply stretched by growth, and there is no tendency for 𝐐 to rotate or align in 
any given direction. An initially isotropic system will remain isotropic as it grows (Supplementary 
Fig. 14a-c)12,20. This is what happens in the 2D expansion of bacterial colonies, which remain 
macroscopically isotropic as they grow. Although microscopic forces can align cells locally, they 
cannot introduce any long-range order. Note that in two dimensions axisymmetric growth is a 
special case where there is no net strain in the system: if instead the system were confined into a 
rectangular channel, where growth is unidirectional, the strain rate tensor would not be zero and 
therefore there would be net alignment along the direction of the channel18,19,21,22.  
 
Alignment due to a growth void 

Now suppose there is a radius 𝑟 inside which the cells have verticalized and are angled 
out of plane. These cells do not contribute to the growth of the basal plane and so 

 

 𝑔ሺ𝑟ሻ ൌ ൜
0 if 𝑟 ൏ 𝑟
𝛾 if 𝑟  𝑟

. (34) 
 

Substituting into Eq. (23), the growth-induced velocity is 
 

 
𝑢 ൌ ൜

             0            if 𝑟 ൏ 𝑟
𝛾ሺ𝑟 െ 𝑟

ଶ/𝑟ሻ/2 if 𝑟  𝑟
. (35) 

 

The corresponding strain rate and vorticity tensors in polar coordinates (𝐄,𝛚) are  
 

 𝐄 ൌ 𝟎,                                      𝛚 ൌ 𝟎  if 𝑟 ൏ 𝑟 (36) 



𝐄 ൌ ൦
൬
𝜕𝑢
𝜕𝑟

൰ െ
𝛾
2

0

0
𝑢
𝑟
െ
𝛾
2

൪ ,𝛚𝐩 ൌ 𝟎 if 𝑟  𝑟. 

 

Under uniform growth 𝜕𝑢/𝜕𝑟 and 𝑢/𝑟 are equal to 𝛾/2 , leading to no net deviatoric strain-rate. 
In contrast, in the presence of a growth void, these two terms become unequal, leading to a net 
deviatoric strain-rate. This is because the radial gradient in velocity is no longer balanced by 
azimuthal stretching due to outward expansion. For a velocity of the form given in Eq. (35), the 
strain rate and vorticity tensors in polar coordinates are 
 

 𝐄 ൌ 𝟎,                                             𝝎 ൌ 𝟎  if 𝑟 ൏ 𝑟 

𝐄 ൌ
𝛾𝑟

ଶ

2𝑟ଶ
ቂ1 0
0 െ1

ቃ ,                         𝝎 ൌ 𝟎 if 𝑟  𝑟. 
(37) 

 

Next, the nematic order parameter 𝐐 can be transformed to a polar coordinate system, given 
by 
 

 
𝐐 ൌ 𝐑𝐓𝐐𝐑 ൌ 𝑞  

cosሺ2ሺθ െ 𝜓ሻሻ sinሺ2ሺθ െ 𝜓ሻሻ
sinሺ2ሺθ െ 𝜓ሻሻ െ cosሺ2ሺθ െ 𝜓ሻሻ

 ൨, (38) 
 

where 𝜓 is the azimuthal angle and 𝐑 ൌ  
cos𝜓 െ𝑠𝑖𝑛 𝜓
𝑠𝑖𝑛 𝜓 cos𝜓  ൨ is the coordinate transformation 

matrix from cartesian to polar coordinates. 
 Finally, given 𝐄, 𝛚 and 𝐐, the matrix form of Eq. (24) in polar coordinates is 
 

 
𝑞 ൬∂௧  𝑢

∂
∂𝑟
൰  

cosሺ2ሺθ െ 𝜓ሻሻ sinሺ2ሺθ െ 𝜓ሻሻ
sinሺ2ሺθ െ 𝜓ሻሻ െ cosሺ2ሺθ െ 𝜓ሻሻ

 ൨ ൌ
𝜆𝛾𝑟

ଶ

2𝑟ଶ
ቂ1 0
0 െ1

ቃ, 
(39) 

 

for 𝑟  𝑟, which yields two scalar equations  
 

 
െ sinሺ2ሺθ െ 𝜓ሻሻ ൬

∂θ
∂𝑡

 𝑢
∂θ
∂𝑟
൰ ൌ

𝜆𝛾𝑟
ଶ

4𝑞𝑟ଶ
, 

cosሺ2ሺθ െ 𝜓ሻሻ ൬
∂θ
∂𝑡

 𝑢
∂θ
∂𝑟
൰ ൌ 0. 

