Experimental and theoretical investigation of glycol-based hydrogels through waterflooding
processes in oil reservoirs using molecular dynamics and dissipative particle dynamics simulation.

Abdelaziz N. El-hoshoudy*

Production Department, Egyptian Petroleum Research Institute, Naser City, Cairo, Egypt.

Corresponding author: Abdelaziz Nasr El-hoshoudy( azizchemist@yahoo.com)

S1


mailto:azizchemist@yahoo.com

(a) Forcite Analysis in case of PEG-hydrogel
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(b) Forcite Analysis in case of PPG-hydrogel
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Forcite Analysis - Radius of gyration
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Figure S1: Concentration profile, radial distribution function (RDF), scattering, and radius of gyration
obtained from Forcite Module analysis in case of PEG-and PPG-hydrogels respectively

Figure S1 indicates that an increase in the radius of gyration (R,) confirms that the molecules are more
overextended and aligned perpendicularly towards the water/ oil boundary.
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(a) DPD analysis results in the case of PEG-hydrogel
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(b) DPD analysis results in the case of PPG-hydrogel
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Figure S2: The DPD simulation analysis in case of PEG-and PPG-hydrogels

1. Spectral analysis

FT-IR bands of the PPG and PEG surfmers are displayed in Figures (S3 a and b), respectively.
The broadbands at 3434 - 3390 cm! resort to (-OH) group vibration. The intense bands at 2981
cmand 2882 cm! correspond to the CH, symmetrical stretching vibration. The broadband at1720
and1635 cm! was assigned to the C=0 stretching vibration of conjugated anhydride. The band at
1635 cm™! represents the C=C of the alkene stretching. The band at 1453 cm! resorts to CH, group
scissoring. Bands at 1381 cm™! and 1296 cm! can be attributed to C-O-C asymmetric stretching
vibrations. The intense bands at 945 and 815 cm! are assigned to the stretching vibrations of the
C-C skeleton. IR spectra of poly(propyleneglycol) based hydrogels (PPG- hydrogel) and
poly(ethylene glycol) based hydrogel (PEG-hydrogels) are displayed in Figures S3 c and d. They
exhibit broadband in the range of 3500-3000 cm'> which resorted to (-OH and -NH) stretching
vibrations in AMPS and AM, respectively. The disappearance of characteristic peaks of vinyl groups
indicates that the complete polymerization has been achieved !-2.
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Figure S3: FT-IR spectra of (a) PPG-surfmer; (b) PEG-surfmer; (c) PPG-hydrogel; and (d) PEG-
hydrogel

TH-NMR spectra of PEG- and PPG surfmers and hydrogels, as displayed in Figure S4, indicate that PEG-
and PPG-surfmers show nearly similar chemical shifts. Moreover, PEG- and PPG- hydrogels exhibit the
characteristic chemical shifts of surfmers in addition to typical chemical shifts of monomers, as summarized
in Table S1. The absence of a vinyl bond shift confirms complete polymerization occurrence 2.

Table S1: Summary of chemical shifts (‘H-NMR)

Cpd Chemical shift (6, ppm) Peak identification
1.93 (S, 6H, 2(-CHj3) Terminal alkyl groups
PEG- and PPG- 2.2-4.2 (s, 4H, O-CH,- CH,-0) characteristic chemical shifts of ethylene oxide
surfmers 2.2-4.4 (t, 6H, O-CH,- CH,-CH,-0) | typical chemical shifts of propylene oxide
5.72 - 5.80 (s, 4H, 2 (C=CH,) characteristic chemical shifts of vinyl bond
1.02 (s, 1H, -OH) Hydroxyl group in AMPS monomer
PES}; (idr I:)(;:EG_ 6.60 (s, 2H, (NH,-C=0) Amide group in AM monomer
0.95- 1.80 (pendant methyl and backbone methylene groups)
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Figure S4: '"H-NMR of PEG- and PPG- surfmers and hydrogels

The TGA-thermograms of the PEG- and PPG-hydrogels as displayed in Figure S5 exhibit four degradation
stages; the first phase occurs at 25-250°C and is assigned to the vaporization of bounded water 3. The
second stage at 250-325°C related to the disintegration of the amide groups on the hydrogel chains . The
third stage at 325-385°C corresponds to the complete degradation of other side chain moieties, including
sulfonic groups in AMPS and pyrrolidone rings, in addition to the breakdown of carbon-nitrogen bonds ¢
7. The fourth stage occurs at 385-600°C and related to the complete degradation and carbonization of the
polymer skeleton 6. TGA- thermograms of PEG- and PPG- hydrogels are closely associated with each other,
as exhibited in Figure S5. However, at a temperature higher than 385°C, the weight loss in PPG-hydrogel
is higher than the weight loss in PEG-hydrogel. This thermal behavior may resort to PPG has a longer
carbon chain than PEG, so by thermal degradation, its weight loss is higher than PEG.
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Figure S5: TGA- thermograms of PEG- and PPG hydrogels
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