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1. Optimized Hyperparameters

The hyperparameters include parameters used to generate the crystal graphs, parameters of the neural net-

works, and parameters that control the training process. The hyperparameters are optimized through a

train-validation process, on a fixed validation set. The following ranges of hyperparameters are searched: (1)

batch size: 32–64, (2) embedding dimensions: 64–256, (3) number of message blocks: 4-8, and (4) learning

rate: 1e�n, n = 3-5. The mean absolute error of total energy prediction is reduced by 0.005 eV/atom by

using a weight decay compared to when not using it.

Table S1: List of optimized hyperparameters in this work

Hyperparameter Optimized value

Batch size 64
Embedding dimension 256
Number of message blocks 6
Learning rate 1e�3

Weight decay 1e�5

Number of epochs 500
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2. Performance of the Models Trained on Total Energy of ICSD Structures

To estimate the uncertainty in the mean absolute error (MAE) of total energy prediction, four di↵erent

models are trained on the DFT total energy of ICSD structures. The uncertainty in the MAE is the

standard deviation across the four models, each tested on a di↵erent hold-out test set.

Figure S1: Models trained on ICSD structures: Convolutional neural networks trained on DFT total
energy of ICSD structures from the NREL Materials Database. (a)-(d) Performance of the models trained
and tested on four di↵erent sets of crystal structures. The mean absolute errors (MAEs) for the four di↵erent
test sets are (a) 0.036 eV/atom, (b) 0.041 eV/atom, (c) 0.042 eV/atom, and (d) 0.045 eV/atom. The overall
MAE across the four models is 0.041±0.005 eV/atom.
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3. Performance of Model Trained on Total Energy of Hypothetical Structures

The model trained exclusively on the hypothetical structures is used to predict the total energy of the ICSD

structures. Only a subset of ICSD structures, which contain the same 24 elements present in the hypothetical

structure dataset, are chosen. The model poorly predicts the total energy of the ICSD structures with a

large mean absolute error.
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Figure S2: Model trained on hypothetical structures: The total energy of 1065 ICSD structures is
predicted with the model trained on the hypothetical structures alone (see Section 2.2 in the main text).
The predicted total energy has large errors compared to the DFT values. The mean absolute error (MAE)
of the test set prediction is 0.424 eV/atom, suggesting the model is biased towards hypothetical structures.
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4. Performance of the Hybrid Model Trained on Total Energy of ICSD and

Hypothetical Structures

To estimate the uncertainty in the mean absolute error (MAE) of total energy prediction, four di↵erent

models are trained on the DFT total energy of ICSD and hypothetical structures. The uncertainty in the

MAE is the standard deviation across the four models, each tested on a di↵erent hold-out test set. The

training, validation and test sets are chosen with no overlap of compositions for the hypothetical structures.

Figure S3: Models trained on combined dataset: Convolutional neural networks trained on DFT
total energy of ICSD and hypothetical structures. (a)-(d) Performance of the models trained and tested on
four di↵erent sets of crystal structures. The mean absolute errors (MAEs) for the four di↵erent test sets
are (a) 0.035 eV/atom, (b) 0.038 eV/atom, (c) 0.040 eV/atom, and (d) 0.044 eV/atom. Gray(red) data-
points correspond to ICSD(hypothetical) structures The overall MAE across the four models is 0.040±0.005
eV/atom.
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5. Learning Curve of the Model Trained on ICSD and Hypothetical Structures

A learning curve compares the performance of a model on a test set for varying number of training instances

and therefore, can provide insights into whether a model is overfitted. The learning curve for the model

trained on the “combined” dataset of ICSD anf hypothetical structures shows that: (1) there is a systematic

improvement in the model performance with the number of training crystal structures, and (2) the minimum

number of training structures to achieve an MAE<0.05 eV/atom is ⇠ 2⇥ 104.
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Figure S4: Learning curve of model trained on combined dataset: Learning curve for the hybrid
model, showing that at least 2⇥104 crystal structures are required to achieve an MAE of <0.05 eV/atom.
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6. Comparison of Prediction Accuracy

ICSD structures Hypothetical structures
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Figure S5: Comparison of prediction accuracy: Comparison of prediction MAE for ICSD and hypo-
thetical structures of the model trained only on ICSD structures (Figure 1a in main text), model trained
only on hypothetical structures (Figure 3a in main text), model trained on the combined dataset (blue),
MEGNet model trained on the combined dataset (purple), and CGCNN model trained on the combined
dataset (orange). For an equitable comparison, in all cases the same crystal structures are used in the train-
ing, validation, and test sets. The standard deviation (shown as error bars) is calculated from 4 di↵erent
models with non-overlapping test sets.
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7. Predicted Energy Rankings of MgO and ZnO Polymorphs

Figure 4 in the manuscript presents the energy rankings for di↵erent compositions in the hypothetical

structures dataset. Here, we examine the energy rankings of two well-known binary compounds, MgO and

ZnO, for which several experimentally realized and computationally proposed polymorphs are documented

in the ICSD. There are 9 and 5 unique polymorphic structures reported for MgO and ZnO, respectively.