(40A,B) 

 

Defining Θ ൌ ሺ𝜃 െ 𝜓ሻ and combining the two scalar equations above, we find that for 𝑟 
𝑟,  
 

 
𝜕௧Θ  𝑢𝜕Θ ൌ  െ

𝜆𝛾𝑟
ଶ

4𝑞𝑟ଶ
sinሺ2Θሻ. 

(41) 

 

By first ignoring the advective term, we see that 𝜕௧Θ ∼ െ sinሺ2Θሻ which has stable fixed points 
at Θ ൌ 𝑛𝜋 or 𝜃 ൌ 𝜓  𝑛𝜋, characteristic of an aster pattern. In other words, the rightmost term, 
which arises due to gradients in the growth-induced velocity field, drives cells to reorient towards 
an aster pattern. The same observation was made during inward growth in bacterial colonies where 
deviation of the velocity field from that of isotropic expansion resulted in radial alignment of 
cells20. 

More generally, if we suppose that instead of a growth void, there is a general differential 
growth rate: 𝛾 for 𝑟 ൏ 𝑟ሺ𝑡ሻ and 𝛾  Δ𝛾 for 𝑟  𝑟ሺ𝑡ሻ then the evolution equation for Θ for 𝑟  𝑟 
is given by  



 

 
𝜕௧Θ  𝑢𝜕Θ ൌ  െ

𝜆Δ𝛾𝑟
ଶ

4𝑞𝑟ଶ
sinሺ2Θሻ. 

(42) 

 

If the biofilm has a faster growing outer rim Δ𝛾  0, the bacteria will tend to organize into an aster 
pattern. If, on the other hand, the biofilm has a faster growing core, i.e. Δ𝛾 ൏ 0, Θ will have stable 
fixed points at Θ ൌ 𝑛𝜋  𝜋/2, characteristic of a vortex pattern. This means that biofilms that 
exhibit excess growth in the core will be driven to form a vortex.  

Returning to Eq. (41), we solve it by the method of characteristics, assuming some initial 
maximum biofilm radius 𝑟, which yields 

 

 
cotሾΘሺ𝑟,𝜓ሻሿ ൌ cotሾΘሺ𝑟ᇱ,𝜓ሻሿ exp ቈ

𝜆
2𝑞

ቆ𝛾𝑡  logቆ
𝑟ᇱଶ

𝑟ଶ
ቇቇ , 

(43) 

 

where 𝑟ᇱ ൌ  ൫ሺ𝑟ଶ െ 𝑟
ଶሻ𝑒ିఊ௧  𝑟

ଶ൯
ଵ/ଶ

and Θ ൌ 𝜃 െ 𝜓 corresponds to the angular representation 
𝐐. Plots of Eq. (43) are given in Supplementary Figures 14d-f. Note that, although cells tend to 
align in an aster pattern, the aligning torque becomes weaker as cells are advected outwards. 
Therefore, 𝑆 does not necessarily reach a value of 1 (Supplementary Fig. 14g). Depending on the 
initial size of the growth void as well as the flow alignment parameter, different degrees of radial 
alignment are reached in the final state, with a larger 𝑟/𝑟 leading to overall more radial alignment.  

To be more general, now instead of a finite void, suppose there is an arbitrary velocity field 
𝑢ሺ𝑟, 𝑡ሻ corresponding to an arbitrary growth rate 𝑔ሺ𝑟, 𝑡ሻ. Following the same procedure as above, 
we find the evolution equation for Θ is 

 

 𝜕௧Θ  𝑢𝜕Θ ൌ  െ𝑓ሺ𝑟, 𝑡ሻsinሺ2Θሻ, (44) 
 

where 𝑓 ൌ ሺ𝜆𝑟/4𝑞ሻ𝜕ሺ𝑢/𝑟ሻ quantifies the aligning torque due to gradients in the flow field. 
Equation (44) thus describes a generalized time-evolution equation for the orientation field due to 
gradients in the flow velocity.  

