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S1 Further details of the mathematical model

The model is (same as main text Eq 1):

dNα

dt
= gαNα

(
(1− lα)

∑
j

cαjRj − zα
)
,

dRj

dt
= κj + τ−1Rj −

∑
α

NαcαjRj +
∑
αk

NαlαDαkjcαkRk.

(S1)

In matrix form, this system can be written as as:

dN

dt
= D(g ◦N ) (D(1− l)CR− z)

dR

dt
= κ− τ−1R−D(R)CTN +

∑
α

lαD
T
αD(R)cαNα

Here, ◦ denotes an element-wise operation, R and N are the vectors of resource concen-
trations and population abundances respectively, 1 is a vector of ones, and the remaining
symbols in boldface represent the same quantities in Eq S1 in vector form. C is the matrix
of consumers’ preferences, and D(x) is a diagonal matrix with the vector x as its diagonal.

S1.1 Cost function

Every microbial cell has a maintenance cost, which is the energy required to perform tasks
to remain alive such as transportation of metabolites and synthesis of RNA and enzymes for
metabolizing substrates. We define this cost to be

zα = χ0(1 + εα)(1− lα)
∑
j

cαj.

Here, χ0 is the average cost of consuming a given resource, the summation represents the total
number of resources that species α is able to process, and εα is a small random fluctuation
sampled from a truncated normal distribution (εα ∼ N(0, 0.1)), that introduces variation
in the cost for species that have identical preferences. Also, note that the fitness of an
organism is determined by both its cost and its metabolic preferences, so we keep the random
fluctuations to be small values (relative to the uptake values) in all simulations because if
the are too large, fitness of the organism would be purely determined (randomly) by its
cost, which would be biologically unrealistic considering the unavoidable feedback between
environment and consumers in determining their fitness. As such, setting εα = 0 ∀ α would
not qualitatively change our results about coalescence outcomes.

This cost function entails two key assumptions. The first assumption is that generalist
consumer species (which feed on a wide range of resources types) pay a higher maintenance
cost (the summed term in the cost function) than specialists (which consume one or few re-
source types; henceforth, the “generalism cost”). More generalist species necessarily maintain
more complex metabolic networks than specialist species, and the upkeep of larger metabolic
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networks (and thus, larger genomes) incurs in greater maintenance costs DeLong2010, Kem-
pes2017, leading to a trade-off between resource generalism and cost of maintenance. Here
we impose this trade-off such that the maintenance cost is proportional to the sum of all
resource preferences (i.e. the number of resources consumed). This assumption is similar to
the one made by [3] (also see [4]).

The second assumption is that the cost of cellular maintenance is also proportional to the
fraction of retained resources (1 − l), i.e., species that retain greater quantities of resources
(those with less leakage, l) have higher maintenance costs (the “efficiency cost”). This as-
sumption stems from the fact that the processing of resources itself incurs a metabolic cost
Wieser1994. Therefore those species retaining greater quantities (leaking less) of resources
must pay a greater metabolic cost of processing those resources. With this cost function, the
consumer equation from Eq S1 becomes

dNα

dt
= gαNα(1− lα)

(∑
j

cαjRj − χ0(1 + εα)
∑
j

cαj

)
. (S2)

Thus, leakage is now an factor that also determines what proportion of the harvested energy
is be converted to biomass, consistent with the classical notion of biomass conversion or
assimilation efficiency Wieser1994.

S1.2 Effect of the cost function on community feasibility and dom-
inance

We now explain how the above maintenance cost function has important implications for
community feasibility and ultimately, coalescence outcomes. Species α will reach a feasible
(positive) equilibrium when its resource surplus term, that is, the amount of energy left when
the maintenance cost is subtracted from the initial harvest (terms inside the brackets of the
consumer equation in Eq S1) equals 0. That is (after substituting the cost function),

1

gαNα

dNα

dt
= (1− lα)

(∑
j

cαjRj − χ0(1 + εα)
∑
j

cαj

)
= 0.

