Online Supplementary Information 3

Article title: Clinical value of emerging bioanalytical methods for drug monitoring: a scoping review of their applicability for medication adherence and therapeutic drug monitoring

Journal name: Drugs

Author names: Tanja R. Zijp¹, Zamrotul Izzah^{1,2,3}, Christoffer Åberg³, C.Tji. Gan⁴, Stephan.J.L. Bakker⁵, Daan J. Touw^{1,3,6}, Job F.M. van Boven^{1,6}

1. University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy & Pharmacology, Groningen, The Netherlands

2. Universitas Airlangga, Faculty of Pharmacy, Department of Pharmacy Practice, Surabaya, Indonesia

3. University of Groningen, Groningen Institute of Pharmacy, Department of Pharmaceutical Analysis, Groningen, The Netherlands

4. University of Groningen, University Medical Center Groningen, Respiratory Diseases and Lung Transplantation, Groningen, The Netherlands

5. University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, Groningen, The Netherlands

6. Medication Adherence Expertise Center of the Northern Netherlands (MAECON), Groningen, The Netherlands

Corresponding author: Daan J. Touw; d.j.touw@umcg.nl

Table 1. Overview of all included studies

		<i>a</i>		Matrix			Clinical
Reported field	Study	Continent	Study population	measured	Analytical method	Drugs evaluated	applicability
Asthma/ COPD	Salamzadeh et al., 2008[1]	Asia	Adult patients with asthma and COPD; N=86	Saliva*	HPLC	theophylline	TDM
Asthma/ COPD	Hassall et al., 2018[2]	Europe	Adults with stable COPD and/or asthma; N=200	Hair	LC-MS/MS	formoterol	Adherence
Cardiovascular disease	Peeters et al., 2019[3]	Europe	Outpatients from internal medicine, cardiology, and nephrology clinics; N=135	DBS*	UHPLC-MS/MS	enalapril, perindopril, losartan, valsartan, hydrochlorothiazide , amlodipine, nifedipine	Adherence
Cardiovascular disease	Foerster et al., 2018[4]	Europe	Patients (=18 years), regularly treated with apixaban, dabigatran, edoxaban, or rivaroxaban; N=33	DBS*	UPLC-MS/MS	rivaroxaban	TDM
Cardiovascular disease	Zalzstein et al., 2003[5]	Asia	Infants, children, and adolescents attending the paediatric cardiology unit and receiving digoxin for a variety of indication; N=18	Saliva*	FPIA	digoxin	TDM
Cardiovascular disease	Enderle et al., 2015[6]	Europe	Outpatients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension, receiving stable doses of tadalafil, sildenafil, ambrisentan, or bosentan for at least 4 weeks; N=84	DBS*	LC-MS/MS	sildenafil, tadalafil, ambrisentan, bosentan	TDM
Cardiovascular disease	Ghimenti et al., 2011[7]	Europe	Adult patients on warfarin therapy treated for atrial fibrillation, deep vein thrombosis, pulmonary embolism, and others; N=50	Saliva*	HPLC	warfarin	TDM
Cardiovascular disease	Lomonaco et al., 2014[8]	Europe	Adult patients with atrial fibrillation, deep vein thrombosis, or mechanical or biological heart	Saliva*	HPLC	warfarin	TDM

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
	Study	continent	valve bearers undergoing warfarin therapy; N=14	incasurcu	Anarytical Include	Di ugs cvaluacu	
Cardiovascular lisease	Richter et al., 2019[9]	Europe	Hypertensive patients taking regularly cardiovascular drugs; N=57	Saliva and Urine*	LC-MS/MS	amlodipine, bisoprolol, spironolactone, hydrochlorothiazide , metoprolol, moxonidine, ramipril, torasemide, valsartan	Adherence
Chronic yposmia	Henkin et al., 2012[10]	North America	Adult patients with smell loss (hyposmia) treated with oral theophylline; N=23	Saliva*	FPIA	theophylline	TDM
Chronic nigraine	Ferrari et al., 2016[11]	Europe	Adults diagnosed with chronic migraine with self-reported triptan use; N=147	Hair	LC-MS/MS	almotriptan, eletriptan, frovatriptan, rizatriptan, sumatriptan	Adherence
Chronic nigraine	Ferrari et al., 2017[12]	Europe	Primary headache patients with daily treatment for at least 3 months; N=93	Hair	LC-MS/MS	amitriptyline, citalopram, cloxazolam, duloxetine, topiramate	Adherence
Diabetes	Scherf-Clavel et al., 2019[13]	Europe	Adult patients with type 2 diabetes mellitus receiving a therapy with metformin and/or sitagliptin as fixed dose combination or monotherapy; N=154	DBS*	HPLC	metformin, sitagliptin	TDM
Epilepsy	Guo et al., 2019[14]	Asia	Epilepsy patients, aged 4 to 87years; N=29	DBS	GC-MS	valproic acid	TDM
Epilepsy	Brandt et al., 2018[15]	Europe	Adult epileptic inpatients prescribed lacosamide; N=25	Saliva*	-	lacosamide	TDM

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
Epilepsy	Maldonado et al., 2008[16]	South America	Children treated for epilepsy, aged from 1 to 14 years; N=103	Saliva	FPIA	carbamazepine, valproic acid	TDM
Epilepsy	Tsatsakis et al., 2000[17]	Europe	Patients (aged 5 to 69 years) with epilepsy, using PHT for 2 months to several years; N=60	Hair*	HPLC FPIA	phenytoin	Adherence
Epilepsy	Williams et al., 2002[18]	Europe	26 pregnant women and 13 non-pregnant female controls with epilepsy; N=39	Hair	HPLC	carbamazepine, lamotrigine	Adherence
Epilepsy	Karas-Ruszczyk et al., 2017[19]	Europe	Outpatients and inpatients, have a 3-month history of stable Levetiracetam dosing,; N=51	Saliva and Hair*	LC-MS/MS	levetiracetam	TDM and Adherence
Epilepsy	Williams et al., 2001[20]	Europe	Closely supervised adult inpatients with epilepsy; N=37	Hair*	HPLC	carbamazepine	Adherence
Epilepsy	Rhoden et al., 2014[21]	South America	Patients from a neurology service affiliated to a public health care center, using valproic acid; N=17	DBS*	GC-MS	valproic acid	TDM
Epilepsy	Mecarelli et al., 2007[22]	Europe	Adult epileptic patients, taking levetiracetam as monotherapy or add-on therapy with other antiepileptic drugs for at least 3 months; N=30	Saliva*	GC-MS	levetiracetam	TDM
Epilepsy	Grim et al., 2003[23]	North America	Children and adults patients with epilepsy who attended the neurology clinic and treated with levetiracetam for a minimum of 4 weeks; N=40	Saliva*	HPLC	levetiracetam	TDM
Epilepsy	Linder et al., 2017[24]	Europe	Children and adolescents aged 2 to 18 years and treated with carbamazepine, lamotrigine, or valproic acid as a single or	DBS*	LC-MS/MS	carbamazepine, lamotrigine, valproic acid	TDM

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
Reported field	Study	Continient	combined therapy;	measureu	Analytical method	Di ugs evaluateu	applicability
			N=46				
Epilepsy	Dwivedi et al., 2015[25]	Asia	Epileptic patients aged = 65 years taking either valproic acid alone or in combination for minimum 3 months; N=65	Saliva*	HPLC	valproic acid	TDM
Epilepsy	Greenaway et al., 2011[26]	Europe	Epileptic patients treated with lacosamide as add-on therapy for at least 1 month; N=98	Saliva*	HPLC	lacosamide	TDM
Epilepsy	Kaewdoung et al., 2015[27]	Asia	Epileptic outpatients aged 15 to 60 years old receiving carbamazepine monotherapy or in combination with other antiepileptic drugs for at least 1 month; N=42	Saliva*	Fluorescence polarization immunoassay (FPIA)	carbamazepine	TDM
Epilepsy	Tsiropoulos et al., 2000[28]	Europe	Epileptic outpatients aged more than 14 years receiving stable doses of lamotrigine and comedication for at least 14 days; N=40	Saliva*	HPLC	lamotrigine	TDM
Epilepsy	Kuczynska et al., 2019[29]	Europe	Epileptic patients on stable drug dosing for 3 months; N=85	Saliva and Hair*	LC-MS/MS	lamotrigine	TDM and Adherence
Epilepsy	Shah et al., 2013[30]	Europe	Children (0.9-17 years) with epilepsy; N=102	DBS	GC HPLC	valproic acid, levetiracetam, carbamazepine, lamotrigine	Adherence
Epilepsy	Li et al., 2016[31]	Asia	Inpatient and outpatient epileptic patients in the Pediatric Departments at the hospital taking oxcarbazepine as monotherapy or adjunctive therapy with other antiepileptic drugs; N=52	Saliva*	HPLC	oxcarbazepine	TDM
Epilepsy	Miles et al., 2003[32]	North America	Epilepsy patients (2.5 to 25 years) attending the neurology clinic and	Saliva*	FPIA	topiramate	TDM

				Matrix			Clinical
Reported field	Study	Continent	Study population	measured	Analytical method	Drugs evaluated	applicability
			taking a constant dose of topiramate for at least 1 week; N=31				
Epilepsy	Đordevic et al., 2009[33]	Europe	Epileptic patients on carbamazepine therapy at the clinic; N=23	Saliva*	HPLC	carbamazepine	TDM
Epilepsy	Ryan et al., 2003[34]	North America	Epilepsy patients (2 to 46 years) attending the neurology clinic and taking lamotrigine; N=31	Saliva*	HPLC	lamotrigine	TDM
Epilepsy	Linder et al., 2019[35]	Europe	Children (2-18 years) with epilepsy; N=135	DBS*	LC-MS/MS	carbamazepine, lamotrigine, levetiracetam, valproic acid	TDM and Adherence
Epilepsy	Kongrit et al., 2014[36]	Asia	Outpatients aged 17 to 56 years with epilepsy and received topiramate either monotherapy or combination therapy with other antiepileptic drugs for at least 1 month; N=26	Saliva*	turbidimetric immunoassay	topiramate	TDM
Epilepsy	Dwivedi et al., 2016[37]	Asia	Pediatric and adult outpatients (= 65 years) with epilepsy taking either of carbamazepine, phenytoin, phenobarbital alone or in combinations for a minimum of three months and their drug dosage reached to maximum tolerable levels; N=116	Saliva*	HPLC	carbamazepine, phenytoin, phenobarbital	TDM
Epilepsy	Hamdan et al., 2017[38]	Asia	Paediatric outpatients (=18 years) diagnosed with epilepsy and had been prescribed levetiracetam for at least one month; N=15	Saliva*	HPLC	levetiracetam	TDM and Adherence
Epilepsy	Kim et al., 2020[39]	Asia	Epileptic adult patients taking perampanel and whose dose was not changed for 2-3 weeks;	Saliva*	LC-MS/MS	perampanel	TDM