 
Two-phase active nematic model for cell verticalization and alignment 

We expand the active nematic model in the previous subsection to include the 
verticalization dynamics in a two-phase model consisting of vertical and horizontal cells. Consider 
a quasi-2D layer of cells on a substrate where the cells are either parallel (horizontal) or tilted 
(vertical) with respect to the substrate and let 𝜌 denote the fraction (0  𝜌  1) of vertical cells 
and 1 െ 𝜌 therefore denote the fraction of horizontal cells. Horizontal cells proliferate and generate 
their progeny in the basal layer of interest, while vertical cells do not contribute to the expansion 
to the basal layer. The growth-induced stress generated by the horizontal cells also cause them to 
verticalize with a pressure dependent rate 𝐶ሺ𝑝ሻ. The evolution equation for the fraction of these 
two populations of cells is therefore given by: 

 

 𝜕௧𝜌  ∇ ⋅ ሺ𝐮𝜌ሻ ൌ 𝐶ሺ𝑝ሻሺ1 െ 𝜌ሻ 
𝜕௧ሺ1 െ 𝜌ሻ  ∇ ⋅ ൫𝐮ሺ1 െ 𝜌ሻ൯ ൌ 𝛾ሺ1 െ 𝜌ሻ െ 𝐶ሺ𝑝ሻሺ1 െ 𝜌ሻ. (45A,B) 

 

Given that cell verticalization requires a minimum threshold pressure 𝑝௧, we make the simple 
assumption that the conversion rate is a linear function of the excess pressure  
 

 𝐶ሺ𝑝ሻ ൌ β
𝑝 െ 𝑝௧
𝑝௧

𝐻ሺ𝑝 െ 𝑝௧ሻ, (46) 
 



where 𝐻 denotes the Heaviside function. Combining Eq. (45A,B)A and (45A,B)B yields 
 

 ∇ ⋅ 𝐮 ൌ 𝛾ሺ1 െ 𝜌ሻ. (47) 
 

We initiate the biofilm with some initial radius 𝑟, and assume all cells are horizontal to begin 

with, 𝜌ሺ𝑟, 𝑡 ൌ 0ሻ ൌ 0. Finally, we assume symmetry at the origin which requires 
డఘ

డ
ൌ 0  and that 

𝜌 is axisymmetric. Equations (26), (44)-(47) with the above mentioned initial and boundary 
conditions make up the full two-phase continuum model for cellular ordering driven by 
verticalization.  
 

Non-dimensionalization 
We non-dimensionalize Eq. (26), (44)(47) by the following dimensional scales:  time 𝑡ௗ ൌ

1/𝛾, pressure 𝑝ௗ ൌ 𝑝௧, length 𝑟ௗ ൌ ሺ𝑝௧/𝜂𝛾ሻଵ/ଶ and velocity 𝑢,ௗ ൌ 𝑟ௗ𝛾, which yields 
 

 
𝜕𝑝
𝜕�̃�

ൌ 𝑢 , (48) 

 
𝜕Θ
𝜕�̃�

 𝑢̃
𝜕Θ
𝜕�̃�

ൌ  െ𝐿෨�̃�
𝜕𝑢/�̃�
𝜕�̃�

 sinሺ2Θሻ, (49) 

 
𝜕𝜌
𝜕�̃�


1
𝑟
𝜕ሺ�̃�𝑢𝜌ሻ
𝜕�̃�

ൌ 𝛽෨ሺ1 െ 𝜌ሻሺ𝑝 െ 1ሻ𝐻ሺ𝑝 െ 1ሻ, (50) 

 1
𝑟
𝜕ሺ�̃�𝑢ሻ
𝜕�̃�

ൌ 1 െ 𝜌. (51) 

 

with boundary conditions 𝑝ሺ�̃�ሻ ൌ 0,  𝑢ሺ0ሻ ൌ 0,  𝑑௧�̃� ൌ 𝑢ሺ�̃�ሻ, 𝜕̃Θ|̃ୀ ൌ 0, and 𝜕̃𝜌|̃ୀ ൌ 0 
and initial conditions Θሺ�̃�,𝜓, 0ሻ ൌ Θሺ�̃�,𝜓ሻ and 𝜌ሺ�̃�, 0ሻ ൌ 0. At the boundary, when solving for 

Θ, we impose a sharp velocity gradient Δ𝑢/Δ�̃� ൎ െ𝑢ሺ�̃�ሻ/ሺ𝑙ሚେୣ୪୪/2ሻ where 𝑙ሚେୣ୪୪ is the average 
length of a cell, to account for the fact that across the boundary cells there is a sharp velocity 
gradient which tends to align cells tangentially to the boundary7,12. There are two key parameters 

that control the evolution of the system: the dimensionless flow alignment parameter 𝐿෨ ൌ 𝜆/4𝑞 

and the dimensionless verticalization rate  𝛽෨ ൌ 𝛽/𝛾. The flow alignment parameter dictates how 
quickly the cells will align to a straining flow, while the verticalization rate dictates how quickly 
horizontal cells are converted to vertical cells. For simplicity, we assume that the only 
distinguishing feature of the nonadherent mutant is that 𝛽 ൌ 0; however, we would also expect 
that in the absence of adhesion, 𝜂 would also be smaller and lead to an underestimation of the 
characteristic length-scale.  
 