Therefore, at steady state, ∑
j

cαjR
∗
j = χ0(1 + εα)

∑
j

cαj. (S3)

For the whole community, the vector of equilibrium resource abundances is given by,

CR? = χ0D(1 + ε)C1,

i.e., R? = χ0C
−1D(1 + ε)C1 (S4)

Here, R? is the vector of resource concentrations (the ? indicating it’s equilibrium state), C
is the consumer preferences matrix, 1 is a vector of ones, and D(1 + ε) is a diagonal matrix
with the vector 1+ε (the vector of random fluctuations in costs) in its diagonal. As such, Eq.
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(S3) (and (S4)) is a necessary (but not sufficient) condition for the community’s feasibility
(existence of the consumer-resource equilibrium) provided that (i) the preferences matrix
C is invertible, and (ii) all the resource concentrations at equilibrium are positive. In the
following analysis, we only consider systems where these two conditions are satisfied, because
our goal is to establish the conditions for community dominance following coalescence given
a pair of feasible (and locally asymptotically stable; next section) parent communities. Our
simulations show that these results hold even when we coalesce communities with feasible
equilibria consisting of different consumer numbers (the measure S1,2 is independent of species
richness; main text Methods, Step 3).

We now show that the two key assumptions of our cost function—the efficiency cost and
the generalism cost—are not just biologically realistic but also crucial for understanding the
role of competition and cooperation in community coalescence. To this end, we relax each
assumption, and re-calculate the resource abundance vector at equilibrium. When we relax
the assumption of an efficiency cost, the equilibrium resource vector becomes

R? = D−1(1− l)χ0C
−1D(1 + ε)C1. (S5)

In this case, in contrast to Eq. (S4), the equilibrium resource abundances (i.e., magnitude of
the abundance vector R?) increases with values of species’ leakages (magnitude of l). Thus,
all else (including the supply of different resources) being the same, a “less leaky” community
will deplete the given resource pool to a lower concentration than a more leaky one. This
means that when two such communities are coalesced, the one with lower leakage will create
an environment that does not guarantee feasible coexistence of consumers in the other com-
munity (maintenance cost becomes higher than energy harvest, resulting in negative growth
rates). That is, upon community-community encounter, more consumer species of the leakier
community will be driven extinct relative to those from the less leaky one because the re-
source environment a not capable of sustaining a positive equilibrium. In other words, in
the absence of an efficiency cost, communities with higher leakage will be systematically be
displaced or dominated by communities with lower leakage. This can be interpreted as a
variant of Tilman’s R? rule applied to a pair of communities instead of a pair of species (also
see [3]). This analytical result is demonstrated numerically in Fig A. Furthermore, since leak-
age is directly correlated with community-wide cooperation level (main text Eq. 4), relaxing
this assumption would imply that being more cooperative is detrimental for coalescence suc-
cess, contradicting current literature which has found that cooperation generally increases
structural stability and resistance to invasions Pascual-Garcia2017, Kurkjian2021.

Next, we eliminate the generalism cost, which means that the equilibrium resource vector
becomes

R? = χ0C
−1(1 + ε).

In this case, magnitude of the resource abundance vector at equilibrium decreases with the
number of consumer species’ resource preferences (magnitude of C). This means that gen-
eralist consumers are able to deplete resources more efficiently than specialists just because
they posses more metabolic pathways, without incurring in an extra cost (i.e., a species
able to consume 5 resources would harvest 5 times more energy than a species with just
1 metabolic preference). However, this is unrealistic, since, as mentioned above, the more
metabolic pathways present, the higher the probability that any two of them require different

4



0

1

2

3

4

5

0.2 0.5 0.8
Leakage (l)

A
ve

ra
ge

re
so

u
ce

co
n
ce

n
tr

at
io

n
(R

?
)

-1.0

-0.5

0.0

0.5

1.0

0.2 0.5 0.8
Leakage of community B (lB)

S
im

il
ar

it
y

to
p
ar

en
ts

(S
A

,B
)

lA = 0.1
lA = 0.5
lA = 0.9

A

B

A0 B0

B
R⋆

A

R⋆
B

lA lB

A B

R0

Fig A: Consequence of eliminating leakage-dependence of the cost function for
community dominance in pairwise coalescence events. A: Without leakage depen-
dence of the cost function, mean of its resource concentrations (R?) at equilibrium (black
curve) increases with leakage. The black curve is the mean of the mean resource concen-
trations (shaded region is ±σ) reached at equilibrium for many random instances of feasible
parent communities. Therefore, when any two communities with different leakage values A
(lα ∀ α = lA) and B (lα ∀ α = lB) (all species set to have the same value for simplicity)
are assembled in isolation in the same environment R0, they will deplete the resources to
concentrations R?