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
Epilepsy	Franco et al., 2020[40]	Europe	N=30 Pediatric and adult patients with epilepsy receiving rufinamide as part of routine clinical management and being at steady state dose, at least 48 hours after the last rufinamide dose change (at least 96	Saliva*	HPLC	rufinamide	TDM
(Haemato)-Onc ology	Willemsen et al., 2018[41]	Europe	hours for patients co-medicated with valproic acid); N=26 Patients with any type of solid tumour; N=22	DBS*	UPLC-MS/MS	everolimus	TDM
(Haemato)-Onc ology	Braal et al., 2019[42]	Europe	Adult lung cancer patients; N=10	Hair*	LC-MS/MS	erlotinib	TDM
(Haemato)-Onc ology	Antunes et al., 2015[43]	South America	Adult patients with breast cancer; N=91	DBS*	UHPLC-MS/MS	tamoxifen	TDM
(Haemato)-Onc ology	Maring et al., 2009[44]	Europe	Adults with advanced non-small cell lung cancer; N=12	Saliva*	HPLC	gemcitabine, epirubicin	TDM
(Haemato)-Onc ology	Boucaud et al., 2003[45]	Europe	Adults with metastatic epithelial ovarian cancer; N=13	Saliva*	HPLC with fluorescence detection	topotecan	TDM
(Haemato)-Onc ology	Boons et al., 2017[46]	Europe	Adult patients (18 years or older) with CML on treatment with 300 mg nilotinib twice daily; N=20	DBS*	LC-MS/MS	nilotinib	TDM
(Haemato)-Onc ology	de Wit et al., 2015[47]	Europe	Patients =18 years with progressive disease from an advanced solid tumour; N=12	DBS*	LC-MS/MS	pazopanib	TDM
(Haemato)-Onc ology	Capron et al., 2016[48]	South America	Adult patients with chronic myeloid leukemia with imatinib treatment for >4 months; N=102	Hair*	LC-MS/MS	imatinib	Adherence
(Haemato)-Onc ology	Andriguetti et al., 2018[49]	South America	Outpatients prescribed with paclitaxel as a single chemotherapy or in combination with other	DBS*	LC-MS/MS	paclitaxel	TDM

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
	, i		chemotherapy drugs (carboplatin, gemcitabine, cisplatin, trastuzumab); N=34		¥		
Haemato)-Onc blogy	Raymundo et al., 2018[50]	South America	Adults with prostate, breast, or lung cancer; N=31	DBS*	LC-MS/MS	docetaxel	TDM
(Haemato)-Onc blogy	Jager et al., 2014[51]	Europe	Female patients who underwent surgical treatment for early, ER-positive breast cancer, and subsequently received adjuvant tamoxifen for at least 2 months at the outpatient clinic; N=50	DBS*	LC-MS/MS	tamoxifen	TDM
Haemato)-Onc llogy	Lee et al., 2020[52]	Asia	Outpatients aged 20 to 70 years with stable doses of radotinib taken at least for a week for the treatment of CML in chronic phase; N=50	DBS*	LC-MS	radotinib	TDM
Haemato)-Onc logy	Dillenburg et al., 2020[53]	South America	Prostate cancer patients; N=10	DBS*	LC-MS/MS	abiraterone	TDM
Haemato)-Onc logy	Antunes et al., 2015[54]	South America	Adult patients on chronic myeloid leukemia treatment with imatinib for at least 4 months; N=50	DBS*	LC-MS/MS	imatinib	TDM
HV/AIDS	Courlet et al., 2019[55]	Europe	HIV patients participating in the Swiss HIV Cohort Study (SHCS) #815 study; N=73	Saliva*	LC-MS/MS	emtricitabine, lamivudine	Adherence
HV/AIDS	Wu et al., 2018[56]	Asia	Female HIV positive patients, using lamivudine, tenofovir, or nevirapine over the past 12 months; N=33	Hair	LC-MS/MS	lamivudine, tenofovir disoproxil, nevirapine	Adherence
HIV/AIDS	Kromdijk et al., 2012[57]	Europe	HIV infected adults; N=80	DBS*	LC-MS/MS	nevirapine, efavirenz	TDM
HIV/AIDS	Alcaide et al., 2017[58]	Africa	HIV-infected women at week 32 of pregnancy; N=392	DBS	LC-MS/MS	tenofovir disoproxil, lamivudine,	Adherence

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
•	•		¥ A A		· ·	efavirenz	
HIV/AIDS	Van Zyl et al., 2011[59]	Africa	HIV infected adults on second-line treatment with lopinavir/ritonavir; N=93	Hair*	LC-MS/MS	lopinavir	Adherence
HIV/AIDS	Gandhi et al., 2015[60]	North America	HIV-negative men who have sex with men and transgender women, enrolled in 3 prep trials; N=217	DBS and Hair	LC-MS/MS	tenofovir disoproxil, emtricitabine	Adherence
HIV/AIDS	Yamada et al., 2017[61]	Asia	HIV-1-infected outpatients, treated with abacavir, tenofovir, darunavir, raltegravir at least 1 month; N=30	Saliva*	LC-MS/MS	abacavir, tenofovir disoproxil	TDM
HIV/AIDS	Bernard et al., 2002[62]	Europe	HIV infected patients on HAART; N=89	Hair	HPLC	indinavir	TDM
HIV/AIDS	Duval et al., 2007[63]	Europe	HIV infected patients; N=43	Hair*	HPLC	indinavir	TDM
HIV/AIDS	Gandhi et al., 2009[64]	North America	Women with HIV initiating protease inhibitor therapy; N=224	Hair	LC-MS/MS	lopinavir, atazanavir	TDM and Adherence
HIV/AIDS	Gras et al., 2011[65]	Africa	Adult HIV patients being treated with zidovudine, lamivudine, and nevirapine; N=29	Saliva*	LC-MS	zidovudine, lamivudine, nevirapine	Adherence
HIV/AIDS	Gandhi et al., 2011[66]	North America	HIV infected and at-risk non-infected women; N=424	Hair	LC-MS/MS	atazanavir, ritonavir	TDM
HIV/AIDS	Hickey et al., 2014[67]	Africa	Adult patients on antiretroviral drugs; N=373	Hair	LC-MS/MS	nevirapine	Adherence
HIV/AIDS	Rakhmanina et al., 2007[68]	North America	Paediatric patients with HIV-1 infection (aged 4 to14 years) receiving nevirapine for at least 4 weeks; N=19	Saliva*	LC-MS/MS	nevirapine	TDM and Adherence
HIV/AIDS	Wintergerst et al., 2000[69]	Europe	Asymptomatic HIV-infected male outpatients treated with antiretroviral containing indinavir; N=10	Saliva*	LC-MS	indinavir	TDM and Adherence

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
HIV/AIDS	van Heeswijk et al., 2001[70]	Europe	HIV-1-infected patients treated with nevirapine 200mg twice daily for at least 4 weeks; N=43	Saliva*	HPLC	nevirapine	TDM
HIV/AIDS	Johnston et al., 2019[71]	Africa	HIV-positive outpatients; N=135	Hair*	LC-MS/MS	efavirenz	TDM
HIV/AIDS	Murnane et al., 2019[72]	Africa	HIV-positive women that started ART during pregnancy and continued postpartuum; N=71	Hair	LC-MS/MS	tenofovir	Adherence
HIV/AIDS	Gandhi et al., 2019[73]	Asia	HIV-positive participants; N=75	Hair	LC-MS/MS	nevirapine, efavirenz	Adherence
HIV/AIDS	Chu et al., 2018[74]	Asia	HIV-positive adults; N=54	Hair	LC-MS/MS	zidovudine, efavirenz, lopinavir, ritonavir	Adherence
HV/AIDS	Tabb et al., 2018[75]	Africa	HIV positive youngsters (age: 11-24y); N=227	Hair	LC-MS/MS	efavirenz, nevirapine, lopinavir, atazanavir, ritonavir	Adherence
HIV/AIDS	Hugen et al., 2000[76]	Europe	Adult outpatients infected with HIV who were treated chronically with indinavir 800mg q8h; N=14	Saliva*	HPLC	indinavir	TDM and Adherence
HIV/AIDS	Gandhi et al., 2017[77]	North America	HIV-negative men who have sex with men and transgender women using prep; N=280	Hair	LC-MS/MS	tenofovir	Adherence
HIV/AIDS	Pintye et al., 2017[78]	Asia	HIV infected children on standard second-line ART; N=244	Hair	LC-MS/MS	lopinavir	TDM and Adherence
HIV/AIDS	Chawana et al., 2017[79]	Africa	HIV-infected adolescents failing second-line ART; N=50	Hair	LC-MS/MS	atazanavir	TDM and Adherence
HV/AIDS	Koss et al., 2017[80]	Africa	Samples were collected from men and transgender women that were en rolledin 2 open-label prep studies and from uninfected women participating in a randomized	Hair*	LC-MS/MS	tenofovir	Adherence

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
	Study		double-blind phase iib trial;			21080 - 1010000	appneasing
			N=1165				
HIV/AIDS	Koss et al., 2015[81]	Africa	HIV-infected pregnant women at 12-28 gestation enrolled in ART trial; N=325	Hair	LC-MS/MS	lopinavir, efavirenz	TDM
HIV/AIDS	Yan et al.,	Asia	HIV infected adults;	Hair	LC-MS/MS	lamivudine	Adherence
III V/AIDS	2016[82]	Asia	N=287	11411		lannvudine	Autorence
HIV/AIDS	Prasitsuebsai et al., 2015[83]	Asia	Children with HIV infection on second-line ART regimens; N=149	Hair*	LC-MS/MS	lopinavir	Adherence
HIV/AIDS	Olds et al., 2015[84]	Africa	Children with HIV infection (2-10 years of age); N=74	Hair	LC-MS/MS	nevirapine	Adherence
HIV/AIDS	Baxi et al., 2015[85]	North America	HIV infected women; N=271	Hair	LC-MS/MS	nevirapine	TDM
HIV/AIDS	Baxi et al., 2015[86]	Africa	HIV-negative serodiscordant couples and men who have sex with men using daily or intermittent prep in two phase II prep trials; N=88	Hair*	LC-MS/MS	tenofovir, emtricitabine	TDM and Adherence
HIV/AIDS	Kromdijk et al., 2013[87]	Europe	HIV-infected adults; N=50	DBS*	LC-MS/MS	efavirenz, nevirapine	TDM
HIV/AIDS	George et al., 2014[88]	Africa	HIV-infected adults; N=101	Saliva	TLC	nevirapine	Adherence
HIV/AIDS	Lamorde et al., 2014[89]	Africa	HIV-infected adults; N=297	Saliva*	TCL HPLC	nevirapine	TDM
HIV/AIDS	Duthaler et al., 2018[90]	Europe	HIV infected adults from Switzerland and Tanzania; N=359	DBS*	LC-MS/MS	nevirapine, efavirenz, lopinavir	TDM
HIV/AIDS	Van Schooneveld et al., 2010[91]	North America	Adult HIV patients attending the HIV clinic, age >19 years, receipt of atazanavir (with or without ritonavir) for at least 7 days prior, and HIV RNA of<50 copies/ml for the last 90 days; N=48	DBS*	UPLC	atazanavir	TDM
		Europe	Outpatients aged 18 years and older		LC-MS/MS	ritonavir, darunavir,	TDM

