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1 Supplementary Note 1: Probabilistic model of ProSolo

1.1 Underlying True Alternative Nucleotide Frequencies: θ

The eventual goal in variant calling is to infer the true frequency of a possible alternative,

and thus variant, nucleotide in the sample you sequenced. For such an alternative

nucleotide x ∈ {A,C,G, T} at a particular site in a genome, we therefor definea:

θb(x), θs(x) (S 1)

as the true (but usually unknown) frequency of alternative nucleotide x in the bulk and

single cell sample, respectively. These frequencies translate into probabilities of sampling

a DNA fragment containing the respective nucleotide at a site: either directly, as with

the sequencing of DNA from a bulk of cells b; or indirectly, as with the sequencing of

whole genome amplified DNA of a single cell s. It is our eventual goal to work back from

bulk and single cell data to derive likelihoods for all possible values of θb(x) (denoted

aWe omit an explicit notation for a site, but every θ is always specific to one genome position.
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as θ̃b(x))b and θs(x) (denoted as θ̃s(x)), respectively, allowing us to place likelihoods on

possible underlying genotypes and events like allele dropouts in single cells.

For a single diploid cell s, the true alternative nucleotide frequency can be

θs(x) =


0

1
2

1

(S 2)

reflecting the cases that: (i) x is not present at the position—if no other allele is present,

this constitutes a homozygous reference site; (ii) x reflects an alternative nucleotide that

is present in only one of the two genome copies of the single cell—this constitutes a

heterozgyous site; (iii) x is an alternative nucleotide present in both genome copies of

the single cell—this constitutes a homozygous alternative site.

Bulk experiments contain subpopulations that can differ in their genotype regarding a

particular site, through a somatic mutation that one of the subpopulations has acquired

in one allele. They can thus exhibit any alternative nucleotide frequency (θb(x) ∈ [0, 1]),

depending on the genotypes present and their relative abundance (Supplementary Fig-

ure 2).

1.2 Non-reference Nucleotide Frequencies After Biased Whole

Genome Amplification: ρ

Let further ρs(x), ρb(x) be the abundance of genome copies showing alternative nu-

cleotide x at a particular site in the single or bulk DNA sample, respectively, right

before the sequencing—for the single cell, this means after the whole genome ampli-

bWe use θ notation for the true underlying alternate allele frequency at a site, and θ̃ notation when
referring to the likelihood density estimates derived for all possible underlying alternate allele fre-
quencies. The latter notation is thus mostly used for the definition of single cell events in section
1.5.1.
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fication that is necessary to obtain enough DNA for sequencing with technologies like

Illumina. These abundances translate into probabilities to draw a read containing x from

the respective sample (in the sequencing experiment), given that such a read covers the

genome position.

Under the assumption of uniform abundance of all parts of the genome and uniform

abundance of each haplotype, which is reasonable in bulk sequencing (i.e. without am-

plification), it holds that ρ = θ, so we henceforth assume that

ρb(x) = θb(x). (S 3)

In contrast, in single cell sequencing—due to the necessary whole genome amplification

process—the assumption of uniform abundance of all parts of the genome and of each

haplotype does not hold. Instead, each allele at a particular site can be amplified to a

different degree, ranging from no amplification at all (i.e. a complete allele dropout) to

several hundred or thousand copies. Thus

ρs(x) 6= θs(x) but instead ρs(x) ∼ P (ρs | θs(x)) (S 4)

that is, ρs is a random variable governed by a probability distribution P (ρs | θs(x))

that depends on the original alternative nucleotide frequency θs. P (ρs | θs(x)) reflects

the differential amplification of the two alleles, which is only detectable for heterozygous

sites (θs = 1
2), thus

P (ρs | θs(x)) =


P (ρs | θs(x) = 0)

P (ρs | θs(x) = 1
2)

P (ρs | θs(x) = 1)

(S 5)

Understanding these probability densities is key to understanding the statistical issues
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single cell whole genome amplification methods come along withc. From the Supplemen-

tary Material of Lodato et al. [28] (see Figure S5 and the section “Modeling MDA-derived

alternative read counts” of the respective supplement for the details), we get an empiri-

cal model that characterizes them for the whole genome amplification method multiple

displacement amplification (MDA)d:

P (ρs | θs = 0) = BBl,α,β(ρs)

P (ρs | θs =
1

2
) = w(l)×BBl,α1,α1(ρs) + (1− w(l))×BBl,α2,α2(ρs)

P (ρs | θs = 1) = BBl,β,α(ρs)

(S 6)

where BB represents beta-binomial functions with the parameters linearly scaled

by l, the total observations at a site (i.e. the total read coverage). For homozygous

reference sites (θs = 0), the parameters of the beta-binomial function are α(l) and

β(l). For the heterozygous sites (θs = 1
2), both beta-binomial functions are symmetrical

with α1(l), α2(l) dependent on the site-specific coverage l and combined by factor w(l).