A and R?
B, respectively. As a result, when the two are coalesced, commu-

nity A, which can deplete the resources to a lower concentration, will create an environment
that does not guarantee feasibility of consumers in community B (semi-transparent blue cir-
cle), causing more species from community B to be driven extinct relative to those from A.
B: Parent community dominance (SA,B) after repeated coalescence events between pairs of
communities of the types A and B. We use the recursive coalescence simulation procedure
(see main text Methods, Step 2 and Section S3), where the leakage (lB, x-axis) is slightly
increased after each iteration. So this simulation is equivalent to that producing main text
Fig 4B, the only difference being that here the cost function lacks the leakage term. The
result here is opposite to the one in main text Fig 4B, confirming that if the cost function
is independent of leakage level, lower leakage (and therefore less cooperation) favors parent
community dominance after coalescence. Note the sharper decrease in community dominance
of B as its increasing leakage (lB) approaches the leakage of its competitor (lA).

cellular machinery to be activated for optimal maintenance and functioning (e.g., through
two different cellular compartments), incurring extra cost (Tikhonov2017).

Therefore, both efficiency and generalism costs are necessary for a meaningful analysis
of the effect of cooperation vs competition on community coalescence outcomes. Of course,
if two communities have the same leakage levels, they will on average have similar levels of
cooperation, in which case competition level is the only factor that needs to be considered,
and the presence of an efficiency cost does not matter. To confirm this, we ran the ran-
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dom coalescence procedure with communities assembled with a cost function lacking leakage
dependence (Fig B), which, as expected, yields qualitatively the same result as for commu-
nities assembled with the efficiency cost (main text Fig 3) because we are only coalescing
communities with the same leakage value.
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Fig B: Results of random coalescence procedure without imposing the efficiency
cost (leakage dependence). See main text Fig 4 for descriptions of the sub-panels.

S1.3 Stability

After assembly of a feasible parent or coalesced community, we assessed its local stability as
follows. We first compute the Jacobian matrix of the system, and evaluate it at the steady
state population and resource abundances (the feasible equilibrium, which may or may not
be stable). For our system, the Jacobian is the block matrix of the form

J
∣∣∣N=N?

R=R?

=


∂ṅ

∂n

∂ṅ

∂R

∂Ṙ

∂n

∂Ṙ

∂R


∣∣∣∣∣∣∣∣
n=N?

R=R?

=

 D(g(D(R?C(1− l)− z)
)

D
(
g ◦N?

)
(1− l)C

−D(R?)CT + lDTD(R?)CT −Iτ ◦−1D(CTN?) + lDTD(CTN?)


Here, I is the identity matrix. After each assembly, J was evaluated at the equilibrium
abundances and its eigenvalues calculated. We find that the real part of the dominant
eigenvalue (right-most on the real axis; e.g., Fig C) of all assembled parent as well as coalesced
communities is negative and real. That is, feasibility guarantees local asymptotic stability
in our model systems. Note that here, leakage l is not a vector because during assembly, we
assumed that all species had the same community-level leakage.
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Fig C: Real (x axis) and complex (y axis) parts of eigenvalues of J when evaluated at equilib-
rium for two example communities with l = 0.1 and l = 0.9. In both cases, all eigenvalues are
negative (with the leading eigenvalues very close to zero, i.e., -0.0035 and -0.0068, respectively
for these examples), indicating local stability of the equilibrated communities.

S1.4 Relationship with other microbial consumer-resource models

Here we describe how our model is related to two other recent ones that have been used to
study microbial community assembly and coalescence.

