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(a) Forcite Analysis in case of PEG-hydrogel

(b) Forcite Analysis in case of PPG-hydrogel
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Figure S1: Concentration profile, radial distribution function (RDF), scattering, and radius of gyration 
obtained from Forcite Module analysis in case of PEG-and PPG-hydrogels respectively

Figure S1 indicates that an increase in the radius of gyration (Rg) confirms that the molecules are more 
overextended and aligned perpendicularly towards the water/ oil boundary.
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(a) DPD analysis results in the case of PEG-hydrogel

(b) DPD analysis results in the case of PPG-hydrogel
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Figure S2: The DPD simulation analysis in case of PEG-and PPG-hydrogels

1. Spectral analysis
FT-IR bands of the PPG and PEG surfmers are displayed in Figures (S3 a and b), respectively. 
The broadbands at 3434 - 3390 cm-1 resort to (-OH) group vibration. The intense bands at 2981 
cm-1 and 2882 cm-1 correspond to the CH2 symmetrical stretching vibration. The broadband at1720 
and1635 cm-1 was assigned to the C=O stretching vibration of conjugated anhydride. The band at 
1635 cm-1 represents the C=C of the alkene stretching. The band at 1453 cm-1 resorts to CH2 group 
scissoring. Bands at 1381 cm-1 and 1296 cm-1 can be attributed to C-O-C asymmetric stretching 
vibrations. The intense bands at 945 and 815 cm-1 are assigned to the stretching vibrations of the 
C-C skeleton. IR spectra of poly(propyleneglycol) based hydrogels (PPG- hydrogel) and 
poly(ethylene glycol) based hydrogel (PEG-hydrogels) are displayed in Figures S3 c and d. They 
exhibit broadband in the range of 3500-3000 cm-1, which resorted to (-OH and -NH) stretching 
vibrations in AMPS and AM, respectively. The disappearance of characteristic peaks of vinyl groups 
indicates that the complete polymerization has been achieved 1-2. 
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Figure S3: FT-IR spectra of (a) PPG-surfmer; (b) PEG-surfmer; (c) PPG-hydrogel; and (d) PEG-
hydrogel

1H-NMR spectra of PEG- and PPG surfmers and hydrogels, as displayed in Figure S4, indicate that PEG- 
and PPG-surfmers show nearly similar chemical shifts. Moreover, PEG- and PPG- hydrogels exhibit the 
characteristic chemical shifts of surfmers in addition to typical chemical shifts of monomers, as summarized 
in Table S1. The absence of a vinyl bond shift confirms complete polymerization occurrence 2. 

Table S1: Summary of chemical shifts (1H-NMR)

Cpd Chemical shift (δ, ppm) Peak identification
1.93 (S, 6H, 2(-CH3) Terminal alkyl groups

2.2- 4.2 (s, 4H, O-CH2- CH2-O)
2.2- 4.4 (t, 6H, O-CH2- CH2-CH2-O)

characteristic chemical shifts of ethylene oxide
typical chemical shifts of propylene oxide

PEG- and PPG- 
surfmers

5.72 - 5.80 (s, 4H, 2 (C=CH2) characteristic chemical shifts of vinyl bond
1.02 (s, 1H, -OH) Hydroxyl group in AMPS monomer

6.60 (s, 2H, (NH2-C=O) Amide group in AM monomerPEG- and PPG-
hydrogels 0.95- 1.80 (pendant methyl and backbone methylene groups)
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Figure S4: 1H-NMR of PEG- and PPG- surfmers and hydrogels

The TGA-thermograms of the PEG- and PPG-hydrogels as displayed in Figure S5 exhibit four degradation 
stages; the first phase occurs at 25-250C and is assigned to the vaporization of bounded water 3-4. The 
second stage at 250-325C related to the disintegration of the amide groups on the hydrogel chains 5-6. The 
third stage at 325-385C corresponds to the complete degradation of other side chain moieties, including 
sulfonic groups in AMPS and pyrrolidone rings, in addition to the breakdown of carbon-nitrogen bonds 6-

7. The fourth stage occurs at 385-600C and related to the complete degradation and carbonization of the 
polymer skeleton 6. TGA- thermograms of PEG- and PPG- hydrogels are closely associated with each other, 
as exhibited in Figure S5. However, at a temperature higher than 385C, the weight loss in PPG-hydrogel 
is higher than the weight loss in PEG-hydrogel. This thermal behavior may resort to PPG has a longer 
carbon chain than PEG, so by thermal degradation, its weight loss is higher than PEG.
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Figure S5: TGA- thermograms of PEG- and PPG hydrogels
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