ρs ∈ k
l , k ∈ 0, 1, . . . , l are the possible cases of alternative nucleotide frequencies. In their

Supplementary Figure S5 in panels C and D, Lodato et al. [28] give estimates of the

parameters α(l), β(l), w(l), α1(l), α2(l) obtained by fitting to empirical data. We list the

values we extracted in Table 1. For the third case (homozygous alternative nucleotide,

i.e. P (ρs | θs = 1)) we mirror the homozygous reference functione.

Using one of the possible expressions of the respective probabilities (Equation 6.28

c Note, in addition to the whole genome amplification bias, these distributions can implicitly also model
the amplification errors that the polymerases used for whole genome amplification introduce in the
copy process.

d For other whole genome amplification methods with different amplification bias properties, we can
simply implement a different instance of the general model for P (ρs | θs(x)) accordingly. And for
MDA, different empirical models learned from other or more published datasets could be implemented
as well as strategies of inferring parameters from the very dataset analysed in a certain run of the
software.

e Note that the amount of sites that are homozygous for the reference allele is much larger, which also
means that statistics for θs = 1.0 are more robust when being derived from the case θs = 0.0.
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in Section 6.2.4 of Johnson et al. [18])f, with regards to the beta function B, we can

compute the probability of observing k reads with the alternative nucleotide at a site of

coverage l for the heterozygous case as follows:

P (K = k | θs =
1

2
) = w(l)×

(
l

k

)
Bk+α1,l−k+α1

Bα1,α1

+

(1− w(l))×
(
l

k

)
Bk+α2,l−k+α2

Bα2,α2

(S 8)

In the future, these distributions could be learned from the dataset at hand, whenever

large enough sets of sites that have a high probability of being homozygous reference

or heterozygous are available. In addition, the exact distribution used could be further

refined with the below considerations regarding the suitability of beta-binomial distri-

butions in this case.

1.2.1 The Pólya urn model: motivating the use of beta-binomial

distributions

For the heterozygous case, the applicability of the beta-binomial distribution [17] should

be immediately evident from the formulation of the Pólya urn model [12] that generates

beta-binomial distributions [17, 18]. It works directly analogous to the amplification

f Here, the parameters b, w, c from the formulation in Equation 6.28 in Section 6.2.4 of Johnson et al.
[18] are summarised into α1, α2 from Lodato et al. [28] with:

α1 =
w1

c
= w1 = b1

α2 =
w2

c
= w2 = b2

(S 7)

I.e., the number of starting reference and alternative alleles is identical within each beta-binomial,
yielding symmetric distributions. In terms of the Pólya urn model used as motivation in Johnson
et al. [18], this equates to the number of w white and b black balls being identical. c, the number of
balls of identical color that are added whenever a ball of particular color is added, is set to 1. Further
considerations for obtaining the values of b, w are discussed below in relation to the Pólya urn model.
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processg:

At the start, the urn contains w white and b black balls, analogous to the two alleles

present at a heterozygous site—let us say white balls represent the reference allele and

black balls the alternative allele. Whenever a ball is drawn, it is replaced to the urn

and another c balls of the same color are added, analogous to the polymerase copying

an allele.

As we have two strands each for both alleles, a natural choice of starting alleles

would be wt = bt = 2. We here subscript the values with t to denote the theoretical

nature of the parameter choice, as opposed to practical values of wp, bp introduced below.

And as one strand is added with every copy operation, we set c = 1 (Supplementary

Figure 1A). This gives us a slight peak around the alternative allele frequency of 0.5

(Supplementary Figure 1A), which we can also make out in the real data (Figure 3B of

the main manuscript).

However, it does not capture the allele dropout peaks at the allele frequencies of 0

and 1 seen there. A likely reason for these dropout peaks is, that not every position

on every allele is equally accessible to amplification initiation [39]. I.e. mechanistically,

some close-by site to the one under consideration must be single-stranded at some point

during the continuous amplification reaction (at a constant temperature), to be accessible

for an initial priming that will start the amplification of the respective allele for that

region. To account for this lower initiation accessibility, we can introduce a scaling

factor f for the starting frequencies of the two alleles, with 0 <= f <= 1, to scale

down the initially available allele count: if strands are already separated for this allele

and amplification initiation works perfectly for both strands (f = 1), then we would

get wp = wt ∗ f = 2 ∗ 1 = 2; whereas at the other extreme of f = 0, amplification

initialisation of the allele would be impossible. Then, for f = 1
2 , we get the uniform

distribution (wp = wt ∗ f = 1
2 ∗ 2 = 1, Supplementary Figure 1B), and for all f < 1

