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Supplemental 
S1. Clinical Applications Supplement 

The Cox proportional hazards regression model can be written as follows: 

( ) ( ) ( )0 1 1 2 2exp n nh t h t b X b X b X= + + +  

where i ib X  represent potential predictors and ( )0h t  a baseline risk when all 
predictors are set to zero.  

S1.1. Whole Heart DVH Analysis 
Table S1 shows fit coefficients, hazard ratios, and p-values which were asso-
ciated with significant predictors of overall survival in the model which included 
V55Gy for the whole heart DVH.  

S1.2. Example Applications Using Whole Heart V55Gy 
1) With the “reference patient” defined as stage IIIA, no chemotherapy, 70.5 

years old, and heart V55Gy = 0%, the individualized hazard ratio for an actual 
patient with stage IIIB disease, who received chemotherapy, and whose heart 
V55Gy was N%, can be computed as (from Table 4):  

( )age 70.5HR 1.78 0.46 1.04 1.044N−= × × ×  

The interpretation of HR = X is that the likelihood of dying per unit of time 
for the actual patient is X-fold greater than the likelihood of dying per unit of 
time for the reference patient.  

2) Holding the other variables constant, for a patient whose V55Gy to the 
whole heart is N%, the associated hazard ratio for cardiac radiation exposure can 
be calculated as  

0.043eN×  or 1.044N . 

Consider two patients who are the same age, have the same cancer stage, and 
both received chemotherapy, but differ only by extent of heart irradiation. Pa-
tient A received heart V55Gy = 0%. Patient B received heart V55Gy = 10%. Us-
ing the coefficient from the second column of Table S1, the individualized ha-
zard ratio for patient A is  

0 0.043e 1.0× = . The individualized hazard ratio for patient B is 10 0.043e 1.537× = . 
The likelihood of dying per unit of time is 1.537 times higher for patient B than 
for patient A. 
 
Table S1. Model coefficients and associated hazard ratios in the model with whole heart 
DVH. 

Predictor Xi Coefficient bi Hazard Ratio p-value 

Stage IIIB 0.57 1.78 0.016 

Chemotherapy Use −0.79 0.46 0.039 

Age before RT 0.04 1.04/1 year 0.012 

V55Gy 0.0430 1.044/1% of volume 0.034 
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Another way to obtain the estimate of hazard ratio associated with cardiac ir-
radiation is to use the hazard ratio listed in Table 4. Using the same example pa-
tients as before, the hazard ratio for patient B is 1.04410 = 1.538.  

3) If two groups of patients have hazard ratios equal to HR1 and HR2, the ratio 
of the mean survival times between the two groups can be approximated by  

1

2

HR
HR

. 

S2. Statistical Analysis Supplement 
S2.1. Radiobiological and Clinical Motivation for  

“Knowledge Constraints” in KC-Lasso 
1) Introduction 
Dose-volume analysis is one of the primary tools used in phenomenological 

modelling of clinical toxicity in radiation therapy. Dose volume analysis reflects 
the basic clinical and radiobiological insight that the likelihood of clinical toxici-
ty depends on both the dose level and the volume to which the dose is applied. 
In general, larger doses and larger volumes to which dose is applied lead to 
greater likelihood of toxicity. The dominant effect of depositing dose in a vo-
lume of tissue is cell kill (cell depletion), usually described as cell Survival Frac-
tion (SF), which is the proportion of cells that survive an irradiation. The SF is 
related to dose by a Linear Quadratic model equation BEDSF e α− ∗=  where BED 
is Biologically Equivalent Dose (BED) related to the physical dose through a  

linear quadratic equation BED 1 dD
α β

 
= + 

 
. In the discussion that follows we  

will equate the physical dose D with BED and refer to both as “dose”.  
Irradiating a volume of tissue with a dose level “D” can lead to one of the 

three categories of outcomes:  
a) The SF may be high enough that the tissue can compensate for lost cells and 

there is no clinical toxicity observed.  
b) The SF is low enough that the tissue may not be able to fully compensate 

for lost cells which can lead to transient or permanent toxicity. The toxicity is 
transient if the tissue can rebuild itself over time and permanent if the tissue can 
no longer rebuild itself. In this regime, the onset of toxicity is probabilistic and 
may additionally depend on patient specific characteristics, like age, state of 
health or genetics. 

c) The SF is so low that toxicity will inevitably occur, for all patients. 
The (1)-(3) states are typically modelled by the sigmoid (logistic) curve. The 

Region (1) corresponds to the beginning part of the curve, Region (2) corres-
ponds to the rising part of the curve, and Region (3) corresponds to the satura-
tion region of the logistic curve. 

2) The Linear Predictor in KC-Lasso 
The linear predictor in KC-Lasso assumes the following form 

10 1 pD p DV Vη β β β= + + +  

where 
iDV  is the percentage of organ volume with dose iD , or greater. 
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3) Positivity Condition in KC-Lasso 
The positivity condition in KC-Lasso says that all coefficients iβ  have to be 

greater or equal to zero. ( 0β ≥ ) 
The motivation for the positivity condition is that any dose, applied to any 

volume, kills cells (SF < 1). Such irradiation can produce no risk (Region (1)), 
some risk (Regions (2)-(3)), but it cannot reduce risk, which would be implied 
by negative coefficients. 