Choice of parameters 

We choose the following set of parameters when solving for the evolution of the system. 
Growth rate 𝛾: The number of bacteria in a three-dimensional biofilm was measured over time and 

the growth rate was found to be 𝛾 ൎ 0.6 hr.ିଵ 



Threshold verticalization pressure 𝑝௧: From the theoretical verticalization analysis, using 
experimentally calibrated parameters, it was found that the critical cell overlap distance 
at which point verticalization happens is 𝛿~0.125 μm. From this value, the critical cell-

cell contact pressure can be calculated as 𝑝ௗ ൌ 4𝐸𝛿
భ
మ/ሺ3π𝑅∗ଵ/ଶሻ where 𝐸 is the contact 

modulus of the cells which we estimate to be 500 Pa using bulk rheological 
measurements (shear modulus of a bulk WT* biofilm was measured to be ~200 Pa) and 
𝑅∗ ൌ 𝑅/2 ൌ 0.4 μm. This yields a threshold pressure of 𝑝௧ ∼ 130 Pa.  

Friction coefficient 𝜂: Using the surface viscosity 𝜂ଵ defined in Table S2, we estimate the friction 
coefficient as 𝜂 ൌ 𝜂ଵ/𝐴 where 𝐴 is the surface footprint of the cell which we estimate 
to be 𝐴 ∼ 3 μmଶ. The friction coefficient is therefore 𝜂 ∼ 7 ൈ 10ସ Pa s/μmଶ. 

Characteristic length scale 𝑟ௗ: The characteristic length-scale 𝑟ௗ ൌ ሺ𝑝௧/𝜂𝛾ሻଵ/ଶ in the system 
corresponds to the characteristic size of biofilm when verticalization begins. For the 
parameters defined above, this length scale is 𝑟ௗ ∼ 3.4 μm. 

Mean cell length  𝑙େୣ୪୪: Taking the average of the largest and smallest cylindrical sections of the 
spherocylindrical cells (corresponding to right before and right after division) gives a 
length of 𝑙େୣ୪୪ ൌ 1.8 μm.  

Initial radius of biofilm 𝑟,: We initialize the biofilm to have an area equivalent to the footprint of 

a single cell. This gives a value 𝑟, ∼ 1 μm. 

 
We solve the dimensionless Eq. (48)-(51) using a finite difference scheme with explicit 

time-stepping, and up-winding of advective terms. Example solutions are given in Supplementary 
Figures 19 and 20. We fit the two unknown dimensionless parameters to the experimental results 

and find that  𝛽෨ ൎ 2.5 and  𝐿෨ ൎ 1.5. These parameters compare favorably to what has been 
measured before. Namely, Beroz et al.1 measured in ABS that in a biofilm growing without a 
confining agarose gel,  𝛽 ∼ 2.5 hr.ିଵ. Here we find a somewhat smaller value, 𝛽 ∼ 1.5 hr.ିଵ, 
likely owing to the fact that confinement due to the agarose gel tends to impart normal stresses 
that suppress verticalization. Nonetheless, we find that the results are only weakly dependent on 𝛽 
for 𝛽  𝛾 (Fig. 4a-d; Supplementary Fig. 19d-k). Finally, we estimate 𝑞 by measuring the cell-cell 
orientation correlation for neighboring cells in the basal layer of the experimental biofilms and 
find 𝑞 ∼ 0.5 and so 𝜆 ∼ 3. Measuring the intrinsic flow alignment parameter is difficult as it is 
dependent on many factors including the size, shape, aspect ratio and local nematic order23, 
however, a value of 3 is in reasonable agreement with values of 0.3-2 reported for other growing 
and non-growing bacterial systems11,18,24.  
  



 
Supplementary Fig. 1| Self-patterning in biofilms formed by rugose (Rg) wild-type V. 
cholerae biofilms. a, Cross-sectional view of the basal plane of a rugose biofilm with an intact 
rbmA gene. b, The same biofilm reconstructed where cells are colored based on the angle of the 
in-plane director. Scale bars, 10 µm. c, Radial order parameter 𝑆 in biofilms formed by the rugose 
wild-type and RgΔrbmA strain (labeled as WT* in the main text). Lines correspond to median 
values. We find no statistical difference between the two strains (𝑃 ൌ 0.1414; unpaired two-sided 
t-test with Welch’s correction) under this growth condition, suggesting that the presence of the 
cell-to-cell adhesion protein does not interfere with the global organization mechanism. Source 
data are provided as a Source Data file.  