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
	2011[92]	continent	with confirmed HIV infection and used etravirine, darunavir/ritonavir or raltegravir for at least 2 weeks; N=11	measureu	Anarytical Includu	raltegravir	
HIV/AIDS	de Truchis et al., 2016[93]	Africa	HIV-1 infected adults aged 18 years or older and had been treated with ART for 1 year; N=218	DBS	LC-MS	nevirapine, efavirenz	Adherence
HIV/AIDS	Yang et al., 2020[94]	Asia	HIV-infected adults; N=75	Hair	LC-MS/MS	nevirapine	Adherence
HIV/AIDS	Zhang et al., 2020[95]	Asia	HIV-infected adults; N=268	Hair	LC-MS/MS	tenofovir	Adherence
HIV/AIDS	Ngara et al., 2020[96]	Africa	HIV-infected adults on second-line treatment; N=50	Hair*	LC-MS/MS	atazanavir, ritonavir	TDM
HIV/AIDS	de Lastours et al., 2011[97]	Europe	Adult HIV-infected patients (<65 years old) receiving a stable antiretroviral regimen, including 245 mg TDF daily and/or 200 mg FTC daily for at least 3 months; N=41	Saliva*	LC-MS/MS	tenofovir , emtricitabine	TDM
HIV/AIDS	Gandhi et al., 2012[98]	North America	Women with or without HIV infection; N=111	Hair*	LC-MS/MS	efavirenz	TDM
BD	Alsous et al., 2020[99]	Europe	Paediatric patients on AZA/6-MP treatment; N=29	DBS*	LC-MS/MS	azathioprine, mercaptopurine	TDM
BD	Detrez et al., 2019[100]	Europe	Patients initiating or under maintenance golimumab for moderate-to-severe ulcerative colitis; N=10	DBS*	ELISA	golimumab	TDM
IBD	Bian et al., 2020[101]	Europe	Vedolizumab-treated outpatients with ulcerative colitis or Chron's disease; N=19	DBS*	ELISA	vedolizumab	TDM
Pain	Heiskanen et al., 2015[102]	Europe	Cancer patients on any dose of controlled-release (CR) oral	Saliva*	GC-MS	morphine, fentanyl, oxycodone	TDM

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
	Judy	Somethem	morphine, CR oral oxycodone, or TD fentanyl; N=64	mousurou	Thur, teur memou	Drugs crutaticu	appreading
Pain	Hardy et al., 2012[103]	Australia/ Oceania	Patients with cancer, using sustained release oxycodone (Oxycontin); N=43	Saliva*	LC-MS/MS	oxycodone	TDM
ain	Musshoff et al., 2007[104]	Europe	Adult patients with cancer pain; N=31	Hair	LC-MS/MS	tramadol, morphine, fentanyl	Adherence
ain	Idkaidek et al., 2018[105]	Asia	Patients with neuropathic pain; N=44	Saliva*	LC-MS/MS	pregabalin	TDM
ain	Miguez-Díez et al., 2015[106]	South America	Outpatients taking methadone for pain management; N=14	Saliva*	HPLC	methadone	TDM
ain	Shaparin et al., 2017[107]	North America	Male and female chronic pain patients aged 18-72 years undergoing opioid treatment at pain management clinics; N=356	Saliva*	LC-MS/MS	oxycodone	Adherence
arkinson	Kronstrand et al., 2003[108]	Europe	Patients with Parkinson's disease; N=16	Hair*	GC MS spectrophotometry for melanin quantitation	selegiline	Adherence
sychiatric isorder	Sun et al., 2019[109]	Asia	Patients who were treated with risperidone for more than 3 months; N=34	Hair*	LC-MS/MS	risperidone	TDM
sychiatric isorder	Preiskorn et al., 2018[110]	Europe	Children and adults diagnosed with attention-deficit/hyperactivity disorders, aged 7 to 48 years, undergoing medical treatment with methylphenidate; N=36	Saliva*	LC-MS/MS	methylphenidate	TDM
Psychiatric lisorder	Ebert et al., 2018[111]	Europe	Inpatients or outpatients, aged 19 - 79 years, undergoing treatment with venlafaxine, citalopram, or quetiapine; N=75	Saliva*	LC-MS/MS HPLC-UV	venlafaxine, quetiapine, citalopram	TDM
sychiatric isorder	Neumann et al., 2018[112]	Europe	Adult patients hospitalized for psychiatric disorders;	Saliva*	UPLC-MS/MS	aripiprazole, citalopram,	Adherence

				Matrix		_	Clinical
Reported field	Study	Continent	Study population	measured	Analytical method	Drugs evaluated	applicability
			N=96			escitalopram, duloxetine, mirtazapine, pipamperone, venlafaxine, quetiapine	
Psychiatric lisorder	Kloosterboer et al., 2018[113]	Europe	Patients aged 18 years or older who used either risperidone, paliperidone (the active metabolite of risperidone), aripiprazole, or pipamperone; N=81	DBS*	LC-MS/MS	risperidone, paliperidone, aripiprazole, pipamperone	TDM and Adherence
Psychiatric lisorder	Geers et al., 2017[114]	Europe	Schizophrenia patients aged 18-55 years, treated with clozapine, on a stable dose for at least 2 weeks, and had Caucasian ethnicity; N=15	DBS*	LC-MS/MS	clozapine	TDM
Psychiatric lisorder	da Silva et al., 2018[115]	South America	Outpatients on fluoxetine treatment for > 6 months; N=30	DBS*	UHPLC-MS/MS	fluoxetine	TDM
Psychiatric lisorder	Böttcher et al., 2019[116]	Europe	ADHD patients on Elvanse therapy, of which the oral fluid samples were sent to the laboratory for analysis; N=70	Saliva	UPLC-MS/MS	lisdexamfetamine	Adherence
Psychiatric lisorder	Sticht et al., 2007[117]	Europe	Children (7-16 years of age) with ADHD; N=17	Hair	GC-MS	methylphenidate	Adherence
Psychiatric lisorder	Marchei et al., 2008[118]	Europe	Children diagnosed with ADHD; N=11	Hair	LC-MS	methylphenidate	Adherence
Psychiatric lisorder	Fucci et al., 2007[119]	Europe	Patients on stable methadone maintanance therapy; N=10	Hair	GC MS	methadone	Adherence
Psychiatric lisorder	Cirimele et al., 2000[120]	Europe	Schizophrenic patients with refractory psychosis; N=26	Hair*	GC-MS	clozapine	TDM
Psychiatric lisorder	Pirro et al., 2014[121]	Europe	Patients treated for opiate addiction; N=79	Hair	LC-MS/MS	buprenorphine	TDM

Donouted field	S 4 d	Continent	Study nonvlotion	Matrix	Analystical mathed		Clinical
Reported field	Study	Continent	Study population	measured	Analytical method	Drugs evaluated	applicability
Psychiatric disorder	Skopp et al., 2011[122]	Europe	Participants in a maintenance program; N=18	Hair	LC-MS/MS	buprenorphine	TDM
Psychiatric disorder	Weber et al., 2017[123]	Europe	Depressive patients over 20 years old receiving citalopram or mirtazapine; N=36	DBS*	LC-MS	citalopram, mirtazapine	TDM
Psychiatric disorder	Dziurkowska et al., 2013[124]	Europe	Women with major depressive disorder treated with venlafaxine; N=14	Saliva	HPLC	venlafaxine	TDM
Psychiatric disorder	Mercolini et al., 2014[125]	Europe	Schizophrenic patients treated with ziprasidone at the mental health centres; N=10	DBS*	HPLC-F	ziprasidone	TDM
Psychiatric disorder	Wang et al., 2019[126]	Asia	Schizophrenic patients with fixed drug use for >6 months; N=46	Hair	LC-MS/MS	clozapine, chlorpromazine, risperidone	TDM
Psychiatric disorder	Pappadopulos et al., 2009[127]	North America	Children (7-10 years of age) with ADHD; N=289	Saliva	GC	methylphenidate	Adherence
Psychiatric disorder	Fisher et al., 2017[128]	Europe	Psychiatric inpatients and outpatients; N=112	Saliva*	LC-MS/MS	clozapine, amisulpride	TDM and Adherence
Psychiatric disorder	Flarakos et al., 2004[129]	North America	Pediatrics on risperidone attending the outpatient clinic and adults admitted to a clinical unit and receiving regular risperidone; N=13	Saliva*	LC-MS/MS	risperidone	TDM and Adherence
Psychiatric disorder	Shiran et al., 2005[130]	Europe	Adult patients attending clinic at the Substance Misuse Service of Community Health and receiving methadone maintenance treatment; N=60	Saliva*	LC-MS	methadone	TDM
Psychiatric disorder	Saracino et al., 2012[131]	Europe	Former heroin-addicted patients undergoing methadone maintenance treatment; N=16	DBS*	HPLC	methadone	TDM
Psychiatric	Fisher et al.,	Africa	Inpatients and outpatients, adults,	Saliva*	LC-MS/MS	clozapine,	TDM

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
disorder	2013[132]	Continient	receiving antipsychotics treatment; N=90	<u> </u>	i indiguedi method	risperidone, quetiapine	uppicuomy
Psychiatric disorder	Stegmann et al., 2016[133]	Europe	Pediatric and adult patients (= 60 years) with attention-deficit hyperactivity disorder or hyperkinetic disorder receiving methylphenidate (daily doses 5-80 mg); N=12	Saliva*	HPLC	methylphenidate	TDM and Adherence
Psychiatric disorder	Patteet et al., 2016[134]	Europe	Psychiatric patients (19-65 years) diagnosed with schizophrenia, schizoaffective or bipolar disorder, taking antipsychotics treatment; N=85	Saliva*	UHPLC-MS/MS	amisulpride, aripiprazole, clozapine, olanzapine, paliperidone, quetiapine, risperidone	TDM and Adherence
Psychiatric disorder	Ramírez Fernández et al., 2020[135]	North America	Patients in criminal justice system prescribed with chlorpromazine, haloperidol, olanzapine, quetiapine, or risperidone.; N=59	Hair	UPLC-MS/MS	olanzapine, risperidone, haloperidol	Adherence
Psychiatric disorder	Ransohoff et al., 2019[136]	North America	Patients at the addiction-psychiatry clinics undergoing buprenorphine treatment; N=260	Saliva and Urine	LC-MS/MS	buprenorphine	Adherence
Psychiatric disorder	Wohkittel et al., 2020[137]	Europe	Children and Adolescents with ADHD (age: 7-16 years); N=28	Saliva*	HPLC with fluorescence detector	lisdexamfetamine	TDM
Psychiatric disorder	Manfro et al., 2020[138]	South America	Patients over 18 years receiving lithium carbonate therapy for at least one week; N=43	DBS*	Graphite furnace atomic absorption spectrometry (GFAAS)	lithium	TDM
Q fever or Whipple's disease	Angelakis et al., 2015[139]	Europe	Outpatients treated with doxycycline and hydroxychloroquine for Q fever or Whipple's disease; N=14	Hair*	UPLC	doxycycline	Adherence
Systemic	Hawwa et al.,	Europe	Children diagnosed with juvenile	DBS*	LC-MS/MS (DBS)	methotrexate	TDM and

