Supplementary Method S1. Creation of a prism-based forward kinematic animation rig

Whereas the construction of digital marionettes for both ball and socket (hip) joints followed the
procedure outlined by Manafzadeh & Padian (2018), here we developed a new method for
creating digital marionettes of hinge (knee and ankle) joints using Maya 2020 (Autodesk, San
Rafael, CA, USA). The terms below are specific to Maya but the general logic of this procedure
can be translated to other software (e.g., Blender) if need be. Our method exploits the new
translation measurement system outlined in this paper, allowing direct input of these translation
measurements into the forward kinematic rig. An animation-expression-based input approach
that allows automation of the incorporation of translations in interpenetration detection is
outlined as Supplementary Method S2; here we first cover basic creation and operation of the rig.

We began by constructing a separate basic digital marionette for each joint following
Manafzadeh & Padian (2018). In short, beginning with a single pair of bones in their reference
pose (with anatomical coordinate systems [ACSs] fully aligned such that joint coordinate system
rotations and translations equal zero), a character animation joint hierarchy was created.
Although Manafzadeh & Padian (2018) only explicitly refer to the creation of a single animation
joint, here we suggest creating two joints, one parented to the other, with the top “positioning”
joint used for positioning and orientation and the bottom “input” joint used for animation. We
point and orient constrained the “positioning” joint to the proximal ACS. The constraints can be
deleted if desired if the proximal bone (and thus the proximal ACS) will be held in one position;
however, if the proximal bone will be repositioned for any reason, these constraints should be
left intact. We then parent constrained the distal bone to the newly created “input” joint.

Next, we created a polygonal cube object of dimensions 1 x 1 x 1 cm centered at the global
origin (0, 0, 0), with one division per dimension. We moved the scale and rotational pivots of
this cube to a position of (-0.5, -0.5, -0.5), and then translated the cube itself to a position of (0.5,
0.5, 0.5) such that its pivot was placed at the world origin. A locator was created and placed at
the vertex of this cube diagonal from its vertex at the origin (at the local coordinate [1,1,1]), and
parented to the cube. The cube was then parented to an empty group node.

We point and orient constrained this group node to the proximal ACS, causing the cube to be
placed with one of its vertices at the position of the proximal ACS. We then used the Maya
Connection Editor to connect the Z rotation of the “input” character animation joint to the Z
rotation of the cube, ensuring that the cube would rotate along with the primary hinge rotation.
Finally, we point constrained the “input" joint to the cube’s locator, causing the distal ACS (and
rotational pivot) to be located at the cube vertex diagonal from the proximal ACS. A schematic
of the resulting Outliner hierarchy from this process is shown below (Supplementary Methods
Figure SM1). Note that whereas the point and orient constraints for the group node can be
deleted if desired, the point constraint for the input joint must be left intact for proper
functioning of the rig.

Under this setup, changing the X, Y, and Z scale values of the 1 x 1 x 1 cube causes it to morph
into a rectangular prism, moving the distal bone along with it. The scale of this prism in each
dimension reflects the corresponding translation measurement of the hinge joint under our new

convention -- for example, a prism of XYZ scale = (0.2, 0.3, 0.5) cm corresponds to hinge joint
translations of XYZ = (0.2, 0.3, 0.5) cm.

a ProximalBone

- frp— LY
2 pruximalACs

« positioningloint

HConstraininput]eintTolLocator
a EMptyGroupiode
- L oe

locator

Supplementary Methods Figure SM1. Example Maya hierarchy resulting from the creation of
a prism-based forward kinematic rig.

Supplementary Method S2. Inclusion of translations in automatic interpenetration detection

Here we offer a protocol for automating six degree of freedom ROM analyses in Maya 2020
(Autodesk, San Rafael, CA, USA), building from the foundation laid for three degree of freedom
ROM analyses by Manafzadeh & Padian (2018). The terms and code syntax below are specific to
Maya but the general logic of this procedure can be translated to other software (e.g., Blender) if
need be. First, create a forward kinematic rig following Manafzadeh & Padian (2018) or our new
prism-based rigging approach (Supplementary Method S1). Add a Boolean-type attribute called
“viable” to the character animation joint.

Then, animate the joint through a systematic sample of rotational poses. The Maya
Embedded Language (MEL) code to accomplish this was originally presented by Manafzadeh &
Padian (2018). We reproduce it here for sampling of a full joint pose space at 5 degree resolution,
but the bounds on each degree of freedom and the sampling resolution can easily be modified. Edit
and paste the following code into the Script Editor and run once. Red text represents regions of
code that are study-specific and must be edited: the name of the character animation joint used in
the forward kinematic rig (jointName).