  



 

Supplementary Fig. 2| Cell segmentation procedure. a, Representative raw 3D image of a WT* 
biofilm. b-d, Intermediate steps during biofilm segmentation; after deconvolution with a measured 
point spread function (b), after binarization (c), after segmentation using an adaptive local 
thresholding algorithm (d). e, 3D reconstruction of three different segmented cells at three different 
locations in the biofilm. Scale bars, 10 μm.  

  



 

Supplementary Fig. 3| V. cholerae biofilms reproducibly form aster patterns. Nine different 
mature WT* biofilms all exhibiting the aster pattern. The core of the aster, typically defined by 
the location of the founder cell, does not necessarily coincide with the geometric center of the 
biofilm due to stochasticity during early biofilm development. Some biofilms also display some 
local chirality, which could come from noise in cell growth, substrate defects, local configuration 
variations etc. This is because if a local area grows slower than its surroundings, cells in 
neighboring areas will grow into this area, resulting in local “bending” of the director field. In the 
bottom right example, the biofilm is grown for 72 hrs. with fresh growth media replenished at 24 
and 48 hrs. Furthermore, the cells are stained using SYTO 9 nulear stain and four adjacent fields 
of view are stitched together. Scale bars, 10 µm.   



 
Supplementary Fig. 4| Biofilms in unconfined environments verticalize and develop radial 
order. a, Cross-sectional view of the basal plane of a WT* biofilm grown without an overlain gel. 
b, c, The same biofilm reconstructed where cells are color-coded by the angle 𝜙 each cell makes 
with the substrate (b) and the degree of radial alignment ሺ𝐧ෝ∥ ⋅ 𝐫ොሻଶ (c). We found that cells in 
unconfined biofilms also tended to align radially (𝑆 ൌ 0.18 േ 0.05,𝑛 ൌ 4 biofilmsሻ, albeit to a 
lesser extent than confined biofilms (𝑆 ൌ 0.54 േ 0.07), which has been reported before25,26 but 
never explained. We believe that the same macroscopic ordering mechanism applies generally to 
biofilms grown in any geometry. In this work, we used a confined geometry to increase the basal 
area of the biofilm, in order to focus on this emergent organization. Note that cells that do not 
belong to this cluster are manually removed. Scale bars, 10 μm. Source data are provided as a 
Source Data file. 

   



 

Supplementary Fig. 5| Cell-to-surface adhesion controls macroscopic cell organization. a, 
Cross-sectional view of the basal layer of biofilms with arabinose-inducible rbmC expression. In 
the presence of different concentrations of arabinose, a transition from disorder-to-order was 
observed with increasing arabinose. b, A similar disorder-to-order transition was seen with 
arabinose-inducible bap1 expression. Bap1 and RbmC have been shown to contribute to cell-to-
surface adhesion in a partially redundant fashion25. c, Probability distribution function (pdf) of the 
degree of verticalization |𝑛ୄ| showed a shift to more verticalized cells and less horizontal cells 
with higher rbmC expression controlled by arabinose concentration (error-bars correspond to the 
mean ± sd; 𝑛 ൌ 4, 3, 6 independent biofilms for 0%, 1/8% and 1% arabinose respectively). d, 
Spatial distribution of RbmC-3×FLAG stained with Cy3-conjugated anti-FLAG antibodies (2 
μg/mL; Sigma–Aldrich) shows that RbmC localizes on both the glass and gel surfaces. Scale bars, 
10 µm. Source data are provided as a Source Data file. 

   



 

Supplementary Fig. 6| Setup of the agent-based model. a, Schematic illustration of the agent-
based simulation consisting of biofilm dwelling cells, which are modeled as growing 
spherocylinders with length 𝐿ሺ𝑡ሻ and radius 𝑅, and the surrounding hydrogel, which is modeled 
using a coarse-grained particle system. b, Side view (Top) and bottom view (Bottom) of a 
representative simulated biofilm. In the bottom view, gel particles are omitted for clarity. 
Verticalized cells (𝑛ୄ  0.5) are labelled green, and horizontal cells (𝑛ୄ  0.5) are labelled red.  
Scale bar, 10 µm.  
  