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
inflammatory disease	2014[140]	Continent	idiopathic arthritis (JIA) and juvenile dermatomyositis (JDM) receiving methotrexate weekly doses (oral or subcutaneous, 10-20 mg) for at least two months; N=47	<u>measu eu</u>	HPLC (packed RBC)		Adherence
Systemic inflammatory disease	Kneepkens et al., 2017[141]	Europe	Patients with rheumatoid arthritis (RA), psoriatic arthritis (psa) and ankylosing spondylitis (AS) treated with adalimumab once every two weeks, with or without synthetic disease-modifying antirheumatic drugs (dmards), non-steroidal anti-inflammatory drugs (nsaids) and/or prednisone; N=161	DBS*	ELISA antigen-binding test (ABT)	adalimumab	TDM
Transplantation	Brooks et al., 2019[142]	Australia/ Oceania	Adult (18 years of age or over) renal transplant recipients, had undergone kidney transplant surgery 4-8 weeks prior, receiving triple immunosuppressive therapy consisting of oral enteric-coated mycophenolate sodium (EC-MS) twice daily, tacrolimus twice daily and prednisolone daily; N=20	Saliva*	UPLC-MS	prednisolone	TDM
Transplantation	Brooks et al., 2019[143]	Australia/ Oceania	Adult (18 years of age or over) renal transplant recipients, had undergone kidney transplant surgery 4-8 weeks prior, receiving triple immunosuppressive therapy consisting of oral enteric-coated mycophenolate sodium (EC-MS) (540-720 mg twice daily), tacrolimus (twice daily, total daily dose 3-22 mg) and prednisolone 14-21 mg daily; N=20	Saliva*	UPLC-MS	mycophenolic acid	TDM

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
Fransplantation	Ferreira et al.,	South	Adult kidney transplant patients,	Saliva*	LC-MS/MS	mycophenolic acid	TDM
ransplantation	2019[144]	America	hospitalized, received a dose of 750 mg of MMF twice a day; N=13	Sanva	LC-1015/1015	inycophenone acid	
Transplantation	Ghareeb et al., 2018[145]	North America	Stable kidney transplant recipients that were on a maintenance immunosuppressive tacrolimus, mycophenolic acid, and prednisone; N=46	Saliva*	LC-MS/MS	tacrolimus	TDM
Fransplantation	Martial et al., 2017[146]	Europe	Patients between 2 and 18 years of age after kidney transplantation, treated with at least 1 of the compounds of interest (tacrolimus or mycophenolic acid), admitted to the pediatric ward or visit their physician on an outpatient basis; N=28	DBS*	LC-MS/MS	tacrolimus, mycophenolic acid	TDM
Fransplantation	Al-Uzri et al., 2017[147]	North America	Youth patients at least 3 months post-transplant, undergoing TAC immunosuppression therapy, and English speaking recruited from a pediatric renal transplantation clinic; N=30	DBS*	LC-MS/MS Radioimmunoassay	tacrolimus	TDM
Fransplantation	Müller et al., 2013[148]	Europe	Liver transplant patients; N=15	Hair*	LC-MS/MS	ciclosporin	TDM and Adherence
Fransplantation	Hoogtanders et al., 2007[149]	Europe	Adult kidney transplant outpatients receiving tacrolimus; N=24	DBS*	LC-MS/MS	tacrolimus	TDM
Fransplantation	Wilhelm et al., 2013[150]	Europe	Adult patients (18 years or older) who were treated orally with ciclosporin after allogeneic hematopoietic stem cell transplantation; N=36	DBS*	LC-MS/MS	ciclosporin	TDM
Transplantation	Arpini et al., 2013[151]	South America	Adult patients (18 years or older) treated orally with mycophenolate mofetil or mycophenolate sodium	DBS*	UHPLC	mycophenolic acid	TDM

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
keporteu nela	Siddy	Comment	after kidney transplantation;	measured	Analytical method	Drugs evaluated	applicability
			N=19				
Fransplantation	Veenhof et al., 2017[152]	Europe	Adult kidney transplant patients received tacrolimus or cyclosporine A, mycophenolate mofetil, and prednisolone; N=172	DBS*	LC-MS/MS	tacrolimus, ciclosporin	TDM
ransplantation	Hinchliffe et al., 2013[153]	Europe	Heart and lung transplant patients during outpatient consultations in a specialist cardiothoracic transplant centre over a period of six months receiving either ciclosporin A or tacrolimus; N=91	DBS*	UPLC-MS/MS	ciclosporin, tacrolimus	TDM
Fransplantation	Koster et al., 2017[154]	Europe	Transplant patients; N=142	DBS*	LC-MS/MS	tacrolimus, ciclosporin	TDM
Fransplantation	Mendonza et al., 2006[155]	North America	Male, Caucasian, kidney transplant recipients attending transplant services clinic, on immunosuppressive therapy with tacrolimus and prednisone; N=11	Saliva*	LC-MS/MS	mycophenolic acid	TDM
Transplantation	Veenhof et al., 2019[156]	Europe	Adult transplant patients; N=56	DBS*	LC-MS/MS	sirolimus, everolimus	TDM
Fransplantation	Dickerson et al., 2014[157]	North America	Pediatric (1 year or older) kidney, heart and liver recipients.; N=34	DBS*	LC-MS/MS	tacrolimus, sirolimus	TDM
Fransplantation	Zwart et al., 2018[158]	Europe	Kidney(-pancreas) transplant recipients; N=65	DBS*	LC-MS/MS	tacrolimus, mycophenolic acid	TDM
Fransplantation	Hoogtanders et al., 2007[159]	Europe	Stable outpatients with kidney transplant; N=26	DBS*	LC-MS/MS	tacrolimus	TDM
Transplantation	Mendonza et al., 2004[160]	North America	Kidney transplant recipients attending the outpatient clinic at the hospital and taking cyclosporine (csa); N=15	Saliva*	LC-MS/MS	ciclosporin	TDM

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
Transplantation	van Boekel et al., 2015[161]	Europe	Renal transplant patients; N=26	DBS	LC-MS/MS	tacrolimus	TDM
Transplantation	Cheung et al., 2008[162]	Asia	Renal transplant recipients; N=36	DBS*	LC-MS/MS	tacrolimus	TDM
Transplantation	Koop et al., 2013[163]	North America	Pedriatic kidney transplant recipients (age 6-20 years); N=21	DBS*	LC-MS/MS	tacrolimus	TDM
Transplantation	Alsmadi et al., 2019[164]	Asia	Jordanian pediatric kidney transplant recipients (4-18 years); N=26	Saliva*	LC-MS/MS	mycophenolic acid	TDM
Transplantation	Veenhof et al., 2020[165]	Europe	Adult kidney transplant recipients; N=107	DBS*	LC-MS/MS	tacrolimus	TDM
Tuberculosis	Martial et al., 2018[166]	South America	Hospitalized or ambulatory children, aged 1 - 15 years, with pulmonary or extrapulmonary TB, started treatment with a fixed-dose combination of first-line anti-TB drugs; N=11	DBS*	LC-MS/MS	rifampicin, pyrazinamide	TDM
Tuberculosis	Vu et al., 2014[167]	Europe	Adult tuberculosis patients received rifampicin or clarithromycin; N=13	DBS*	LC-MS/MS	rifampicin	TDM
Tuberculosis	Metcalfe et al., 2019[168]	North America	Patients, most undergoing MDR- or XDR-TB therapy; N=47	Hair	LC-MS/MS	isoniazid, pyrazinamide, ethambutol, levofloxacin, moxifloxacin, bedaquiline, clofazimine, linezolid, ethionamide	TDM
Tuberculosis	Mave et al., 2017[169]	Asia	Children (<12 years) with tuberculosis; N=16	Hair*	LC-MS/MS	isoniazid	TDM
Tuberculosis	Mave et al., 2016[170]	Asia	Children <12 years newly diagnosed with tuberculosis; N=38	Hair	LC-MS/MS	isoniazid	TDM

Reported field	Study	Continent	Study population	Matrix measured	Analytical method	Drugs evaluated	Clinical applicability
Tuberculosis	Gerona et al., 2016[171]	North America	Patients with active or latent TB infection; N=18	Hair	LC-MS/MS	isoniazid	Adherence
Tuberculosis	Ghimire et al., 2019[172]	Asia	Patients (=18 years) with newly diagnosed or previously treated MDR-TB receiving levofloxacin as a part of their MDR-TB regimen; N=23	Saliva*	LC-MS/MS	levofloxacin	TDM
Tuberculosis	van den Elsen et al., 2020[173]	Europe	Hospitalized adult TB patients in the Tuberculosis center received moxifloxacin or linezolid as part of their TB treatment and had routine TDM using blood samples; N=22	Saliva*	LC-MS/MS	moxifloxacin	TDM
Tuberculosis	van den Elsen et al., 2020[174]	Europe	Adult TB patients admitted at the Tuberculosis Center treated with rifampicin and/or isoniazid and had routine TDM for rifampicin or isoniazid; N=19	Saliva*	LC-MS/MS	rifampicin	TDM
Tuberculosis	Eisenhut et al., 2012[175]	Europe	Adult and paediatric patients (age 1-29 years) with latent or active TB infection; N=40	Hair	LC-MS	isoniazid	Adherence

* The drugs measurements were also performed in a classical matrix (blood/plasma/serum)

References

- 1. Salamzadeh J, Dadashzadeh S, Habibi M, Estifaie S. Serum and saliva theophylline levels in adult outpatients with asthma and chronic obstructive pulmonary disease (COPD): A cross-sectional study. Iran J Pharm Res. 2008;7(1):83–7.
- 2. Hassall D, Brealey N, Wright W, Hughes S, West A, Ravindranath R, et al. Hair analysis to monitor adherence to prescribed chronic inhaler drug therapy in patients with asthma or COPD. Pulm Pharmacol Ther. 2018;51:59–64.
- 3. Peeters LEJ, Feyz L, Hameli E, Zwart T, Bahmany S, Daemen J, et al. Clinical validation of a dried blood spot assay for 8 antihypertensive drugs and 4 active metabolites. Ther Drug Monit. 2019;42(3):460–7.
- 4. Foerster KI, Huppertz A, Meid AD, Müller OJ, Rizos T, Tilemann L, et al. Dried-blood-spot technique to monitor direct oral anticoagulants: Clinical validation of a UPLC-MS/MS-based assay. Anal Chem. 2018;90(15):9395–402.
- 5. Zalzstein E, Zucker N, Lifshitz M. Digoxin concentration in saliva and plasma in infants, children, and adolescents with heart disease. Curr Ther Res Exp. 2003;64(9):743–9.
- 6. Enderle Y, Meid AD, Friedrich J, Grünig E, Wilkens H, Haefeli WE, et al. Dried blood spot technique for the monitoring of ambrisentan, bosentan, sildenafil, and tadalafil in patients with pulmonary arterial hypertension. Anal Chem. 2015;87(24):12112–20.
- Ghimenti S, Lomonaco T, Onor M, Murgia L, Paolicchi A, Fuoco R, et al. Measurement of warfarin in the oral fluid of patients undergoing anticoagulant oral therapy. PLoS One. 2011;6(12):e28182.
- 8. Lomonaco T, Ghimenti S, Piga I, Biagini D, Onor M, Fuoco R, et al. Influence of sampling on the determination of warfarin and warfarin alcohols in oral fluid. PLoS One. 2014;9(12):e114430.
- 9. Richter LHJ, Jacobs CM, Mahfoud F, Kindermann I, Böhm M, Meyer MR. Development and application of a LC-HRMS/MS method for analyzing antihypertensive drugs in oral fluid for monitoring drug adherence. Anal Chim Acta. 2019;1070:69–79.
- 10. Henkin RI. Comparative monitoring of oral theophylline treatment in blood serum, saliva, and nasal mucus. Ther Drug Monit. 2012;34(2):217–21.
- Ferrari A, Baraldi C, Licata M, Vandelli D, Marchesi F, Palazzoli F, et al. Hair analysis for detection of triptans occasionally used or overused by migraine patients-a pilot study. Eur J Clin Pharmacol. 2016;72(9):1075–81.
- 12. Ferrari A, Licata M, Rustichelli C, Baraldi C, Vandelli D, Marchesi F, et al. Monitoring of adherence to headache treatments by means of hair analysis. Eur J Clin Pharmacol. 2017;73(2):197–203.
- 13. Scherf-Clavel M, Albert E, Zieher S, Valotis A, Hickethier T, Högger P. Dried blood spot testing for estimation of renal function and analysis of metformin and sitagliptin concentrations in diabetic patients: a cross-sectional study. Eur J Clin Pharmacol. 2019;75(6):809–16.
- 14. Guo M-Z, Shao L, Xi C, Li H-J, Wang L, Pan Y-J, et al. Assay of dried blood spot from finger prick for sodium valproate via ink auxiliary headspace gas chromatography mass spectrometry. J Chromatogr A. 2019;1601:335–9.
- 15. Brandt C, Bien CG, Helmer R, May TW. Assessment of the correlations of lacosamide

concentrations in saliva and serum in patients with epilepsy. Epilepsia. 2018;59(4):e34-9.