The hybrid model correctly identifies the ground-state structures (rocksalt MgO, wurtzite ZnO) and also,

satisfactorily ranks the other polymorphic structures.
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Figure S6: Energy ranking of polymorphic structures: Predicted relative energy (E �Emin) of MgO
and ZnO polymorphs reported in the ICSD is compared with DFT values. The model correctly identifies the
known ground-state structures of both MgO (rocksalt, space group #225) and ZnO (wurtzite, space group
#186).
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8. Predicted Energy Ranking with GNN Models Trained on ICSD Structures

We train our GNN model, and MEGNet and CGCNN models on identical dataset consisting of only ICSD

structures and compare the predicted energy rankings with DFT. The models consistently fail to rank

structures in the correct order of their energies because of their bias towards the ground state structures. In

particular, the models incorrectly label higher-energy structures as low energy.
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Figure S7: Energy ranking of hypothetical structures: Predicted relative energy (E � Emin) of
hypothetical structures of 10 di↵erent compositions from the test set in Figure 3(b) compared with DFT,
using the models trained on ICSD structures. The x-axes represent di↵erent polymorphic structures of a
given composition, which are generated through ionic substitution.
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9. k-Nearest Neighbor Analysis of Ca7Ge

The total energy of Ca7Ge is severely underestimated (-0.545 eV/atom relative to the DFT value) by the

hybrid model (Figure 3b). The intermetallic compound Ca7Ge lies above the convex hull (see manuscript

for details). To understand the source of the error, we perform a k-Nearest Neighbor (kNN) analysis of the

elemental embeddings for all Ca and Ge sites in Ca7Ge. From this analysis, we identify the first 10 NNs

and their elemental identities. The Ca(4b) Wycko↵ site has 9 NNs that are Ba atoms, while 1 NN is Sr.

In contrast, the Ca(24d) Wycko↵ site has 3 Ca NNs, 2 Sr, and 5 Ba. Moreover, the Ca-Ge bond lengths

associated with the Ca(4b) site are larger compared to the Ca(24d) site. The Ge(4a) site has all 10 NNs

that are Ge.
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Figure S8: Elemental nearest neighbor analysis of Ca7Ge: k-Nearest Neigbor (kNN) distances of the
first 10 nearest neighbors for each Ca (4b, 24d and Ge (4a) Wycko↵ sites in Ca7Ge. The elemental identities
of the 10 nearest neighbors for each Wycko↵ site are labelled.

11



10. Site Energies and t-SNE Projections: Na17Al5O16, Na14Al4O13

Chemical trends are identified by analyzing the probability density distribution of the elemental site energies

(Figure 5) and t-SNE analyis of the elemental embeddings (Figure 6). In some cases, there can be a departure

from the general trends. For example, some of the Na sites in Na17Al5O16 (space group #8) and Na14Al4O13

(space group #14) are 3-fold and 4-fold coordinated with elemental site energies in the “tail” of the oxides

(near the peak of pnictides) energy distribution. The elemental embeddings for those same Na sites lie in

the pnictogen cluster in the t-SNE projection. The other Na sites that lie closer to the peak of the oxides

energy distribution (in the oxides cluster in t-SNE projection) are 5-fold coordinated.
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Figure S9: Elemental site energies of Na17Al5O16 and Na14Al4O13: Elemental site energy and t-SNE
projection of elemental embedding of Na sites in (a, c) Na17Al5O16 and (b, d) Na14Al4O13 are marked with
open circles.
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11. Phase Stability Assessment with GNN Model
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Figure S10: Phase stability predicted with GNN: Comparison of energy above the convex hull (�Ehull)
predicted with our GNN model (trained on the combined dataset) and with DFT for 1794 ICSD compounds.
The color scheme corresponds to the number of competing phases for each compound.
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12. Phase Stability of Compounds Containing Group 5-10 Transition Metals
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Figure S11: Phase stability prediction of compounds with and without redox-active transition
elements: (a) PRC for phase stability predictions with our combined model compared for 761 compounds
containing redox-active transition elements (groups 5-10) and 1033 compounds not containing groups 5-10
elements. (d) PRC for phase stability predictions of 1794 ICSD compounds (Figure S10) compared for
our GNN model (trained on the combined dataset) and the CGCNN model (also, trained on the combined
dataset). The performance of the re-trained CGCNN model is similar to our GNN model.
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13. Comparison of ICSD and Combined Models in Predicting Phase Stability of

Hypothetical Structures
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(b) Combined Model

(c) PRC Curves

Pr
ed

ic
te

d 
E h

ul
l  

(e
V/

at
om

)
0

0.2

0.4

0.6

0.8

1.0

1.2

DFT Ehull  (eV/atom)

0 0.2 0.4 0.6 0.8 1.0 1.2

ICSD Model
Combined Model

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1.0

Recall

0 0.2 0.4 0.6 0.8 1.0

Figure S12: Comparison of ICSD and combined models in predicting phase stability: Phase
stability of the hypothetical structures in Figure 4 of the main text. Predicted energy above the convex hull
(�Ehull) compared with the corresponding DFT values for the (a) ICSD model, and (b) combined model.
(c) Precision-Recall curves for the ICSD model and the combined model. Since the ICSD model is biased
towards ground-state structures, it predicts significantly more false positives than the combined model. The
area under the PRC curves (AU-PRC) for the ICSD and combined models are 0.60 and 0.99, respectively.
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14. Comparison of GNN and Composition-only Models for Phase Stability

A precision-recall curve (PRC) provides a quantitative measure of the model’s accuracy to classify a material

as stable or unstable. The PRC for our GNN model prediction of phase stability of the 1033 compounds is

compared with the PRC for stability predictions with the composition-based Magpie model. The area under

the PRC (AU-PRC) is 1 for perfect classification and 0 for random guess. The AU-PRC for our GNN model

is 0.98, which is significantly higher than that for Magpie model (0.78).
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Figure S13: Comparison of phase stability prediction with GNN and composition-only models:
Comparison of precision-recall curves (PRC) for phase stability predictions of 1033 ICSD compounds with
our GNN model (trained on combined dataset) and the composition-based Magpie model.
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