{

int $i;

int $j;

int $k;

int $frame = 1;
currentTime -edit 1;

//Z rotation ranges and sampling resolution can be adjusted here
for ($i = -180; $i < 181; $i = $i + 5)
{

/1Y rotation ranges and sampling resolution can be adjusted here
for ($j =-90; $j <91; $j = $j + 5)
{
//X rotation ranges and sampling resolution can be adjusted here
for ($k = -180; $k < 181; $k = $k + 5)
{
setKeyframe -at rotateZ -v $i -t $frame jointName;
setKeyframe -at rotateY -v $j -t $frame jointName;
setKeyframe -at rotateX -v $k -t $frame jointName;
$frame = $frame + 1;

}

¥

Next, select the two bone mesh models and run a boolean intersection operation. Our goal
will be to query the surface area of the resulting boolean mesh at each rotational pose. If the
boolean mesh has a surface area of zero, the bone mesh models do not interpenetrate and the pose
is viable. However, if the boolean mesh has a surface area of greater than zero, the bone mesh
models interpenetrate and the pose is not viable. To ensure reliable boolean behavior, make
sure to clean polygonal meshes before running; all objects should be manifold surfaces, face
normals should be uniform, and co-planar or self-intersecting faces must be removed.

The following MEL animation expression code replaces Manafzadeh & Padian’s
animation expression for querying boolean surface area and keyframing pose viability. In contrast
to the original expression, this approach now allows the researcher to input three float arrays
containing values to test in each translational degree of freedom. This expression will evaluate at
each frame of the animation (i.e., each rotational pose) when it is played. As the expression loops
through the float arrays provided by the user, the joint will assume the corresponding translational
values. The expression evaluates the interpenetration of bone mesh models in each of these
configurations. Once any single combination of translations results in a boolean mesh surface area
of zero, the loop is broken, the pose is marked as viable, and the animation proceeds to the next
frame. By breaking the loop at this point, simulation redundancy is reduced and overall run time
is decreased. (If the research question at hand requires knowledge of which specific translation
combinations yielded a viable outcome, the code provided here will need to be modified.) Under
this approach, scene playback can be paused at any time to save results along the way. Note that
because translation values are controlled by the animation expression at each frame, the animation
does not need to be baked before running the expression (contra Manafzadeh & Padian [2018]).

We suggest that in the future, as articulation criteria are ground-truthed and formalized,
they can easily be layered onto this framework by adding lines of code to these animation
expressions.

If using a prism-based forward kinematic rig (see Supplementary Method S1): Modify and paste
the following code into the Expression Editor, click “Edit,” and then play the animation to
automatically test pose viability. The viability (1) or inviability (0) of each pose will be keyframed
at each frame of the animation as it plays. Red text represents regions of code that are study-
specific and must be edited: translation values to test, the name of the character animation joint

(JointName), the name of the prism-based rigging cube (cubeName), and the name of the boolean
mesh object (booleanName). Note that to use this approach, a boolean-type attribute called
“viable” must have been added to the character animation joint. To test only a single translation
value in a given degree of freedom, simply enter only one value into its array rather than a comma-
separated list.

/ldefine translation values to be tested

float $xTransArray[] ={insert comma-separated X translation values here};
float Sy TransArray[] ={insert comma-separated Y translation values here};
float $zTransArray[] ={insert comma-separated Z translation values here};

//set pose viability to 0 (inviable) to start
int $viable = 0;
setKeyframe -at viable -v $viable jointName;

/lloop through translation combinations and mark pose as viable (1) as soon as any translation
combination results in a boolean mesh surface area of 0

int $i;

int $j;

int $k;

int $xSize = size($xTransArray);
int $ySize = size($yTransArray);
int $zSize = size($zTransArray);

for ($i=0;3i<$xSize;$i++)
{
for ($j=0;$j<$ySize;$j++)
{
for ($k=0;$k<$zSize;$k++)

{

if ($viable==0)
{
setAttr "cubeName.scaleX" $xTransArray[$i];
setAttr "cubeName.scaleY" $yTransArray[$j];
setAttr "cubeName.scaleZ" $zTransArray[$k];

float $area[] = "polyEvaluate -area booleanName’;
if ($area[0]>0)

{

$viable = 0;

}

{
$viable = 1;
setKeyframe -at viable -v $viable jointName;

else

¥

If using a non-prism-based forward kinematic rig (see Manafzadeh & Padian, 2018): Modify and
paste the following code into the Expression Editor, click “Edit,” and then play the animation to
automatically test pose viability. The viability (1) or inviability (0) of each pose will be keyframed
at each frame of the animation as it plays. Red text represents regions of code that are study-
specific and must be edited: translation values to test, the name of the character animation joint
(JointName), and the name of the boolean mesh object (booleanName). Note that to use this
approach, a boolean-type attribute called “viable” must have been added to the character animation
joint. To test only a single translation value in a given degree of freedom, simply enter only one
value into its array rather than a comma-separated list.