- 16. Maldonado C, Fagiolino P, Vázquez M, Rey A, Olano I, Eiraldi R, et al. Therapeutic carbamazepine (CBZ) and valproic acid (VPA) monitoring in children using saliva as a biologic fluid. J Epilepsy Clin Neurophysiol. 2008;14(2):55–8.
- 17. Tsatsakis AM, Psillakis T, Paritsis N. Phenytoin concentration in head hair sections: A method to evaluate the history of drug use. J Clin Psychopharmacol. 2000;20(5):560–73.
- 18. Williams J, Myson V, Steward S, Jones G, Wilson JF, Kerr MP, et al. Self-discontinuation of antiepileptic medication in pregnancy: Detection by hair analysis. Epilepsia. 2002;43(8):824–31.
- Karaś-Ruszczyk K, Kuczyńska J, Sienkiewicz-Jarosz H, Kurkowska-Jastrzębska I, Bienkowski P, Restel M, et al. Comparison of plasma, saliva, and hair levetiracetam concentrations. Ther Drug Monit. 2017;39(3):263–8.
- 20. Williams J, Patsalos PN, Mei Z, Schapel G, Wilson JF, Richens A. Relation between dosage of carbamazepine and concentration in hair and plasma samples from a compliant inpatient epileptic population. Ther Drug Monit. 2001;23(1):15–20.
- 21. Rhoden L, Antunes MV, Hidalgo P, Silva CÁ da, Linden R. Simple procedure for determination of valproic acid in dried blood spots by gas chromatography-mass spectrometry. J Pharm Biomed Anal. 2014;96:207–12.
- 22. Mecarelli O, Voti PL, Pro S, Romolo FS, Rotolo M, Pulitano P, et al. Saliva and serum levetiracetam concentrations in patients with epilepsy. Ther Drug Monit. 2007;29(3):313–8.
- 23. Grim SA, Ryan M, Miles M V, Tang PH, Strawsburg RH, DeGrauw TJ, et al. Correlation of levetiracetam concentrations between serum and saliva. Ther Drug Monit. 2003;25(1):61–6.
- 24. Linder C, Wide K, Walander M, Beck O, Gustafsson LL, Pohanka A. Comparison between dried blood spot and plasma sampling for therapeutic drug monitoring of antiepileptic drugs in children with epilepsy: A step towards home sampling. Clin Biochem. 2017;50(7–8):418–24.
- 25. Dwivedi R, Gupta YK, Singh M, Joshi R, Tiwari P, Kaleekal T, et al. Correlation of saliva and serum free valproic acid concentrations in persons with epilepsy. Seizure. 2015;25:187–90.
- 26. Greenaway C, Ratnaraj N, Sander JW, Patsalos PN. Saliva and serum lacosamide concentrations in patients with epilepsy. Epilepsia. 2011;52(2):258–63.
- Kaewdoung P, Chinvarun Y, Puripokai C, Tantisira MH, Laanwprasert S. Relationship between carbamazepine concentrations in serum and saliva of Thai epileptic patients. Thai J Pharm Sci. 2015;39(1):21–7.
- 28. Tsiropoulos I, Kristensen O, Klitgaard NA. Saliva and serum concentration of lamotrigine in patients with epilepsy. Ther Drug Monit. 2000;22(5):517–21.
- 29. Kuczynska J, Karas-Ruszczyk K, Zakrzewska A, Dermanowski M, Sienkiewicz-Jarosz H, Kurkowska-Jastrzebska I, et al. Comparison of plasma, saliva, and hair lamotrigine concentrations. Clin Biochem. 2019;74:24–30.
- Shah NM, Hawwa AF, Millership JS, Collier PS, Ho P, Tan ML, et al. Adherence to antiepileptic medicines in children: A multiple-methods assessment involving dried blood spot sampling. Epilepsia. 2013;54(6):1020–7.
- 31. Li RR, Sheng XY, Ma LY, Yao HX, Cai LX, Chen CY, et al. Saliva and plasma monohydroxycarbamazepine concentrations in pediatric patients with epilepsy. Ther Drug Monit.

2016;38(3):365-70.

- 32. Miles M V, Tang PH, Glauser TA, Ryan MA, Grim SA, Strawsburg RH, et al. Topiramate concentration in saliva: An alternative to serum monitoring. Pediatr Neurol. 2003;29(2):143–7.
- 33. Dordević S, Kilibarda V, Stojanović T. Determination of carbamazepine in serum and saliva samples by high performance liquid chromatography with ultraviolet detection. Vojnosanit Pregl. 2009;66(5):347–52.
- 34. Ryan M, Grim SA, Miles M V, Tang PH, Fakhoury TA, Strawsburg RH, et al. Correlation of lamotrigine concentrations between serum and saliva. Pharmacotherapy. 2003;23(12 I):1550–7.
- 35. Linder C, Neideman M, Wide K, von Euler M, Gustafsson LL, Pohanka A. Dried blood spot self-sampling by guardians of children with epilepsy is feasible: comparison with plasma for multiple antiepileptic drugs. Ther Drug Monit. 2019;41(4):509–18.
- 36. Kongrit J, Chinvarun Y, Niwattisaiwong N, Lawanprasert S. Verification of using saliva as an alternative to serum for topiramate monitoring. Thai J Pharm Sci. 2014;38(2):61–6.
- Dwivedi R, Singh M, Kaleekal T, Gupta YK, Tripathi M. Concentration of antiepileptic drugs in persons with epilepsy: a comparative study in serum and saliva. Int J Neurosci. 2016;126(11):972–8.
- Hamdan II, Alsous M, Masri AT. Chromatographic characterization and method development for determination of levetiracetam in saliva: application to correlation with plasma levels. J Anal Methods Chem. 2017;2017:7846742.
- 39. Kim DY, Moon J, Shin YW, Lee ST, Jung KH, Park KI, et al. Usefulness of saliva for perampanel therapeutic drug monitoring. Epilepsia. 2020;61(6):1120–8.
- 40. Franco V, Gatti, Mazzucchelli I, Marchiselli R, Fattore C, Rota P, et al. Relationship between saliva and plasma rufinamide concentrations in patients with epilepsy. Epilepsia. 2020;61(7):e79–84.
- 41. Willemsen AECAB, Knapen LM, de Beer YM, Bruggemann RJM, Croes S, van Herpen CML, et al. Clinical validation study of dried blood spot for determining everolimus concentration in patients with cancer. Eur J Clin Pharmacol. 2018;74(4):465–71.
- 42. Braal CL, Veerman GDM, Peric R, Aerts JGJV, Mathijssen RHJ, Koolen SLW, et al. Quantification of the tyrosine kinase inhibitor erlotinib in human scalp hair by liquid chromatography-tandem mass spectrometry: Pitfalls for clinical application. J Pharm Biomed Anal. 2019;172:175–82.
- 43. Antunes MV, Raymundo S, De Oliveira V, Staudt DE, Gössling G, Peteffi GP, et al. Ultra-high performance liquid chromatography tandem mass spectrometric method for the determination of tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen in dried blood spots Development, validation and clinical application during breast. Talanta. 2015;132:775–84.
- 44. Maring JG, Wachters FM, Maurer M, Uges DRA, de Vries EGE, Groen HJM. Gemcitabine and epirubicin plasma concentration-related excretion in saliva in patients with non-small cell lung cancer. Ther Drug Monit. 2010;32(3):364–8.
- 45. Boucaud M, Pinguet F, Culine S, Poujol S, Astre C, Gomeni R, et al. Modeling plasma and saliva topotecan concentration time course using a population approach. Oncol Res. 2003;13(4):211–9.
- 46. Boons CCLM, Chahbouni A, Schimmel AM, Wilhelm AJ, den Hartog YM, Janssen JJWM, et al.

Dried blood spot sampling of nilotinib in patients with chronic myeloid leukaemia: a comparison with venous blood sampling. J Pharm Pharmacol. 2017;69(10):1265–74.