The mapping between the notation used in [3] (T), [8] (M) and those used here is provided
in the following table:

Notation for... M Here T
Species index i α ~σ
Species abundance Ni nα nσ
Resource a species can harvest ~ci ~cα σi
Resource supply κα κj Ri

Dilution rate τα ∞ NA
Minimal resource requirement (maintenance cost) mi zα χ~σ
Resource weight wα ~1 ~1
Resource → biomass conversion factor gi gα (τ0χ~σ)−1

Leakage factor lα l 0
Metabolic matrix Dαβ (Dkj)

T NA

With [8]’s Model

Our model differs from the version used in [8] in the following respects: (i) all resources
contain the same amount of energy (taken to be 1 for simplicity), (ii) a type I functional
response, (iii) binary consumer preferences, (iv) a shared core metabolism encoded in D, (v)
a common leakage fractions for all species and resources, and (vi) a complex environment
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where all resources are externally supplied in equal amounts. We address the implications of
these assumptions in the Discussion section.

1. All resources contain the same amount of energy (ωj = 1).

2. We only consider a type-1 functional response (c(Rj) = Rj).

3. Consumer preferences are binary, instead continuously distributed between 0 and 1.

4. We use a different cost function (further details below) from [8] who assume that that
maintenance cost zα is a random fixed quantity for each species.

With [3]’s Model

[3] did not explicitly model resource dynamics, but we can establish the relationship between
that model and the one used here as follows. If we take the system of equations in S1 and
assume that (i) there is no leakage (l = 0) and (ii) the dilution rate is very low, such that
τ−1 ≈ 0, we can make the assumption that molecular (resource) dynamics are faster than
population dynamics, and therefore that resource concentration Rj at any moment quickly
equilibrates to reflect the instantaneous demand, i.e., dR/dt ≈ 0. This allows us to separate
the time scales between resource and population dynamics, recovering the model used by [3]:

dNα

dt
= gαNα

(∑
j

cαj
κj∑

αNαcαj
− zα︸ ︷︷ ︸

Resource surplus ∆α

)

Rj =
κj∑

αNαcαj

Furthermore, we use a different cost function (previous section) than the one used by Tikhonov.

S2 Modulating net competition levels

We are interested in generating communities spanning a broad range of competition and
facilitation levels, i.e., different competition and facilitation levels (C −F); Main text Eqs 3–
6). To this end we sample the cαj and Djk values for each community with certain constraints
(Fig D).

S2.1 Modulating competition level

First, consider the problem of increasing the competition level (C) of the community. The
species α has a binary vector ~cα of length m that specifies if resource j is used (cαj = 1) or not
(cαj = 0). We sample the resource preference vector of each consumer sequentially (that is,
one species at a time), in a way that allows us to modify the niche similarity between them.
For each consumer α, the sampling probability of each resource j, pαj, is re-evaluated (as in
a preferential attachment process, [9]) such that those resources that have been frequently
sampled by previous species receive a higher probability in the current species.
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Fig D: Examples of differently-structured preference (C) and metabolic (D) ma-
trices. These have been generated with different combinations of the competition and facil-
itation factors kc, kf in systems of 60 resource types and 60 consumer species Here, Kc and
Kf are set to zero. Increasing these values would move the regime towards more structured
resource use (See section S2). A & B: Uniformly random matrices, where all four parameters
are 0. C & D: As kc and kf are increased the regime moves towards greater preferential
feeding, where more demanded resources are more likely to be consumed (increase of kc), but
also secreted at higher fractions (increase of kf ). In the metabolic matrices (B & D), lighter
colours indicate higher values of resource fractions secreted.

More specifically, we construct the the resource preference matrix C by sampling its
rows ~cα as follows. First, we sample mα, the number of resources that species α uses,
from an exponential distribution with rate parameter β = 5. This choice is supported by
experimental evidence Sung2017. Second, to determine which resources are used by species
α, we sample mα resources with probability vector ~pα. Note that in this sampling scheme,
‘iteration number’ and ‘species’ are equivalent, and denoted by index α.

For species α = 1 all resources have the same probability of being sampled 1/m, where
m is the total number of resources. This assumption is consequent with the absence of a
resource hierarchy, since they all carry the same energy. After each iteration, the sampling
probability of each resource changes according to what has been sampled previously. Let dαj,
denote the cumulative demand of resource j when the metabolic preferences of species α are
sampled. That is, the number of consumers of resource j at iteration α.

dαj =
α∑
i=1

cij.