 
Supplementary Fig. 7| Agent-based models of 3D biofilms with varying adhesion. a-c, Cells 
in the basal layer, color-coded by the angle 𝜙 each cell makes with the substrate, in biofilms 
possessing diffferent adhesion strengths. The dimensionless adhesion strength  𝐴ሚ ൌ Σ/𝑅𝐸 is 
10ିଵ, 10ିସ, and 10ି for c to e, respectively. d-f, The same biofilms as a-c with cells color-coded 
by the degree of radial alignment ሺ𝐧ෝ∥ ⋅ 𝐫ොሻଶ. Scale bar, 10 μm. g, Averaged S in biofilms with 
different dimensionless adhesion strengths (error-bars correspond to the mean ± sd; 𝑛 ൌ 10 
different simulated biofilms). Source data are provided as a Source Data file.   



 
Supplementary Fig. 8| Biofilms formed by nonadherent cells do not support stably 
verticalized cells in the basal layer. a, b, Reconstructed image of a biofilm from a WT* (a) and 
a ΔBC mutant biofilm (b), where cells are color-coded by the angle they make with respect to the 
bottom substrate. Overlain are arrows denoting the measured velocity field. c, Violin plot showing 
the distribution of cell orientations at different radii, for the WT* and ΔBC mutant biofilms, 
respectively. The WT* biofilm was able to sustain verticalized cells leading to a growth void in 
the middle, whereas the ΔBC mutant is unable to sustain verticalized cells, therefore leading to a 
linear velocity profile. Scale bars, 10 µm. Source data are provided as a Source Data file. 

   



Supplementary Fig. 9| Histogram of apparent in-plane growth rates in a WT* biofilm. 
Verticalized cells send their offspring into the third dimension and therefore no longer contribute 
to the expansion of the basal layer. This results in a bimodal distribution of cell growths that are 
either “growing” or “not growing” in-plane. Source data are provided as a Source Data file. 

   



 
Supplementary Fig. 10| Comparison of energy landscapes for different adhesion energies. a, 
b, Schematics of the cell configurations for the calculation of the verticalization (a) and pinch-off 
(b) instabilities. c, d, Determination of the instability point for the verticalization (c) and pinch-off 
instabilities (d). Regions in which Ω  0,𝑤  0 correspond to regions where fixed points are 
unstable. Circles denote the transition between stable and unstable behavior. Here  𝑛ሶୄ ൌ
Ωሺ𝛿ሻ𝑛ୄ and  𝑧ሶ ൌ 𝑤ሺ𝛿, 𝐿/2  0.999𝑅ሻ. e, Elastic energy due to cell-to-cell contacts in a cell being 
squeezed incrementally by its neighbors for different dimensionless adhesion energies,  A෩ ൌ
Σ/𝑅𝐸 (see schematic in Fig. 2f). Circles denote the points at which instabilities occur. Here the 
energy landscape is calculated using the results of the stability analysis. Note that for  𝐴ሚ  10ିଶ.ହ 
the total elastic energy at verticalization is nearly indistinguishable. Source data are provided as a 
Source Data file. 

  



 

Supplementary Fig. 11| Growth drives cells into the third dimension in the nonadherent 
mutant. a, Time-lapse imaging of a growing, puncta-labelled ΔBC biofilm showing the 
disappearance of puncta from basal layer over time, due to the corresponding cells being ejected 
from the basal layer. Scale bar, 10 μm. b, c Kymographs of puncta trajectories in a WT* (b) and 
a ΔBC mutant biofilm (c). In the WT* biofilm a stationary central region develops and expands. 
In contrast, in the mutant biofilm, no stationary region exists, and some cell trajectories abruptly 
end due to cell pinch-off.  

  



 

Supplementary Fig. 12| Verticalization and pinch-off dynamics in agent-based simulations. 
a, Example trajectories of a single cell (lineage) from agent-based simulations without adhesion 
(Left) and with adhesion (Right). b-e, Evolution of 𝑛ୄ (b, c) and the cell distance from the surface, 
𝑧∗ (d, e) around a verticalization event. A verticalization event is defined as the point where 𝑛ୄ 

becomes larger than 0.1 while the cell is still attached to the surface (𝑧∗ ൌ 𝑧 െ 𝑅 െ |఼|

ଶ
 0). We 

find that in this particular simulation, after verticalization, adherent cells tend to maintain a vertical 
configuration and fewer cells leave the surface (11%; 54 out of 495 verticalization events) when 
compared to nonadherent cells (44%; 144 out of 328 verticalization events). Source data are 
provided as a Source Data file. 
  