- 47. de Wit D, den Hartigh J, Gelderblom H, Qian Y, den Hollander M, Verheul H, et al. Dried blood spot analysis for therapeutic drug monitoring of pazopanib. J Clin Pharmacol. 2015;55(12):1344–50.
- 48. Capron A, Antunes MV, Wagner SC, Mattevi VS, Vieira N, Leite R, et al. First report of imatinib measurement in hair: Method development and preliminary evaluation of the relation between hair and plasma concentrations with therapeutic response in chronic myeloid leukemia. Clin Chim Acta. 2016;453:42–7.
- 49. Andriguetti NB, Hahn RZ, Lizot LF, Raymundo S, Costa JL, da Cunha KF, et al. Analytical and clinical validation of a dried blood spot assay for the determination of paclitaxel using high-performance liquid chromatography-tandem mass spectrometry. Clin Biochem. 2018;54:123–30.
- 50. Raymundo S, Muller V V, Andriguetti NB, Tegner M, Artmann AC, Kluck HM, et al. Determination of docetaxel in dried blood spots by LC–MS/MS: Method development, validation and clinical application. J Pharm Biomed Anal. 2018;157:84–91.
- 51. Jager NGL, Rosing H, Schellens JHM, Beijnen JH, Linn SC. Use of dried blood spots for the determination of serum concentrations of tamoxifen and endoxifen. Breast Cancer Res Treat. 2014;146(1):137–44.
- 52. Lee J, Jung SY, Choi M-Y, Park J-S, Park S-K, Lim S-A, et al. Development of a dried blood spot sampling method towards therapeutic monitoring of radotinib in the treatment of chronic myeloid leukaemia. J Clin Pharm Ther. 2020;45(5):1006–13.
- 53. Dillenburg Weiss TL, Gössling G, Venzon Antunes M, Schwartsmann G, Linden R, Gasparin Verza S. Evaluation of dried blood spots as an alternative matrix for therapeutic drug monitoring of abiraterone and delta(4)-abiraterone in prostate cancer patients. J Pharm Biomed Anal. 2020;Epub ahead of print.
- 54. Antunes M, Raymundo S, Wagner S, Mattevi VS, Vieira N, Leite R, et al. DBS sampling in imatinib therapeutic drug monitoring: from method development to clinical application. Bioanalysis. 2015;7(16):2105–17.
- 55. Courlet P, Decosterd LA, Brown JA, Saldanha SA, Marzolini C, Cavassini M, et al. Emtricitabine and lamivudine concentrations in saliva: a simple suitable test for treatment adherence. J Antimicrob Chemother. 2019;74(8):2468–70.
- 56. Wu Y, Yang J, Duan C, Chu L, Chen S, Qiao S, et al. Simultaneous determination of antiretroviral drugs in human hair with liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1083:209–21.
- 57. Kromdijk W, Mulder JW, Rosing H, Smit PM, Beijnen JH, Huitema ADRR. Use of dried blood spots for the determination of plasma concentrations of nevirapine and efavirenz. J Antimicrob Chemother. 2012;67(5):1211–6.
- 58. Alcaide ML, Ramlagan S, Rodriguez VJ, Cook R, Peltzer K, Weiss SM, et al. Self-report and dry blood spot measurement of antiretroviral medications as markers of adherence in pregnant women in rural South Africa. AIDS Behav. 2017;21(7):2135–40.
- 59. van Zyl GU, van Mens TE, McIlleron H, Zeier M, Nachega JB, Decloedt E, et al. Low lopinavir plasma or hair concentrations explain second-line protease inhibitor failures in a resource-limited

setting. J Acquir Immune Defic Syndr. 2011;56(4):333-9.

- 60. Gandhi M, Glidden D V, Liu A, Anderson PL, Horng H, Defechereux P, et al. Strong correlation between concentrations of tenofovir (TFV) emtricitabine (FTC) in hair and TFV diphosphate and FTC triphosphate in dried blood spots in the iPrEx open label extension: Implications for pre-exposure prophylaxis adherence monitoring. J Infect Dis. 2015;212(9):1402–6.
- 61. Yamada E, Takagi R, Tanabe Y, Fujiwara H, Hasegawa N, Kato S. Plasma and saliva concentrations of abacavir, tenofovir, darunavir, and raltegravir in HIV-1-infected patients. Int J Clin Pharmacol Ther. 2017;55(7):567–70.
- 62. Bernard L, Vuagnat A, Peytavin G, Hallouin M-C, Bouhour D, Nguyen TH, et al. Relationship between levels of indinavir in hair and virologic response to highly active antiretroviral therapy. Ann Intern Med. 2002;137(8):656–9.
- 63. Duval X, Peytavin G, Breton G, Ecobichon J-L, Descamps D, Thabut G, et al. Hair versus plasma concentrations as indicator of indinavir exposure in HIV-1-infected patients treated with indinavir/ritonavir combination. AIDS. 2007;21(1):106–8.
- 64. Gandhi M, Ameli N, Bacchetti P, Gange SJ, Anastos K, Levine A, et al. Protease inhibitor levels in hair strongly predict virologie response to treatment. AIDS. 2009;23(4):471–8.
- 65. Gras A, Schneider S, Karasi J-C, Ternes A-M, Sauvageot N, Karasi-Omes C, et al. Evaluation of saliva as an alternative matrix for monitoring plasma zidovudine, lamivudine and nevirapine concentrations in Rwanda. Curr HIV Res. 2011;9(4):223–8.
- 66. Gandhi M, Ameli N, Bacchetti P, Anastos K, Gange SJ, Minkoff H, et al. Atazanavir concentration in hair is the strongest predictor of outcomes on antiretroviral therapy. Clin Infect Dis. 2011;52(10):1267–75.
- 67. Hickey MD, Salmen CR, Tessler RA, Omollo D, Bacchetti P, Magerenge R, et al. Antiretroviral concentrations in small hair samples as a feasible marker of adherence in rural Kenya. J Acquir Immune Defic Syndr. 2014;66(3):311–5.
- 68. Rakhmanina NY, Capparelli E V, van den Anker JN, Williams K, Sever JL, Spiegel HML, et al. Nevirapine concentration in nonstimulated saliva: an alternative to plasma sampling in children with human immunodeficiency virus infection. Ther Drug Monit. 2007;29(1):110–7.
- 69. Wintergerst U, Kurowski M, Rolinski B, Muller M, Wolf E, Jaeger H, et al. Use of saliva specimens for monitoring indinavir therapy in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2000;44(9):2572–4.
- 70. van Heeswijk RP, Veldkamp AI, Mulder JW, Meenhorst PL, Beijnen JH, Lange JM, et al. Saliva as an alternative body fluid for therapeutic drug monitoring of the nonnucleoside reverse transcription inhibitor nevirapine. Ther Drug Monit. 2001;23(3):255–8.
- 71. Johnston J, Wiesner L, Smith P, Maartens G, Orrell C. Correlation of hair and plasma efavirenz concentrations in HIV-positive South Africans. South Afr J HIV Med. 2019;20(1):881.
- 72. Murnane PM, Bacchetti P, Currier JS, Brummel S, Okochi H, Phung N, et al. Tenofovir concentrations in hair strongly predict virologic suppression in breastfeeding women. AIDS. 2019;33(10):1657–62.
- 73. Gandhi M, Devi S, Bacchetti P, Chandy S, Heylen E, Phung N, et al. Measuring adherence to antiretroviral therapy via hair concentrations in India. J Acquir Immune Defic Syndr. 2019;81(2):202–6.

- 74. Chu L, Wu Y, Duan C, Yang J, Yang H, Xie Y, et al. Simultaneous quantitation of zidovudine, efavirenz, lopinavir and ritonavir in human hair by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1097–1098:54–63.
- 75. Tabb ZJ, Mmbaga BT, Gandhi M, Louie A, Kuncze K, Okochi H, et al. Antiretroviral drug concentrations in hair are associated with virologic outcomes among young people living with HIV in Tanzania. AIDS. 2018;32(9):1115–23.
- 76. Hugen PWH, Burger DM, de Graaff M, ter Hofstede HJM, Hoetelmans RMW, Brinkman K, et al. Saliva as a specimen for monitoring compliance but not for predicting plasma concentrations in patients with HIV treated with indinavir. Ther Drug Monit. 2000;22(4):437–45.
- 77. Gandhi M, Murnane PM, Bacchetti P, Elion R, Kolber MA, Cohen SE, et al. Hair levels of preexposure prophylaxis drugs measure adherence and are associated with renal decline among men/transwomen. AIDS. 2017;31(16):2245–51.
- 78. Pintye J, Bacchetti P, Teeraananchai S, Kerr S, Prasitsuebsai W, Singtoroj T, et al. Brief report: Lopinavir hair concentrations are the strongest predictor of viremia in HIV-infected Asian children and adolescents on second-line antiretroviral therapy. J Acquir Immune Defic Syndr. 2017;76(4):367–71.
- 79. Chawana TD, Gandhi M, Nathoo K, Ngara B, Louie A, Horng H, et al. Defining a cutoff for atazanavir in hair samples associated with virological failure among adolescents failing second-line antiretroviral treatment. J Acquir Immune Defic Syndr. 2017;76(1):55–9.
- 80. Koss CA, Bacchetti P, Hillier SL, Livant E, Horng H, Mgodi N, et al. Differences in cumulative exposure and adherence to tenofovir in the VOICE, iPrEx OLE, and PrEP demo studies as determined via hair concentrations. AIDS Res Hum Retroviruses. 2017;33(8):778–83.
- 81. Koss CA, Natureeba P, Mwesigwa J, Cohan D, Nzarubara B, Bacchetti P, et al. Hair concentrations of antiretrovirals predict viral suppression in HIV-infected pregnant and breastfeeding Ugandan women. AIDS. 2015;29(7):825–30.
- 82. Yan J, Liu J, Su B, Pan X, Wang Z, Wu J, et al. Lamivudine concentration in hair and prediction of virologic failure and drug resistance among HIV patients receiving free ART in China. PLoS One. 2016;11(4):e0154421.
- 83. Prasitsuebsai W, Kerr SJ, Truong KH, Ananworanich J, Do VC, Nguyen L Van, et al. Using lopinavir concentrations in hair samples to assess treatment outcomes on second-line regimens among Asian children. AIDS Res Hum Retroviruses. 2015;31(10):1009–14.
- 84. Olds PK, Kiwanuka JP, Nansera D, Huang Y, Bacchetti P, Jin C, et al. Assessment of HIV antiretroviral therapy adherence by measuring drug concentrations in hair among children in rural Uganda. AIDS Care Psychol Socio-Medical Asp AIDS/HIV. 2015;27(3):327–32.
- 85. Baxi SM, Greenblatt RM, Bacchetti P, Jin C, French AL, Keller MJ, et al. Nevirapine concentration in hair samples is a strong predictor of virologic suppression in a prospective cohort of HIV-infected patients. PLoS One. 2015;10(6):e0129100.
- 86. Baxi SM, Liu A, Bacchetti P, Mutua G, Sanders EJ, Kibengo FM, et al. Comparing the novel method of assessing PrEP adherence/exposure using hair samples to other pharmacologic and traditional measures. J Acquir Immune Defic Syndr. 2015;68(1):13–20.
- 87. Kromdijk W, Mulder JW, Smit PM, Ter Heine R, Beijnen JH, Huitema AD, et al. Therapeutic drug monitoring of antiretroviral drugs at home using dried blood spots: A proof-of-concept study.

Antivir Ther. 2013;18(6):821–5.