Based on dαj, we then compute the probability that species α is assigned resource j as one
of its preferences

pαj = (1− kc)
1

m
+ kc

dα−1j∑
j dα−1j

, (S6)

where the denominator represents the total number of preferences sampled up until iteration
α− 1, and acts as a normalization constant, and together with the numerator represents the
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normalized cumulative demand ,

d̃α−1j =
dα−1j∑
j dα−1j

.

The strength with which pαj deviates from a uniform distribution is given by the param-
eter kc ∈ [0, 1) that is, how much consumers prefer highly-demanded resources, such that
when kc = 0 the sampling is uniformly random (Fig DA); and as kc → 1 the feeding be-
comes increasingly preferential (Fig DC). Pseudocode for the metabolic preferences sampling
procedure is given in Procedure 1.

Procedure 1: Sampling of metabolic preferences

for α ∈ {1, . . . , s} do
Sample mα from an exponential distribution
Sample vector ~v of mα integers ∈ {1, . . . ,m} with probability vector ~p(α)
Switch on sampled preferences ~cα[~v] = 1

Update ~dα
Update ~pα using the new ~dα

end

S2.2 Modulating facilitation level

Effective competition can alternatively be reduced through the indirect positive effect of
facilitation, that is, by increasing F/l. This can be achieved if resources that are highly
demanded are also secreted in larger fractions (Fig DE). For this we need to modulate the
structure of the the metabolic matrix D. Each element of this matrix, Djk, specifies the
fraction of leaked energy from resource j that is released in the form of resource k. Note that
by definition

∑
j Djk = 1. Thus, we sample each row of the metabolic matrix D (Fig DD)

from a Dirichlet distribution with a specific concentration parameters qjk. The elements of
qjk increase proportionally with the demand of each resource dj and the cooperation factor
kf as

qjk =
1

u
(1 + kfdj). (S7)

Thus, kf sets the degree of structure of D. When kf → 0 the metabolic matrix has no struc-
ture; all elements of the concentration parameter are the same (flat Dirichlet distribution)
and therefore, all resources are released at equi-probable fractions. As kf → 1 the structure
of D becomes fully determined by the resource demands of the community, so that more
demanded resources are released at higher fractions. The factor u in Eq S7 controls the
sparsity of the metabolic network, ranging from a fully connected network when u→ 0 to a
sparse one-to-one network when u→ 1.

Note that although the above two methods for sampling the elements of C and D share
similarities, they are conceptually different. First, the sampling of C’s elements is fully
random, in the sense that a vector of probabilities is constructed first, and then preferences
randomly sampled from it. On the other hand, the sampling of D’s elements has a random
term.
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S3 Further details of the community coalescence sim-

ulations

S3.1 Coalescence simulation procedures

Recursive coalescence

Given two microbial communities A and B, and two community leakage values lA and lB,
such that we implement the following computational procedure:

1. Assemble community A with leakage value lAi.

2. Assemble community B with leakage values lBj.

3. Perform coalescence event between A and B and record parent community dominance
(defined below)

4. Change the value lBi → lBi+1, and repeat steps 2 and 3 until vector lB has been fully
traversed.

5. Replicate steps 1-4 in order to gain statistical power.

6. Change value of lAj → lAj+1 and repeat steps 1-5 until vector lA has been fully traversed.

Pseudocode for the this coalescence simulation is shown in Procedure 2. Note that our

Procedure 2: Recursive coalescence
begin

for 1 ≤ i ≤ length(~lA) do
while better statistical power is required do

for 1 ≤ j ≤ length(~lB) do
Assemble community A with leakage value lAi
Assemble community B with leakage value lBj
Coalesce communities A & B
Record parent community dominance

recursive coalescence procedure does not guarantee that every time parent community B is re-
assembled (step 2), the present species and their abundances will remain the same as those in
the community with the previous leakage value. Thus, at each re-assembly of community B,
we check that changing the leakage does not affect significantly the community composition.
With this purpose, we calculate the auto-correlation between community abundance vectors
of consecutive iterations, and find that it remains close to 1 along all the studied leakage
range (see Fig E).
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Fig E: For recursive coalescence, auto-correlation of vector of species abundances in com-
munity B for consecutive re-assemblies of this community, along the studied leakage range.
(inset) Zoom in to show that, even though the auto-correlation remains consistently ≈ 1, it
starts decreasing from a certain leakage value. While the reason for this decrease is inter-
esting and a potential line of future work, it does not affect our results because of the very
small change of magnitude in autocorrelation values over this range.