4) Monotonicity Condition in KC-Lasso 
Consider one of the elements in the linear predictor: 

ii DVβ  

Let us fix the value of 
iDV  at an arbitrarily chosen value of 0.05 (5% of the 

volume irradiated to the dose iD  or higher). What should the contribution of 
this term to risk be when iD  increases? An increase in dose means that the 
surviving fraction (SF) decreases. A decrease in SF means that the contribution 
of this term to risk has to increase (Region (2), increasing risk) or stay the same 
(Region (3), saturated risk).  

Returning to the full linear predictor feature, one thus observes that, for a 
fixed value of 

iDV  (e.g. 0.05) the contribution of consecutive terms to the fea-
ture has to increase, or stay the same, as the dose increases. This argument leads 
us to the monotonicity condition, which says that consecutive coefficients must 
be greater or the same as their predecessors: 

For any two dose levels 1 2,d d , with 1 2d d≤ , let 
1dβ  and 

2dβ  be the coeffi-
cients for 

1dV  and 
2dV , respectively. Then, 

1 2d dβ β≤ . 

S2.2. Internal Validation 

Since the KC lasso method is based on fused lasso, there are two tuning parame-
ters we need to determine, i.e., the L1 penalty for the coefficients and the L1 pe-
nalty for the steps of the coefficients. We use the work by Dai and Breheny [15] 
who concluded that a method of leave-one-out cross validation with linear pre-
dictors works the best for a Cox model. To be more specific, suppose that there 
are n patients in the data. In the i-th iteration, we leave the i-th patient out and 
use the remaining n-1 patients to fit the Cox model with KC lasso. Then the ‘li-
near predictor’ of the i-th patient can be defined as T ˆˆ i

i iXη β −=


, where T
iX


 is 
the feature vector for i-th patient and ˆ iβ −  is the estimated coefficient vector of 
the model without i-th patient. After we get “linear predictors” for all patients, 
we can define the predictive accuracy based on the “linear predictors” by 

( ) ( )
ˆˆ

1
ˆ e e ji

i

n
j R tiL ηηη
∈=

 =  ∑∏ , 

where it  is the event time or last follow up time of i-th patient. ( )iR t  is the set 
of patients at risk at time it . The cross validation error for linear predictors is 
then defined by ( )( )ˆCVE 2log L η= − . We find the set of tuning parameters 
with the lowest CVE (cross validation error). 
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S2.3. Limitations of the Univariate Analysis 

In Figure S1, we show p-values associated with the dosimetric variable VD ina 
Cox model which contains patient specific covariates (age, chemotherapy and 
stage) and one VD index at a time. We effectively scanned the VD space and rec-
orded the p-value associated with each VD. One observes a monotonic decline of 
p-values, starting between doses of 35 Gy - 40 Gy and continuing towards the 
minimum near V55Gy. The monotonic decline in such a broad range of doses is 
caused primarily by correlations among indices for this population of patients, 
convolved with the threshold dose. The magnitude of correlations in the present 
data is shown in Figure S2. Correlations among indices are determined by the 
combination of three factors: 1) anatomic variability among patients, 2) variabil-
ity in tumor location and volume, 3) dose distributions which are characteristic 
for the delivery methods being used. The magnitude of p-value at the minimum 
also depends on the sample size. If one sets an arbitrary threshold of p-value at 
p = 0.05, this threshold will be crossed at a dose level which depends both on the 
sample size and on the pattern of correlations, which can vary in different stu-
dies due to differences in treatment delivery methods being used. Hence, the 
method of searching for the dose threshold with univariate analysis tends to 
produce threshold doses which are too low and can vary among studies. A more 
advanced statistical technique, which explicitly “corrects” for correlations, needs 
to be used to detect a threshold dose which will remain consistent for all studies 
and is generalizable to future clinical applications. 

If one considers multiple VD indices as uncorrelated, independent variables, 
p-value obtained for each of these variables should be subjected to multiple 
comparisons correction. The correction will depend on the size of the scanning  
 

 
Figure S1. P-values associated with VD covariate in a Cox model with patient specific va-
riables (age, stage and chemotherapy) and one dosimetric covariate at a time. Doses are in 
Gy and a 1 Gy step was used in the analysis. Data in Table 3 were sampled from this fig-
ure. 
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Figure S2. Correlations among VD indices, the correlation matrix on the right side and a single section through the matrix at the 
level of V40 on the left side. 
 

step and may prevent the p-values from reaching the threshold of statistical sig-
nificance for patient cohorts of a realistic size. Adjusting the step size to reach 
the threshold of statistical significance is not well justified and reduces the preci-
sion of searching for a dose threshold which is associated with the clinical out-
come. The magnitude of this problem is illustrated in Figure S3, using the VD 
step size of 1 Gy. Red bars show p-values obtained without multiple comparison 
correction, while blue bars show p-values adjusted for the correction. The thre-
shold of statistical significance would not have been reached in the present pa-
tient cohort if p-values were corrected for multiple comparisons.  

