Supporting Information

Hydroxylated-graphene: a promising reinforcing nanofiller

for nano-engineering cement composites

Sen Yang, Wen Jia, Yuangui Wang, Weifu Zhang, Xiaoya Yuan*

College of Materials Science and Engineering, Chongqing Jiaotong University,

Chongqing 400074, China.

Corresponding Author: Xiaoya Yuan (Email): <u>yuanxy@cqjtu.edu.cn</u>.

1. Figures

Figure S1. (a) ¹³C NMR and (b) ¹H NMR spectra of HO-G. "ssb" denotes spinning

sidebands.

Figure S2. Typical AFM images and the corresponding height profiles of GO(a, b),

TRGO(c, d), HO-G(e, f).

Figure S3. XRD patterns of GO, TTGO and HO-G.

Figure S4. HRTEM images of GO(a, b), TRGO(c, d) and HO-G(e, f).

Figure S5. SAED image of HO-G.

Figure S6. The contact angles of (a) GO, (b) HO-G and (c) TRGO.

Figure S7. (a) Zeta potentials of aqueous HO-G solutions of different concentrations.

(b) The change of absorbance of aqueous HO-G solution (30 mg/L) vs centrifuge

number.

Figure S8. Digital photographs of aqueous HO-G solutions (30 mg/L) with different

standing times.

Figure S9. (a) UV-vis spectra of aqueous GO and HO-G solution. (b) The plots of

absorbance of aqueous HO-G solutions with different concentrations.

Figure S10. XRD patterns of HO-G blended cement mortars nanocomposites cured at

28 days.

2. Tables

cement composites.						
Nanofillers	Optimal	mechanical prop	References			
	dosage ^a	(%)				
	(%) Compressive Flexur				Flexural	
		strength	strength			
Nano silica	2	10.1	11.0	Shi et al 1		
$(nano-SiO_2)$	2	10.1	11.0	Sill et al.		
Nano-alumina (nano-	1	1 19.46		C_{2} at al ²		
$Al_2O_3)$	1	10.40	0.27	Ut ti al.		
Nano-calcium carbonate	2	3 73	1.68	Cosontino et al 3		
(nano-CaCO ₃)	2	5.25	4.00	Cosentino et al.		
Nano-titanium oxide	0.75	0.75 10.33		Salman at al 4		
$(nano-TiO_2)$	0.75	19.55	13.1	Sannan et al.		
Carbon nanotubes	0.05	6.4	10.1	Du $at al 5$		
(CNTs)	0.05	0.4	10.1	Du et al.		
Graphene oxide	0.02	10.6	17 54	This study		
(GO)	0.03	19.0	17.34	This study		
Hydroxylated-graphene	0.03	21 10	7 80	This study		
(HO - G)	0.03	21.17	1.07	This study		

Table S1. Comparisons of HO-G against other nanofillers for the enhancement of

cement composites.

a. based on the mass ratio of cement weight.

Chemical composition	Test value (%)		
Al_2O_3	4.47		
SiO2	21.5		
Fe ₂ O ₃	3.37		
CaO	65.84		
MgO	3.18		
SO ₃	0.3		
NaO	0.49		
f-CaO	0.78		
C ₃ S	58.92		
C_2S	20.19		
C ₃ A	8.12		
C ₄ AF	8.21		

 Table S2. Chemical compositions of cement (%).

properties	Test value		
Fineness (%)	0.6		
Density (g/cm ³)	3.15		
Specific surface area (m ² /kg)	350		
Standard Consistency (%)	25.6		
Soundness (mm)	0.5		
Initial Setting Time (min)	132		
Final Setting Time (min)	198		

 Table S3. Physical properties of cement.

Table S4. Gradation of standard sand.

Square mesh size (mm)	Remaining on the sieve (%)		
2.0	0		
1.6	7 ± 4		
1.0	33 ± 4		
0.5	67 ± 4		
0.16	87 ± 4		
0.08	99 ± 1		

Sample	Cement (g)	Sand(g)	Water (g)	PCE (%) ^a	GO (%) ^a	HO-G(%) ^a
A_0	450	1350	164.93	0.3	0	0
B _{0.01}	450	1350	164.93	0.3	0.01	0
B _{0.03}	450	1350	164.93	0.3	0.03	0
B _{0.05}	450	1350	164.93	0.3	0.05	0
B _{0.07}	450	1350	164.93	0.3	0.07	0
B _{0.09}	450	1350	164.93	0.3	0.09	0
C _{0.005}	450	1350	164.93	0.3	0	0.005
C _{0.01}	450	1350	164.93	0.3	0	0.01
C _{0.03}	450	1350	164.93	0.3	0	0.03
C _{0.05}	450	1350	164.93	0.3	0	0.05
C _{0.07}	450	1350	164.93	0.3	0	0.07
C _{0.09}	450	1350	164.93	0.3	0	0.09

Table S5. Mix proportion of cement mortars.

a. based on the mass ratio of cement weight.

Reference

 Cheng, Y.; Shi, Z. Experimental Study on Nano-SiO2 Improving Concrete Durability of Bridge Deck Pavement in Cold Regions. *Adv. Civ. Eng.* 2019, 2019, 1-9, DOI: 10.1155/2019/5284913.

(2) Zhang, A.; Yang, W.; Ge, Y.; Du, Y.; Liu, P. Effects of nano-SiO2 and nano-Al2O3 on mechanical and durability properties of cement-based materials: A comparative study. *J. Build. Eng.* **2021,** *34*, DOI: 10.1016/j.jobe.2020.101936.

(3) Cosentino, I.; Liendo, F.; Arduino, M.; Restuccia, L.; Ferro, G. A. Nano CaCO3 particles in cement mortars towards developing a circular economy in the cement industry. *Procedia Struct Integrity* 2020, 26, 155-165, DOI: 10.1016/j.prostr.2020.06.019.

(4) Siang Ng, D.; Paul, S. C.; Anggraini, V.; Kong, S. Y.; Qureshi, T. S.; Rodriguez, C.
R.; Liu, Q.-f.; Šavija, B., Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. *Constr. Build. Mater.* 2020, 258, 119627.1-119627.11, DOI: 10.1016/j.conbuildmat.2020.119627.

(5) Du, M.; Jing, H.; Gao, Y.; Su, H.; Fang, H. Carbon nanomaterials enhanced cementbased composites: advances and challenges. *Nanotechnol. Rev.* **2020**, *9* (1), 115-135, DOI:10.1515/ntrev-2020-0011.