- 88. George L, Muro EP, Ndaro A, Dolmans W, Burger DM, Kisanga ER. Nevirapine concentrations in saliva measured by thin layer chromatography and self-reported adherence in patients on antiretroviral therapy at Kilimanjaro Christian Medical Centre, Tanzania. Ther Drug Monit. 2014;36(3):366–70.
- 89. Lamorde M, Fillekes Q, Sigaloff K, Kityo C, Buzibye A, Kayiwa J, et al. Therapeutic drug monitoring of nevirapine in saliva in Uganda using high performance liquid chromatography and a low cost thin-layer chromatography technique. BMC Infect Dis. 2014;14:473.
- 90. Duthaler U, Berger B, Erb S, Battegay M, Letang E, Gaugler S, et al. Using dried blood spots to facilitate therapeutic drug monitoring of antiretroviral drugs in resource-poor regions. J Antimicrob Chemother. 2018;73(10):2729–37.
- 91. van Schooneveld T, Swindells S, Nelson SR, Robbins BL, Moore R, Fletcher C V. Clinical evaluation of a dried blood spot assay for atazanavir. Antimicrob Agents Chemother. 2010;54(10):4124–8.
- 92. ter Heine R, Mulder JW, van Gorp ECM, Wagenaar JFP, Beijnen JH, Huitema ADR. Clinical evaluation of the determination of plasma concentrations of darunavir, etravirine, raltegravir and ritonavir in dried blood spot samples. Bioanalysis. 2011;3(10):1093–7.
- 93. de Truchis P, Le MP, Daou M, Madougou B, Nouhou Y, Saley SM, et al. High efficacy of first-line ART in a West African cohort, assessed by dried blood spot virological and pharmacological measurements. J Antimicrob Chemother. 2016;71(11):3222–7.
- 94. Yang H, Chu L, Wu Y, Wang W, Yang J, Zhang Q, et al. LC-MS/MS quantification of nevirapine and its metabolites in hair for assessing long-term adherence. Molecules. 2020;25(23):5692.
- 95. Zhang Q, Li X, Qiao S, Shen Z, Zhou Y. Comparing self-reported medication adherence measures with hair antiretroviral concentration among people living with HIV in Guangxi, China. AIDS Res Ther. 2020;17(1):8.
- 96. Ngara B, Zvada S, Chawana TD, Stray-Pedersen B, Nhachi CFB, Rusakaniko S. A population pharmacokinetic model is beneficial in quantifying hair concentrations of ritonavir-boosted atazanavir: a study of HIV-infected Zimbabwean adolescents. BMC Pharmacol Toxicol. 2020;21(1):58.
- 97. de Lastours V, Fonsart J, Burlacu R, Gourmel B, Molina J-M. Concentrations of tenofovir and emtricitabine in saliva: implications for preexposure prophylaxis of oral HIV acquisition. Antimicrob Agents Chemother. 2011;55(10):4905–7.
- 98. Gandhi M, Greenblatt RM, Bacchetti P, Jin C, Huang Y, Anastos K, et al. A single-nucleotide polymorphism in CYP2B6 leads to >3-fold increases in efavirenz concentrations in plasma and hair among HIV-infected women. J Infect Dis. 2012;206(9):1453–61.
- 99. Alsous MM, Hawwa AF, McElnay JC. Determination of azathioprine/6-mercaptopurine metabolites in dried blood spots: Correlation with RBC concentrations. J Pharm Biomed Anal. 2020;178:112870.
- 100. Detrez I, Schops G, Lefrere J, Tops S, van Assche G, Vermeire S, et al. Golimumab dried blood spot analysis (GOUDA): a prospective trial showing excellent correlation with venepuncture samples and more detailed pharmacokinetic information. AAPS J. 2018;21(1):10.
- 101. Bian S, van den Berghe N, Vandersmissen L, Tops S, Vermeire S, Ferrante M, et al. Evaluating an

easy sampling method using dried blood spots to determine vedolizumab concentrations. J Pharm Biomed Anal. 2020;185:113224.

- 102. Heiskanen T, Langel K, Gunnar T, Lillsunde P, Kalso EA. Opioid concentrations in oral fluid and plasma in cancer patients with pain. J Pain Symptom Manage. 2015;50(4):524–32.
- 103. Hardy J, Norris R, Anderson H, O'Shea A, Charles B. Is saliva a valid substitute for plasma in pharmacokinetic studies of oxycodone and its metabolites in patients with cancer? Support Care Cancer. 2012;20(4):767–72.
- 104. Musshoff F, Lachenmeier K, Trafkowski J, Madea B, Nauck F, Stamer U. Determination of opioid analgesics in hair samples using liquid chromatography/tandem mass spectrometry and application to patients under palliative care. Ther Drug Monit. 2007;29(5):655–61.
- 105. Idkaidek N, Hamadi S, El-Assi M, Al-Shalalfeh A, Al-Ghazawi A. Saliva versus plasma therapeutic drug monitoring of pregabalin in Jordanian patients. Drug Res (Stuttg). 2018;68(10):596–600.
- 106. Miguez-Díez E, Modamio P, Vázquez M, Lastra CF, Montes MJ, Retamoso I, et al. Correlation of methadone concentrations in plasma and saliva collected with and without stimulation in pain management patients. Clin Chem Lab Med. 2015;53(4):e109–12.
- 107. Shaparin N, Mehta N, Kunkel F, Stripp R, Borg D, Kolb E. A novel chronic opioid monitoring tool to assess prescription drug steady state levels in oral fluid. Pain Med. 2017;18(11):2162–9.
- 108. Kronstrand R, Ahlner J, Dizdar N, Larson G. Quantitative analysis of desmethylselegiline, methamphetamine, and amphetamine in hair and plasma from Parkinson patients on long-term selegiline medication. J Anal Toxicol. 2003;27(3):135–41.
- 109. Sun X, Wang L, Yang F, Ren J, Jiang P, Liu H, et al. Correlation of hair risperidone concentration and serum level among patients with schizophrenia. Gen psychiatry. 2019;32(1):e100042.
- 110. Preiskorn J, Studer S, Rauh R, Lukacin R, Geffert C, Fleischhaker C, et al. Interindividual and intraindividual variation of methylphenidate concentrations in serum and saliva of patients with attention-deficit/hyperactivity disorder. Ther Drug Monit. 2018;40(4):435–42.
- 111. Ebert K, Maurice E, Lukacin R, Fleischhaker C, Schulz E, Ebert D, et al. Serum and saliva concentrations of venlafaxine, O-desmethylvenlafaxine, quetiapine, and citalopram in psychiatric patients. Ther Drug Monit. 2018;40(3):351–5.
- 112. Neumann J, Beck O, Dahmen N, Boettcher M. Potential of oral fluid as a clinical specimen for compliance monitoring of psychopharmacotherapy. Ther Drug Monit. 2018;40(2):245–51.
- 113. Kloosterboer SM, De Winter BCM, Bahmany S, Al-Hassany L, Dekker A, Dieleman GC, et al. Dried blood spot analysis for therapeutic drug monitoring of antipsychotics: Drawbacks of its clinical application. Ther Drug Monit. 2018;40(3):344–50.
- 114. Geers LM, Cohen D, Wehkamp LM, Van Hateren K, Koster RA, Fedorenko OY, et al. Dried blood spot analysis for therapeutic drug monitoring of clozapine. J Clin Psychiatry. 2017;78(9):e1211–8.
- 115. da Silva ACC, Raasch JR, Vargas TG, Peteffi GP, Hahn RZ, Antunes MV, et al. Simultaneous determination of fluoxetine and norfluoxetine in dried blood spots using high-performance liquid chromatography-tandem mass spectrometry. Clin Biochem. 2018;52:85–93.
- 116. Böttcher M, Kühne D, Beck O. Compliance testing of patients in ADHD treatment with

lisdexamphetamine (Elvanse®) using oral fluid as specimen. Clin Mass Spectrom. 2019;14:99–105.

- 117. Sticht G, Sevecke K, Kaferstein H, Dopfner M, Rothschild MA, G. S, et al. Detection of methylphenidate in the hair of children treated with ritalin. J Anal Toxicol. 2007;31(9):588–91.
- 118. Marchei E, Munoz JA, Garcia-Algar O, Pellegrini M, Vall O, Zuccaro P, et al. Development and validation of a liquid chromatography-mass spectrometry assay for hair analysis of methylphenidate. Forensic Sci Int. 2008;176(1):42–6.
- 119. Fucci N, De Giovanni N. Methadone in hair and sweat from patients in long-term maintenance therapy. Ther Drug Monit. 2007;29(4):452–4.
- 120. Cirimele V, Kintz P, Gosselin O, Ludes B. Clozapine dose-concentration relationships in plasma, hair and sweat specimens of schizophrenic patients. Forensic Sci Int. 2000;107(1–3):289–300.
- Pirro V, Fusari I, Di Corcia D, Gerace E, De Vivo E, Salomone A, et al. Hair analysis for long-term monitoring of buprenorphine intake in opiate withdrawal. Ther Drug Monit. 2014;36(6):796–807.
- 122. Skopp G, Kniest A, Haisser J, Mann K, Hermann D. Buprenorphine and norbuprenorphine findings in hair during constant maintenance dosage. Int J Legal Med. 2011;125(2):277–81.
- 123. Weber J, Oberfeld S, Bonse A, Telger K, Lingg R, Hempel G. Validation of a dried blood spot method for therapeutic drug monitoring of citalopram, mirtazapine and risperidone and its active metabolite 9-hydroxyrisperidone using HPLC–MS. J Pharm Biomed Anal. 2017;140:347–54.
- 124. Dziurkowska E, Wesolowski M. Simultaneous quantitation of venlafaxine and its main metabolite, O-desmethylvenlafaxine, in human saliva by HPLC. J Sep Sci. 2013;36(11):1726–33.
- 125. Mercolini L, Mandrioli R, Protti M, Conca A, Albers LJ, Raggi MA. Dried blood spot testing: A novel approach for the therapeutic drug monitoring of ziprasidone-treated patients. Bioanalysis. 2014;6(11):1487–95.
- 126. Wang X, Zhuo Y, Tang X, Qiang H, Liu W, Wu H, et al. Segmental analysis of antidepressant and antipsychotic drugs in the hair of schizophrenic patients. Drug Test Anal. 2019;12(4):472–84.
- 127. Pappadopulos E, Jensen PS, Chait AR, Arnold LE, Swanson JM, Greenhill LL, et al. Medication adherence in the MTA: Saliva methylphenidate samples versus parent report and mediating effect of concomitant behavioral treatment. J Am Acad Child Adolesc Psychiatry. 2009;48(5):501–10.
- 128. Fisher DS, Beyer C, Van Schalkwyk G, Seedat S, Flanagan RJ. Measurement of clozapine, norclozapine, and amisulpride in plasma and in oral fluid obtained using 2 different sampling systems. Ther Drug Monit. 2017;39(2):109–17.
- 129. Flarakos J, Luo W, Aman M, Svinarov D, Gerber N, Vouros P, et al. Quantification of risperidone and 9-hydroxyrisperidone in plasma and saliva from adult and pediatric patients by liquid chromatography-mass spectrometry. J Chromatogr A. 2004;1026(1–2):175–83.
- 130. Shiran MR, Hassanzadeh-Khayyat M, Iqbal MZ, Lagundoye O, Seivewright N, Lennard MS, et al. Can saliva replace plasma for the monitoring of methadone? Ther Drug Monit. 2005;27(5):580–6.
- 131. Saracino MA, Marcheselli C, Somaini L, Pieri MC, Gerra G, Ferranti A, et al. A novel test using dried blood spots for the chromatographic assay of methadone. Anal Bioanal Chem. 2012;404(2):503–11.
- 132. Fisher DS, Van Schalkwyk GI, Seedat S, Curran SR, Flanagan RJ. Plasma, oral fluid, and

whole-blood distribution of antipsychotics and metabolites in clinical samples. Ther Drug Monit. 2013;35(3):345–51.