 

Supplementary Fig. 13| Schematic for the mechanism of flow-induced cell reorientation. a, 
Schematic showing the response of a rod-shaped bacteria in a straining flow. Under a pure straining 
flow, bacteria will tend to align along the principal strain axis. b, An example flow field assuming 
a growth void in the center. c, Decomposition of the fluid motion into pure translation, expansion, 
and strain, in the highlighted parcel in b. By Taylor expanding, the velocity in the parcel is 

decomposed in the following way: 𝐮ሺ𝐫  𝐫′ሻ ൌ 𝐮ሺ𝐫ሻ  𝐃ሺ𝐫ሻ𝐫ᇱ  𝐄ሺ𝐫ሻ𝐫′ where 𝐃 ൌ ଵ

ଶ
ሺ∇ ⋅ 𝐮ሻ𝐈. In 

the presence of a growth void, each parcel of fluid exhibits straining motion which tends to align 
cells in the radial direction.     



 

Supplementary Fig. 14| Continuum modelling confirms that a growth void is sufficient to 
drive radial cell alignment. a, b, Evolution of the director field for a biofilm without (a) and with 
(b) a growth void. In panel b the radius of the void is 𝑟 ൌ ሺ3/5ሻ𝑟 , where 𝑟  corresponds to the 
biofilm size when the growth void is introduced. c, Evolution of S averaged over the growing 
region for different dimensionless initial void sizes 𝑟/𝑟  (error-bars correspond to the mean ± sd; 
𝑛 ൌ 10 different random initializations). The dimensionless flow alignment parameter 𝐿෨ ൌ
𝜆/4𝑞 ൌ 1.5. Radial order emerges over time but plateaus because, unlike the WT* biofilm with 
an expanding verticalized core, the size of the void is constant in this set of calculations and its 
effect on cell reorientation is limited to cells near the void due to the 1/𝑟ଶ dependence of the 
driving force. Scale bars, 10 μm. Source data are provided as a Source Data file. 

   



 
Supplementary Fig. 15| Laser irradiation causes cell death and results in a growth void. a, 
Two ΔBC biofilms in close proximity before laser irradiation. b, The same biofilms after being 
irradiated in a circular pattern using 405 nm light. Dead cells are stained with propidium iodide. c, 
The measured radial velocity field 1 hour after irradiation (red) and without irradiation (blue) 
(superimposed error-bars correspond to the mean ± sd of the data binned on 1 μm intervals; 𝑛  2 
cells per bin). Scale bars, 10 μm. Source data are provided as a Source Data file. 

   



Supplementary Fig. 16| Nonadherent biofilms have the potential to form vortex structures 
due to non-uniform growth. To probe if vortex structures were possible, we imaged ΔBC 
biofilms that were initially embedded inside the bulk of the gel instead of starting at the gel-glass 
interface. This is because, once such a biofilm reached the interface, it preferentially grew at the 
interface with little increase in biofilm height, leading to excess growth introduced into the basal 
layer from the bulk, mostly at the center. This process is given schematically in panel a. Initially, 
the biofilm grows completely inside the gel without being in contact with the glass surface. 
Eventually, the growing biofilm begins to spread between the gel and the glass surfaces and cells 
grow preferentially along this interface. In this case, excess growth is supplied by cells in the bulk 
(red arrow) which add to the in-plane growth rate at the center of the basal layer (black arrows). 
Excess growth at the center gives rise to a negative 𝑓ሺ𝑟, 𝑡ሻ in Main Text Eq. 2 (see Supplementary 
Information Section 4 for more discussion), therefore providing a driving force to align cells 
azimuthally. b-e, Time-lapse imaging of a growing ΔBC biofilm in which a vortex-like structure 
appears (𝑡 ൌ 6, 9, 12, 15 hrs). A zoom-in image is provided in b when the embedded biofilm first 
touches the glass surface; at this moment cells are randomly oriented. f, Reconstructed biofilm 
from panel e where cells are color-coded based on the degree of radial alignment ሺ𝐧ෝ∥ ⋅ 𝐫ොሻଶ. A value 
of zero denotes cells that are oriented azimuthally (circumferentially). Source data are provided as 
a Source Data file. 

  



Supplementary Fig. 17| Quasi-2D simulation corresponding to the laser irradiation 
experiments. a, Configuration of a 2D biofilm (left) right before imposing a growth void and 
(right) 4hr after imposing a growth void (highlighted by the white circle). The color denotes the 
degree to which the cell orientation coincides with the radial director ሺ𝐧ෝ∥ ⋅ 𝐫ොሻଶ. Scale bars, 10 μm. 
b, Evolution of the azimuthally averaged 𝑆ሺ𝑟ሻ in biofilms after the creation of a growth void. 
Dashed blue line shows the result from a control biofilm without a growth void. Source data are 
provided as a Source Data file. 