Serial coalescence

Given two sets of target and invader communities (each of the latter with different leakage
values) we implement the following computational steps:

1. Assemble target community T0 with leakage lT i.

2. Assemble a random invader community W with leakage lWj.

3. Coalesce T0 +W1 = T1, and record properties of community T1.

4. Repeat steps 2 and 3 until community Tn = Tn−1 +Wn is reached.

5. Change leakage of the W communities lWj → lWj+1.

6. Repeat steps 2-5 until leakage vector ~lW has been fully traversed.

7. Change leakage of T communities lT i → lT i+1.

8. Repeat steps 1-7 until vector ~lT has been fully traversed.

9. Replicate steps 1-8 in order to gain statistical power.

Pseudocode for the serial coalescence simulation is shown in Procedure 3.
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Procedure 3: Serial coalescence
Procedure begin

while better statistical power is required do

for 1 ≤ i ≤ length(~lT ) do
Assemble target community T0 with leakage lTi
for 1 ≤ j ≤ length( ~lW ) do

for 1 ≤ k ≤ n do
Assemble invader community Wk with leakage lWj

Coalesce Tk−1 and Wk to form target community Tk
Record properties of target community Tk

S4 Adding consumer guild structure

Recent empirical studies suggests that microbial species tend to form guilds with similar
metabolic capabilities, thus introducing some degree of functional redundancy in the com-
munities they form [11, 12]. Theoretical studies support these observations [13, 15, ?]. We
therefore add further structure to the matrices C andD, by partitioning resources into classes,
and constraining consumers to feed on a preferred class, but leak to any other, forming con-
sumer guilds. Adding this structure yields two interaction layers (imagine superimposing
Figs FB and 2C with Figs FA and 2D): inter-guild facilitation and competition between
consumers preferring distinct resource classes, and intra-guild facilitation and competition,
which stems from the previously-imposed preferential feeding, yielding an effective secretion
matrix like the one plotted in Fig FC.

Resource preferences in this scenario are assigned similarly to the unstructured preferential
feeding described in Section S2, except that the probability that species αA (which feeds
preferentially on resource class A) samples resource j, is now weighted up or down depending
on whether j belongs in guild A, or not, respectively (Fig FB). To this end, we define the
form of this function to be:

pAαj =


M

(
(1− kc)

1

m
+ kc

dα−1j∑
j dα−1j

)
(1 +Kc) if j ∈ A

N

m− nc
(1−Kc) otherwise,

(S8)

where M and N are normalization constants that ensure
∑

j pαj = 1. Note that Kc modulates
the amount of structure in the matrix, ranging from no structure when Kc = 0 to maximum
guild structure when Kc = 1. In order to obtain expressions for the normalization constants
M and N we impose the following constrains on each piece of Eq S8

p1
α =

∑
C(j)∈T

pαj =
nc
m

(1−Kc) +Kc (S9)

and
p0
α =

∑
C(j) 6∈T

pαj =
(

1− nc
m

)
(1−Kc). (S10)
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These two constraints guarantee that two necessary conditions are satisfied; (1) the total
probability sums to one, since p1

α + p0
α = 1, and (2) probability of sampling resources in

(outside) the preferred class approaches 1 (0) when Kc increases (decreases). We then solve
for M and N by expanding equations S9 and S10 using the definition in expression S8 for
pαj

M

(
(1− kc)

nc
m

+ kc
Tc
T

)
(1 +Kc) =

nc
m

(1−Kc) +Kc

M =
Kc +

nc
m

(1−Kc)

(Kc + 1)

(
nc
m

(1− kc) +
Tc
T
kc

)
and

N = 1− nc
m
,

where T =
∑

j dα−1j, and we have used the following expressions∑
C(j)∈T

1 = nc
∑

C(j)6∈T

1 = m− nc
∑

C(j)∈T

dα−1j = Tc.

