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Supplementary Fig. 1. ETVs and ERG fusions escape from COP1- or SPOP-mediated degradation.
Supplementary Fig. 2. Prediction pipeline for degron loss or gain in fusion protein derived from human
cancer samples.

Supplementary Fig. 3. Degron loss has cancer type-specificity and downstream functional
consequences.

Supplementary Fig. 4. Loss of internal degron lead to stabilization of proteins.

Supplementary Fig. 5. PML-RARA fusion escapes from B-TRCP-mediated degradation in part due to
degron loss.

Supplementary Fig. 6. C-degron loss during genetic fusion.
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Supplementary Fig. 1. ETVs and ERG fusions escape from COP1- or SPOP-mediated degradation.

(2) TMPRSS2-ERG fusion leads to the loss of SPOP degron (-ASSSS-) on the N-terminus of ERG

protein in T1-E5 isoform. (b) A schematic diagram shows the fusion of ERG with several 5’ partners,

where the fusion proteins escape from SPOP-mediated degradation. The SPOP degron (-ASSSS-) in

ERG is lost during gene fusion with TMPRSS2, SLC45A3 or NDRGL1 in prostate cancer, as well as

2



with EWS or FUS in Ewing sarcoma (ES) or AML, respectively. (¢) TMPRSS2-ETV1 fusion leads to
the loss of the two COP1 degrons (-VP-) on the N-terminus of ETV1 protein in both T1-E4 and T1-E5
isoform. (d) A schematic diagram shows the fusion of ETV1 with several 5° partners, where the fusion
proteins escape from COP-mediated degradation in prostate cancer. The two COP degrons (-VP-) in
ETV1 is lost during gene fusion with TMPRSS2, SLC45A3, FLJ35294, ACSL3 and other 5’ partners
in prostate cancer. (e-f) A schematic diagram shows the fusion of ETV4 genes (E) or ETV5 genes (F)
with other 5” partners in prostate cancer leads to the loss of the two COP1 degrons (-VP-) on the N-
terminus of ETV4 or ETV5 proteins.
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Supplementary Fig. 2. Prediction pipeline for degron loss or gain in fusion protein derived from

human cancer samples. (a) A schematic diagram shows the loss or gain of degron during genetic fusion.

(b) Strategy for high-likelihood degron screen. (c) Performance evaluation using the Receiver Operating

Characteristic (ROC) curve for the full benchmark. Evolutionary conservation is the negative entropy

of a 100-species multiple sequence alignment, predicted flexibility is the predicted B factor for that
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location within the protein. (d) ROC curve for only examples that are outside of globular protein
domains (uniprot). (e) Violin plot comparing six informative features used to distinguish true from
simulated degrons. Dashed lines indicate the 1%, 2"d and 3" quartile. (f-g) Pie chart indicating the
proportion of tumor samples (f) or normal samples (g) with fusions leading to degron loss or gain. Only
recurrent fusions (>5 tumors) are shown. (h) Network diagram showing fusion partners to known
oncogenes that undergo degron loss. Line width represents the frequency of the event. Red indicates
previously annotated oncogenes. Only oncogenes with at least 3 fusion events undergoing degron loss
in their partner are shown. (i) Diagram of a PDGFRA-FIP1L1 fusion found in a low grade glioma tumor
sample. (j) Diagram of the RUNX1-RUNXI1T1 fusion leading to the addition of a SPOP degron to the

tumor suppressor gene RUNXL1. The relevant raw data are provided in Source Data.
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Supplementary Fig. 3. Degron loss has cancer type-specificity and downstream functional

consequences. (a) Pie chart indicating the percentage of fusion genes identified as cancer type-specific

that are previously known to be oncogenic. (b) The frequency of fusion events with the loss of specific

degron. (c) A schematic diagram shows the fusion of HOOK3 and IKBKB genes in breast cancer. (d)

Heatmap displaying the differential protein abundance of fusion events with enrichment for degron loss.

A positive t-statistic indicates an increase in protein abundance (red), while a negative t-statistic

indicates a decrease in protein abundance (blue). Only fusions with at least one significant association
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are shown (FDR<O0.1). (e) Association of transcription factor activity with fusion events using the
method RABIT. The top 10 most significant associations are labeled, with the cancer type indicated in
parentheses. See section “Association of fusions events with transcription factor activity” in Methods
for details of p-value calculation. (f) Outlier analysis of transcription factors (see section “Defining
outlier transcription factors” in Methods). The number of appearances is how many times the
transcription factor was identified as a regulator by RABIT, and the p-value also derives from RABIT.