/ldefine translation values to be tested

float $xTransArray[] ={insert comma-separated X translation values here};
float Sy TransArray[] ={insert comma-separated Y translation values here};
float $zTransArray[] ={insert comma-separated Z translation values here};

/Iset pose viability to 0 (inviable) to start
int $viable = 0;
setKeyframe -at viable -v $viable jointName;

/lloop through translation combinations and mark pose as viable (1) as soon as any translation
combination results in a boolean mesh surface area of 0

int $i;

int $j;

int $k;

int $xSize = size($xTransArray);
int $ySize = size($yTransArray);
int $zSize = size($zTransArray);

for ($i=0;$i<$xSize;$i++)

{
for ($j=0;$j<$ySize;$j++)
{
for ($k=0;$k<$zSize;$k++)

{

if ($viable==0)
{
setAttr "jointName.translateX" $xTransArray[$i];
setAttr "jointName.translateY" $yTransArray[$j];
setAttr "jointName.translateZ" $zTransArray[$k];

float $area[] = "polyEvaluate -area booleanName’;
if ($area[0]>0)

{

$viable = 0;

}

{
$viable = 1;
setKeyframe -at viable -v $viable jointName;

}

else

(A) (B) (C)
180

135 I

90
[

45

45
-90 .

-135

.flexion-extension
abduction-adduction

[l 'ong-axis rotation
180

Supplementary Figure S1. Selection of a rotational starting, ‘neutral,” or ‘reference’ pose
strongly influences single-axis measurements of mobility. Estimating guineafowl knee ROM
from example starting poses of (flexion-extension, abduction-adduction, long-axis rotation)
degrees = (A) (60, -10, -80), (B) (90, 5, 0), and (C) (120, 35, 75), without allowing combinations
of motions in all three rotational degrees of freedom, results in three very different measurements
of joint mobility.

|< hip knee ankle
z

=

guineafowl ' ' '

alligator E . I I

Supplementary Figure S2. All five joints studied demonstrate interactions among
translational degrees of freedom. Simultaneous excursions measured in centimeters from all
three translational degrees of freedom are plotted as alpha shapes generated from (X, Y, Z) points
with an alpha radius of 0.1. Measurements for hip joints follow previous XROMM studies,
whereas measurements for knee and ankle joints follow the prism-based hinge joint convention
presented in this study. All values reflect right-sided conventions for positive measurements.
Bolded grid lines represent 0; grid lines are 0.1 cm apart.

(A) (B)

LAR .

FE.

Supplementary Figure S3. Two examples of cases in which osteological simulations fail to
capture in vivo locomotor poses. (A) Alligator knee no-translation simulation and (B) guineafowl
ankle single-translation simulation displayed as yellow polygons with a selection of in vivo
locomotor poses measured by Manafzadeh et al. (2021) displayed as black spheres. See
Manafzadeh et al. (2021) for additional in vivo poses.

J’L‘ original position halved position zero position
3| pepOw

FE',L

80% missed

alligator hip

Supplementary Figure S4. Sensitivity of alligator hip no-translation osteological simulation
to placement of rotational pivot. No-translation simulation results are displayed for the rotational
pivot in its original position (middle of the cadaveric distraction-compression range), in a position
with half the original excursion in distraction-compression translation, and in a position with zero
translation (placed based on the spheres used to create the joint coordinate system [see Kambic et
al., 2014]). See also Supplementary Movie S7.

%,léo‘ original FE _range expanded FE range
AR

FEI

0.25% missed

uineafowl ankle B T

Supplementary Figure S5. Guineafowl ankle all-translation osteological simulation result
with additional joint extension allowed. All-translation simulation results are displayed for the
original flexion-extension range of [0,180] (corresponding to cosine-corrected flexion-extension
[FEcc] of [-90,90]) and for an expanded flexion-extension range of [0,185] (corresponding to FEcc
of [-90,95]). See also Supplementary Movie S8.

Supplementary Movie Captions

Supplementary Movie S1. Example series of motions in all six degrees of freedom at the
guineafowl knee (hinge) joint, demonstrating our new prism-based translation measurement
convention. See also Figure 2C-D.

Supplementary Movie S2. Alligator hip cadaveric, no-translation, single-translation, and all-
translation alpha shapes, rotated. See also Figure 3A.

Supplementary Movie S3. Guineafow! hip cadaveric, no-translation, single-translation, and all-
translation alpha shapes, rotated. See also Figure 3B.

Supplementary Movie S4. Guineafowl knee cadaveric, no-translation, single-translation, and all-
translation alpha shapes, rotated. See also Figure 3C.

Supplementary Movie S5. Guineafowl ankle cadaveric, no-translation, single-translation, and all-
translation alpha shapes, rotated. See also Figure 3D.

Supplementary Movie S6. Alligator knee cadaveric, no-translation, single-translation, and all-
translation alpha shapes, rotated. See also Figure 3E.

Supplementary Movie S7. Alligator hip sensitivity analysis alpha shapes, rotated. See also
Supplementary Figure S4.

Supplementary Movie S8. Guineafowl ankle original and expanded all-translation alpha shapes,
rotated. See also Supplementary Figure S5.