Thus, the closed form of the sampling probability under the general scenario (Eq 7 main
text) is

pαj =


(
Kc +

nc
m

(1−Kc)
) ((1− kc)

1

m
+ kc

dα−1j

T

)
(

(1− kc)
nc
m

+ kc
Tc
T

) if j ∈ A

1

m
(1−Kc) otherwise.

(S11)

The metabolic matrix D (Fig FA) is constructed such that the fraction of leaked by-
product k is lower if it belongs to the same class as the consumed resource j (elements
within block-diagonals of D), and higher otherwise (off-block diagonal elements of D). The
prominence of this structure in the matrix is given by the inter-guild facilitation factor Kf .
Therefore, we sample each row of D from a Dirichlet distribution with concentration param-
eters qjk

Djk = Dir (qj1, qj2, . . . , qjm)k ,

where the concentration parameter depends on the cumulative demand as specified in the
previous section (see Eq S7). Additionally, the value of qjk decreases with the inter-guild
facilitation factor Kf if uptaken and leaked resources belong to the same (resource) class,
and increases with Kf in the opposite case. With these conditions, the expression for the
concentration parameter is

qjk =


(1 + kfdj)

uMC(j)

(1−Kf ) if A(j) = A(k)

(1 + kfdj)

u(M −MC(j))
(1 +Kf ) otherwise.

(S12)
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Fig F: Community coalescence with consumer guilds present. A-C: Example of a
metabolic matrix, preference matrix, and effective secretion matrix, with consumer guild
structure. D: Similarity to the parent community as function of the binned mean (20 bins)
over parent communities with similar difference in competition levels C1 − C2 (solid line) ±
1 standard deviation (shaded) for the three leakage values. The post-coalescence commu-
nity is more similar to its less competitive parent. E: Species richness (r) as a function of
community-level net competition (C−F), coloured by total resource concentration reached at
steady state (R?

tot). The observed negative correlation for all values of leakage confirms that
less competitive communities are more species-rich, and deplete resources more efficiently
(brighter colours, which correspond with lower levels of R?

tot) are scattered towards the top
left of the plot.

Here, u is the sparsity of the metabolic network, ranging from a fully connected network
when u → 0 to a sparse one-to-one network when u → 1. MA is the number of consumers
in class A, to which resource j belongs. Note that in expressions S11 and S12 if we make
Kc = Kf = 0, all the resources belong to the same class, and we recover equations S6 and
S7 from the previous version.

S4.1 Coalescence between communities with guild structure

When coalescence is simulated between pairs of communities having guild structure, we find
that in the low leakage regime, where significant competition is present, the same result
(yellow and red lines in Fig FD) as in the case of random coalescence with only preferential
feeding (Fig BC) is recovered. We find a positive correlation even in the high leakage regime
where facilitation is of the same order of magnitude as competition, indicating that our results
qualitatively hold for structured communities as well. Note that competition between guilds,
and facilitation within guilds, are both very weak. Therefore, here we calculated community
level competition as the average over the block diagonal elements, and community level
facilitation as the average over the off-block diagonal elements.
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6. Pascual-Garćıa A, Bastolla U. Mutualism supports biodiversity when the direct com-
petition is weak. Nature Communications. 2017 8:14326. doi: 10.1038/ncomms14326.

7. Kurkjian HM, Javad Akbari M, Momeni B. The impact of interactions on invasion
and colonization resistance in microbial communities. PLoS Computational Biology.
2021;17(1):1–18. doi:10.1371/journal.pcbi.1008643.

8. Marsland R, Cui W, Goldford J, Sanchez A, Korolev K, Mehta P. Available energy
fluxes drive a transition in the diversity, stability, and functional structure of microbial
communities. PLoS Computational Biology. 2019;15(2):e1006793. doi: 10.1371/jour-
nal.pcbi.1006793. doi:10.1371/journal.pcbi.1006793.
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