S2.4. Alternative Statistical Methods 

KC-Lasso has been designed for the present study to address the problem of 
correlations among dosimetric variables. One can reasonably ask whether other 
statistical techniques could perform equally as well as KC-Lasso model. To ad-
dress this question we compared KC-Lasso (Knowledge Constrained, Fused 
Lasso) to Elastic Net [16], Lasso [13] and Fused Lasso [14] models. We make a 
comparison by first deriving the coefficients for the VD variables in each model 
which creates a linear predictor (feature) for each. We then compare the p-value 
associated with the feature in an unpenalized Cox model containing patient spe-
cific covariates. All four models were associated with very similar p-values, as 
summarized in Table S2. 

All four models produced very similar survival curves for surviving patients. 
KC-Lasso showed some differences in survival curves for deceased patients. Two 
examples are shown in Figure S4 and Figure S5. 
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Table S2. P-values associated with the linear predictor in four models in an unpenalized 
cox model with patient specific covariates. 

Model p-value 

KC-Lasso 0.0122 

Lasso 0.0134 

Fused Lasso 0.0123 

Elastic Net 0.0122 

 

 
Figure S3. An illustration of the effect that multiple comparisons correction would have 
on p-values in the univariate analysis for the present study. 
 

 
Figure S4. An example of survival curves for a surviving patient. 
 

All four models perform similarly on the same data set, though one could ar-
gue that KC-Lasso is showing slightly better prediction of survival probability. 
The primary difference between the models is in the choice of coefficients for the 
linear predictors that each model makes. The coefficients chosen by the Elastic  
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Figure S5. An example of survival curves for a deceased patient. 
 
Net (Figure S6), Lasso (Figure S7) and Fused Lasso (Figure S8) models are 
shown below. 

One observes that both the Elastic Net, Lasso and Fused Lasso models selected 
negative coefficients. Negative coefficients are biologically implausible because 
they imply a possibility that the irradiation of tissue at risk improves the odds of 
survival. A second biologically implausible feature is the selection of a single VD 
index (or a small group of indices) without a simultaneous selection of indices at 
higher doses. Higher doses are always associated with lower cell survival fraction 
in the volume. Radiobiology suggests that lower cell survival fraction in a fixed 
volume of tissue should always be associated with higher likelihood of clinical 
complications, or at least the same likelihood of complications if cell survival 
fractions are so low that the adverse clinical outcome is virtually assured. Con-
sequently, once the first VDthr (threshold dose) is selected, all VD>Dthr should also 
be selected and their coefficients should be higher (more risk) or equal (satu-
rated risk). The constraint on the maximum dose in the analysis must be im-
posed by the maximum dose available in the data. 

In summary, KC-Lasso is not the only statistical model that can be successful-
ly fit to the present data set. However, KC-Lasso has been designed to satisfy 
“common sense” boundary conditions (positivity and monotonicity conditions 
imposed on coefficients) as well as to account for correlations between VD indic-
es. The purpose of this design has been to make the results of the model easier to 
interpret intuitively and to be more generalizable.  

S2.5. Tumor Volume as a Patient Specific Covariate 

Tumor volume can influence the likelihood of OS and can also influence  
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Figure S6. Coefficients selected by the elastic net model. 
 

 
Figure S7. Coefficients selected by the lasso model. 
 
the irradiation of the heart. Tumor volume was difficult to assess in this re-
trospective study because physicians frequently broke the target hierarchy 
(GTV-CTV-PTV-ITV) during contouring and thus forced estimates of the tu-
mor volume with assumptions. We estimated the tumor volume (under assump-
tions) but decided to substitute tumor volume with a patient specific covariate 
which is strongly correlated with volume, namely clinical stage (3A and 3B). The 
clinical stage has been reliably recorded prior to treatment and reflects added 
clinical risk associated with tumor progression. The correlation between our es-
timated tumor volume and the clinical stage is summarized in Table S3. 

When volume alone is used in the Cox model it is not a predictor for the OS 
(p = 0.35). When volume alone is used in the Cox model with chemotherapy and 
age it is predictive for OS with p = 0.048. When stage is used instead of volume,  
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Figure S8. Coefficients selected by the fused lasso model. 
 
Table S3. Summary of correlations between the disease stage and the estimated CTV vo-
lume. 

 Estimated CTV volume (cubic centimeters) 

Stage Mean STDEV MIN MAX 

3A 118.5 123.1 1.1 619 

3B 180 143.6 4.7 706 

t-test p-value 0.0083 N/A N/A N/A 

 
the stage (3A/3B) is a predictor for OS with p = 0.024. When volume and stage 
are included simultaneously, neither one is the predictor with p-values p = 0.18 
for volume and p = 0.07 for stage. Given that stage and estimated volume are 
strongly correlated, we chose to include stage alone in the analysis. 
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