- 133. Stegmann B, Dörfelt A, Haen E. Quantification of methylphenidate, dexamphetamine, and atomoxetine in human serum and oral fluid by HPLC with fluorescence detection. Ther Drug Monit. 2016;38(1):98–107.
- 134. Patteet L, Maudens KE, Morrens M, Sabbe B, Dom G, Neels H. Determination of common antipsychotics in quantisal-collected oral fluid by UHPLC-MS/MS: Method validation and applicability for therapeutic drug monitoring. Ther Drug Monit. 2016;38(1):87–97.
- 135. Ramírez Fernández MDM, Baumgartner WA, Wille SMR, Farabee D, Samyn N, Baumgartner AM. A different insight in hair analysis: Simultaneous measurement of antipsychotic drugs and metabolites in the protein and melanin fraction of hair from criminal justice patients. Forensic Sci Int. 2020;312:110337.
- 136. Ransohoff JR, Petrides AK, Piscitello GJ, Flood JG, Melanson SEF. Urine is superior to oral fluid for detecting buprenorphine compliance in patients undergoing treatment for opioid addiction. Drug Alcohol Depend. 2019;203:8–12.
- 137. Wohkittel C, Högger P, Fekete S, Romanos M, Gerlach M. Relationship between amphetamine concentrations in saliva and serum in children and adolescents with attention-deficit/hyperactivity disorder. Ther Drug Monit. 2020;Epub ahead of print.
- 138. Manfro ID, Tegner M, Krutzmann ME, Artmann ADC, Brandeburski MR, Peteffi GP, et al. Determination of lithium in dried blood spots and dried plasma spots by graphite furnace atomic absorption spectrometry: Method development, validation and clinical application. Talanta. 2020;216:120907.
- 139. Angelakis E, Armstrong N, Nappez C, Richez M, Chabriere E, Raoult D. Doxycycline assay hair samples for testing long-term compliance treatment. J Infect. 2015;71(5):511–7.
- 140. Hawwa AF, AlBawab AQ, Rooney M, Wedderburn LR, Beresford MW, McElnay JC. A novel dried blood spot-LCMS method for the quantification of methotrexate polyglutamates as a potential marker for methotrexate use in children. PLoS One. 2014;9(2).
- 141. Kneepkens EL, Pouw MF, Wolbink GJ, Schaap T, Nurmohamed MT, de Vries A, et al. Dried blood spots from finger prick facilitate therapeutic drug monitoring of adalimumab and anti-adalimumab in patients with inflammatory diseases. Br J Clin Pharmacol. 2017;83(11):2474–84.
- 142. Brooks E, Tett SE, Isbel NM, McWhinney B, Staatz CE. Prednisolone Concentrations in Plasma (Total and Unbound) and Saliva of Adult Kidney Transplant Recipients. Ther Drug Monit. 2019;41(6):755–60.
- 143. Brooks E, Tett SE, Isbel NM, McWhinney B, Staatz CE. Investigation of the association between total and free plasma and saliva mycophenolic acid concentrations following administration of enteric-coated mycophenolate sodium in adult kidney transplant recipients. Clin Drug Investig. 2019;39(12):1175–84.
- 144. Ferreira PCL, Thiesen FV, de Araujo TT, D'Ávila DO, Gadonski G, de Oliveira CSA, et al. Comparison of plasma and oral fluid concentrations of mycophenolic acid and its glucuronide metabolite by LC-MS in kidney transplant patients. Eur J Clin Pharmacol. 2019;75(4):553–9.
- 145. Ghareeb M, Gohh RY, Akhlaghi F. Tacrolimus concentration in saliva of kidney transplant recipients: Factors influencing the relationship with whole blood concentrations. Clin

Pharmacokinet. 2018;57(9):1199-210.

- 146. Martial LC, Hoogtanders KEJ, Schreuder MF, Cornelissen EA, Van Der Heijden J, Joore MA, et al. Dried blood spot sampling for tacrolimus and mycophenolic acid in children: Analytical and clinical validation. Ther Drug Monit. 2017;39(4):412–21.
- 147. Al-Uzri A, Freeman KA, Wade J, Clark K, Bleyle LA, Munar M, et al. Longitudinal study on the use of dried blood spots for home monitoring in children after kidney transplantation. Pediatr Transplant. 2017;21(6).
- 148. Müller A, Jungen H, Iwersen-Bergmann S, Sterneck M, Andresen-Streichert H, A. M, et al. Analysis of cyclosporin A in hair samples from liver transplanted patients. Ther Drug Monit. 2013;35(4):450–8.
- 149. Hoogtanders K, van der Heijden J, Christiaans M, Edelbroek P, van Hooff JP, Stolk LML. Therapeutic drug monitoring of tacrolimus with the dried blood spot method. J Pharm Biomed Anal. 2007;44(3):658–64.
- 150. Wilhelm AJ, Klijn A, Den Burger JCG, Visser OJ, Veldkamp AI, Janssen JJWM, et al. Clinical validation of dried blood spot sampling in therapeutic drug monitoring of ciclosporin a in allogeneic stem cell transplant recipients: Direct comparison between capillary and venous sampling. Ther Drug Monit. 2013;35(1):92–5.
- 151. Arpini J, Antunes MV, Pacheco LS, Gnatta D, Rodrigues MF, Keitel E, et al. Clinical evaluation of a dried blood spot method for determination of mycophenolic acid in renal transplant patients. Clin Biochem. 2013;46(18):1905–8.
- 152. Veenhof H, Koster RA, Alffenaar JWC, Berger SP, Bakker SJL, Touw DJ. Clinical validation of simultaneous analysis of tacrolimus, cyclosporine A, and creatinine in dried blood spots in kidney transplant patients. Transplantation. 2017;101(7):1727–33.
- 153. Hinchliffe E, Adaway J, Fildes J, Rowan A, Keevil BG. Therapeutic drug monitoring of ciclosporin A and tacrolimus in heart-lung transplant patients using dried blood spots. Ann Clin Biochem. 2014;51(1):106–9.
- 154. Koster RA, Veenhof H, Botma R, Hoekstra AT, Berger SP, Bakker SJ, et al. Dried blood spot validation of five immunosuppressants, without hematocrit correction, on two LC-MS/MS systems. Bioanalysis. 2017;9(7):553–63.
- 155. Mendonza AE, Gohh RY, Akhlaghi F. Analysis of mycophenolic acid in saliva using liquid chromatography tandem mass spectrometry. Ther Drug Monit. 2006;28(3):402–6.
- 156. Veenhof H, Koster RA, Alffenaar J-WC, van den Berg AP, de Groot MR, Verschuuren EAM, et al. Clinical application of a dried blood spot assay for sirolimus and everolimus in transplant patients. Clin Chem Lab Med. 2019;57(12):1854–62.
- 157. Dickerson JA, Sinkey M, Jacot K, Stack J, Sadilkova K, Law YM, et al. Tacrolimus and sirolimus in capillary dried blood spots allows for remote monitoring. Pediatr Transplant. 2015;19(1):101–6.
- 158. Zwart TC, Gokoel SRM, van der Boog PJM, de Fijter JW, Kweekel DM, Swen JJ, et al. Therapeutic drug monitoring of tacrolimus and mycophenolic acid in outpatient renal transplant recipients using a volumetric dried blood spot sampling device. Br J Clin Pharmacol. 2018;84(12):2889–902.
- 159. Hoogtanders K, van der Heijden J, Christiaans M, van de Plas A, van Hooff J, Stolk L. Dried blood spot measurement of tacrolimus is promising for patient monitoring. Transplantation.

2007;83(2):237-8.

- 160. Mendonza A, Gohh R, Akhlaghi F. Determination of cyclosporine in saliva using liquid chromatography-tandem mass spectrometry. Ther Drug Monit. 2004;26(5):569–75.
- 161. van Boekel GAJ, Donders ART, Hoogtanders KEJ, Havenith TRA, Hilbrands LB, Aarnoutse RE. Limited sampling strategy for prolonged-release tacrolimus in renal transplant patients by use of the dried blood spot technique. Eur J Clin Pharmacol. 2015;71(7):811–6.
- 162. Cheung CY, van der Heijden J, Hoogtanders K, Christiaans M, Liu YL, Chan YH, et al. Dried blood spot measurement: application in tacrolimus monitoring using limited sampling strategy and abbreviated AUC estimation. Transpl Int. 2008;21(2):140–5.
- 163. Koop DR, Bleyle LA, Munar M, Cherala G, Al-Uzri A. Analysis of tacrolimus and creatinine from a single dried blood spot using liquid chromatography tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2013;926:54–61.
- 164. Alsmadi MM, Alfarah MQ, Albderat J, Alsalaita G, AlMardini R, Hamadi S, et al. The development of a population physiologically based pharmacokinetic model for mycophenolic mofetil and mycophenolic acid in humans using data from plasma, saliva, and kidney tissue. Biopharm Drug Dispos. 2019;40(9):325–40.
- 165. Veenhof H, Koster RA, Junier LAT, Berger SP, Bakker SJL, Touw DJ. Volumetric absorptive microsampling and dried blood spot microsampling vs. conventional venous sampling for tacrolimus trough concentration monitoring. Clin Chem Lab Med. 2020;58(10):1687–95.
- 166. Martial LC, Kerkhoff J, Martinez N, Rodríguez M, Coronel R, Molinas G, et al. Evaluation of dried blood spot sampling for pharmacokinetic research and therapeutic drug monitoring of anti-tuberculosis drugs in children. Int J Antimicrob Agents. 2018;14(56):1–5.
- 167. Vu DH, Koster RA, Bolhuis MS, Greijdanus B, Altena R V, Nguyen DH, et al. Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC-MS/MS. Talanta. 2014;121:9–17.
- Metcalfe J, Bacchetti P, Gerona R, Esmail A, Dheda K, Gandhi M. Association of anti-tuberculosis drug concentrations in hair and treatment outcomes in MDR- and XDR-TB. ERJ Open Res. 2019;5(2):00046–2019.
- 169. Mave V, Kinikar A, Kagal A, Nimkar S, Koli H, Khwaja S, et al. Isoniazid concentrations in hair and plasma area-under-the-curve exposure among children with tuberculosis. PLoS One. 2017;12(12):e0189101.
- 170. Mave V, Chandanwale A, Kinikar A, Khadse S, Kagal A, NGupte N, et al. Isoniazid hair concentrations in children with tuberculosis: A proof of concept study. Int J Tuberc Lung Dis. 2016;20(6):844–7.
- 171. Gerona R, Wen A, Chin AT, Koss CA, Bacchetti P, Metcalfe J, et al. Quantifying isoniazid levels in small hair samples: A novel method for assessing adherence during the treatment of latent and active tuberculosis. PLoS One. 2016;11(5):e0155887.
- 172. Ghimire S, Maharjan B, Jongedijk EM, Kosterink JGW, Ghimire GR, Touw DJ, et al. Evaluation of saliva as a potential alternative sampling matrix for therapeutic drug monitoring of levofloxacin in patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2019;63(5).
- 173. van den Elsen SHJ, Akkerman OW, Jongedijk EM, Wessels M, Ghimire S, van der Werf TS, et al. Therapeutic drug monitoring using saliva as matrix: an opportunity for linezolid, but challenge for

moxifloxacin. Eur Respir J. 2020;55(5):1901903.

- 174. van den Elsen SHJ, Akkerman OW, Wessels M, Jongedijk EM, Ghimire S, van der Werf TS, et al. Dose optimisation of first-line tuberculosis drugs using therapeutic drug monitoring in saliva: Feasible for rifampicin, not for isoniazid. Eur Respir J. 2020;56(4):2000803.
- 175. Eisenhut M, Thieme D, Schmid D, Fieseler S, Sachs H. Hair analysis for determination of isoniazid concentrations and acetylator phenotype during antituberculous treatment. Tuberc Res Treat. 2012;2012:327027.