  



 

Supplementary Fig. 18| Dependence of stress anisotropy on radial alignment. a-b 
Measurement of the stress anisotropy in ABS in an isotropic (𝑆 ൌ െ0.01; a) and a radially aligned 
(𝑆 ൌ 0.15; b) 2D biofilm (superimposed error-bars correspond to the mean ± sd of the data binned 
on 3 μm intervals; 𝑛  20 cells per bin). In b a growth void is introduced to drive radial alignment 
in the periphery. Inset: The corresponding cell configurations where cells are color-coded by the 
degree of radial alignment ሺ𝐧ෝ∥ ⋅ 𝐫ොሻଶ (red - radially aligned, blue - circumferentially aligned cells). 
In the radially aligned case, a small systematic amount of anisotropy is observed. Source data are 
provided as a Source Data file. 

 

   



 

Supplementary Fig. 19| Representative results from two-phase active nematic model. a-c, 
Representative 2D plots of the fraction of verticalized cells 𝜌 (a), the velocity field (b), and the 
director field (c) for dimensionless verticalization rate  𝛽෨ ൌ 2.5 and dimensionless flow alignment 
parameter 𝐿෨ ൌ 1.5. Scale bars, 10 μm. d-k, Results of the model for a small verticalization rate 
𝛽෨ ൌ 0.25 (d-g) and for a large verticalization rate 𝛽෨ ൌ 25 (h-k). l-n, Evolution of S for three 
different flow alignment rates 𝐿෨ while keeping the same 𝛽෨ ൌ 2.5. The colors denote model results 
at different times in panels d-n. 

  



 
Supplementary Fig. 20| Rescaled two-phase active nematic model. a-d Evolution of pressure 
𝑝 (a), fraction of vertical cells 𝜌 (b), in plane radial velocity 𝑢 (c), and radial order parameter 𝑆 
(d). Curves are colored according to time and results for a biofilm that do not verticalize (C = 0) 
are shown in blue.  The data presented here are identical to the data presented in Figure 4a-d 
except that the x-axis has been re-scaled by the overall biofilm radius. Source data are provided 
as a Source Data file. 
  



Table S1: List of the strains used in this study 
 
Strains Genotype Source  
JN007 vpvcW240R, ∆rbmA, ∆vc1807::Ptac-mNeonGreen-SpecR This study 
JN009 vpvcW240R, ∆rbmA, ∆bap1, ∆rbmC, ∆vc1807::Ptac-mNeonGreen-SpecR This study 
JN010 vpvcW240R, ∆vpsL, ∆vc1807::Ptac-mNeonGreen-SpecR This study 
JN148 vpvcW240R, ∆rbmA, ∆lacZ::Ptac-mNeonGreen-µNS, ∆vc1807::Ptac-mScarletI-SpecR This study 
JN150 vpvcW240R, ∆rbmA, ∆bap1, ∆rbmC, ∆lacZ::Ptac-mNeonGreen-µNS, ∆vc1807::Ptac-

mScarletI-SpecR 
This study 

JN035 vpvcW240R, ∆rbmA, ∆bap1, ∆rbmC, ∆vc1807::Ptac-mNeonGreen-SpecR, pJY056 This study 
JN036 vpvcW240R, ∆rbmA, ∆bap1, ∆rbmC, ∆vc1807::Ptac-mNeonGreen-SpecR, pJY057 This study 
JY489 vpvcW240R, ∆rbmA, rbmC-3ൈFLAG, ∆vc1807::Ptac-mNeonGreen-SpecR This study 
   
Plasmid   
pJY056 KanR, araC-PBAD-rbmC 26 
pJY057 KanR, araC-PBAD-bap1 26 

 
 
 
  



Table S2: List of cell parameters used in the agent-based simulations. 
 

𝑅ሺμmሻ  𝐿୫ୟ୶ሺμmሻ  𝐸ሺPaሻ  𝛾ሺsିଵሻ ΣሺNmିଵሻ  𝜂ሺPa ⋅ sሻ  𝜂ଵሺPa ⋅ sሻ 

0.8  3.6  300  3.12 ൈ 10ିସ  7.3 ൈ 10ି  20  2 ൈ 10ହ 



Table S3: List of gel parameters used in the agent-based simulations. 
 
𝑅ୣ୪ሺμmሻ  𝐸ଵሺPaሻ  𝑘୰ ሺNmିଵሻ 𝑘ሺNmଶሻ   𝜉(μm)  𝜁ሺ°ሻ  ΣଵሺNmିଵሻ 

1.0  1500  6 ൈ 10ିଷ  6.6 ൈ 10ିସ  0.6  120  6 ൈ 10ିଶ 
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