The relevant raw data are provided in Source Data.
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Supplementary Fig. 4. Loss of internal degron lead to stabilization of proteins. (a) A schematic

diagram shows the fusion of BCR and ABL genes in CML due to chromosome arrangement between

ch9 and ch22. (b) A schematic diagram shows the fusion of BCR and ABL genes in CML lead to the
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generation of two major fusion proteins, p190 and p210. (c) Depletion of endogenous CUL3 leads to
accumulation of ABL1. LNCaP cells were infected with shGFP or shCUL3 lenti-virus, and selected
with puromycin for 72 hours. Then the cells were harvested for IB of ABL1, with known SPOP substates,
ERG as a positive control. This experiment has been repeated twice. (d-e) The half-life of ABL protein
was extended in Spop null MEFs, compared with WT MEFs. Cells were treated with CHX for indicated
time, and then harvested for IB (d) and quantification (e) of ABL proteins. (f) A schematic diagram
shows the somatic SPOP mutant in its MATH domain, which is responsible for substrate recruiting. (g)
SPOP mutant in its MATH domain is incapable of degrading ABLL1 in cells. HEK293T cells were
transfected with HA-ABL1 and indicated Flag-SPOP constructs, and harvested for IB of indicated
proteins. (h) Quantification of CCDC6 in a panel of CRC cells with WT or mutated FBW7 genetic
background. FBW7-WT cells are in green and FBW7-mutant cells are in purple. n=7 cell lines for FBW7-
WT cells group and n=7 cell lines for FBW7-mutant cells group. P-value is from a two-sided t test.
Boxplot shows the first quartile, median and third quartile, with whiskers extending to +/- 1.5 times the
interquartile range. (i-j) The half-life of CCDC6 protein was extended in FBW7 null cells. HCT116 cells
with either FBW7-WT or FBW7-KO genetic background were treated with CHX for indicated time, and
then harvested for immunoblot (i) and quantification (j) of CCDC6 proteins. (k) The top 10 most
frequent fusion events predicted to generate a neoantigen capable of binding the patient’s HLA type. (1)
Box plot displaying the association of CCDCG6-RET fusions and leukocyte fraction in thyroid carcinoma.
Boxplot shows the first quartile, median and third quartile, with whiskers extending to +/- 1.5 times the

interquartile range. The relevant raw data and uncropped blots are provided in Source Data.
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Supplementary Fig. 5. PML-RARA fusion escapes from B-TRCP-mediated degradation in part
due to degron loss. (a) A schematic diagram shows the fusion of PML and RARA genes in chronic
myeloid leukemia (CML) due to chromosome arrangement between ch15 and chl17. (b) PML-RARA
fusion leads to the loss of B-TRCP degron (-SSSEDS-) in PML protein, resulting in stabilization of
PML/RARA fusion proteins, PML/RAR-s and PML/RAR-I. In contrast, the reciprocal RARA/PML
fusion is destabilized and non-detectable. (c) The non-canonic B-TRCP-degron is evolutionarily

conserved among species. X: any amino acid. (d) Depletion of f/~TRCP led to accumulation of PML
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protein in HeLa cells. (e) Depletion of endogenous #TRCP leads to extended protein half-life of PML
in HeLa cells. Cells were infected with shGFP or sh3-TRCP lenti-virus, and selected with puromycin
for 72 hours. Then the cells were harvested for IB of indicated proteins. (f) Depletion of CKII kinase
led to accumulation of PML protein in H2030 cells. (g) CKII kinase phosphorylates the B-TRCP-degron
in PML. Bacterial expression GST-PML and mutant proteins were purified and treated with or without
CKII kinase in the present of 3°P-ATP, and separated by SDS-PAGE. (h) Mutation of the B-TRCP-
degron in PML abolishes its binding to B-TRCP. IB of the immunoprecipitats (IP) and whole cell lysis
(WCL) derived from HEK293T which were transfected with B-TRCP and indicated PML constructs.
Two independent experiments were performed for Fig. S5d-h. The relevant raw data and uncropped

blots are provided in Source Data.
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Supplementary Fig. 6. C-degron loss during genetic fusion. (a) Diagram illustrating the application
of a permutation test to calculate the statistical significance of degron loss. (b) Quantile-quantile (QQ)
plot illustrating the enrichment for low p-values for the statistical test involving C-terminal degron loss,
with (left) and without (right) considering cancer type. P-values were calculated using a one-sided

permutation test. See Methods for additional details on calculation of p-values. (c-d) Pie chart displaying
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the cancer types in which 5° EGFR (c) and 5> RAF1 (d) fusions were found. () A schematic diagram
shows the fusion of NCOA4 and RET genes. (f) EGFR fusions led to loss of the putative C-terminal
degron (-GA*) in GBM and LGG. (g) The C-terminal degron (-GA*) is evolutionarily conserved among
species. (h) A schematic diagram shows EGFR mutants with either delete of the Ai210 (Gi200*) oOr
G1200A1210 residues (l1208*). (i) RAF1 fusions led to loss of the putative c-terminal -VVx* degron. (j) The
C-terminal degron (-Vx*) is evolutionarily conserved among species. (k) A schematic diagram shows

RAF1 mutants with either deletion of the Vea7 residue (PeasFear*) or the V647->A mutant (Asa7Fess™).
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