2 , we

gThe notation used here is analogous to Equation 6.28 in Section 6.2.4 of Johnson et al. [18]. Also see
Equation S 7 in the above footnote for its relation to α1, α2 in Lodato et al. [28].
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Supplementary Figure 1: Beta-binomial distributions with different shape parameters,
that correspond to our theoretical numbers of starting allele strands (wt = bt =
2) scaled to different amplification accessibility by f . A Perfect accessibility of
both strands of both alleles for amplification (f = 1) and the resulting alternative
allele frequencies. B Half that accessibility (f = 0.5), resulting in the uniform
distribution. C For any accessibility scaling value below 1

2 (e.g. f = 0.25), the beta-
binomial distribution will give maxima at alternative allele frequencies 0 and 1. D
The heavily non-symmetrical case (wt � bt), analogous to homozgyous reference
genotypes. Instead of the distribution currently used in ProSolo, which was fit to
data and compounds sequencing errors with amplification errors (Figure 3A in the
main manuscript), this distribution makes the following theoretical assumptions: It
sets wt = 4 for the 4 reference strands available for amplification and bt to four
times the known Φ29 error rate for drawing / introducing an error alternative allele
instead of the reference allele. The inset zooms into the y-axis to show details of the
tail of the distribution.
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will get distributions with peaks at 0 and 1 (e.g. Supplementary Figure 1C).

If we then consider a mixture of sites with different f , we would expect distributions

as observed e.g. in Figure 3B of the main manuscript; and a reasonable approximation

of this is the mixture of the two symmetrical beta-binomials as fitted by Lodato et al.

[28], one with f ≈ 0.40 < 1
2 and one with f ≈ 0.67 > 1

2 (i.e. the intersects of α2 and α1

plus their slight slope-adjustments, as given in Table 1).

1.2.2 Outlook: more realistic beta-binomial distributions

However, something that this does not capture is possible asymmetry of the distributions,

i.e. the case of w 6= b. While the theoretical starting amounts of strands of both alleles in

the heterozygous case should remain the same (wt = bt = 2), we would have to introduce

allele-specific scaling factors fw 6= fb that capture the different availability of the two

alleles for amplification (e.g. because one of the alleles is more densely wrapped around

Histones than the other). As a result we would get wp = wt ∗ fw 6= fb ∗ bt = bp, and

instead of the one shape parameter in the symmetrical case, we would then have to fit

the distributions with a second shape parameter. I.e. instead of Equation S 7, we would

get:

α1 = wp = wt ∗ fw = 2fw

β1 = bp = bt ∗ fb = 2fb

(S 9)

However, assuming that the dropout of both alleles—reference and alternative—is

equally likely, this asymmetry will average out over all heterozygous sites, and the

symmetry assumption remains a justified reduction in parameters to fit when fitting

a mixture of two beta-binomials.

This is somewhat different for the homozygous case. Here, Lodato et al. [28] already
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modelled the allele frequency deviations (> 0 for homozygous reference) as an asymmet-

ric beta-binomial distribution. This gives a reasonable fit to the data and makes sense to

use, as we would expect these deviations to be the result of amplified polymerase errors

from the MDA. While we just use the distributions fit by Lodato et al. [28] in our initial

implementation we present here, this could in the future be replaced by a theoretically

derived beta-binomial distribution. For example, for the homozygous reference case, a

very low bt (the probability of “choosing” a previously non-existing error allele) could

be determined by (four times) the known Φ29 polymerase error rate, whereas wt would

be set to 4 to account for four reference strands available for copying (Supplementary

Figure 1D). As f would in this case affect both the reference (w) and the error allele

(b) alike, it could be set to some identical value for both, e.g. to an average accessibility

of 0.5 (Supplementary Figure 1D). This would avoid compounding the uncertainty due

to MDA with sequencing errors, that we already account for separately in our latent

variable model through base calling quality scores and is one very likely source of the

current mis-classifications of ground truth heterozygous sites as homozygous (Supple-

mentary Figure 16).

1.3 Reads: Sampling Alternative Nucleotide Frequencies in the

Sequencing Process

Let R (=R(g)) denote all reads covering a site g, with Ri ∈ R denoting an individual

read out of the l reads aligning to that site (l ∈ N, i ∈ {1, 2, . . . , l}). Formally, we index

positions in aligned reads by the respective genome indices g, but we omit the index g

for readability. Working with a given ρ, one can assume independence among the reads

in the respective sample (while, of course, given θ, one can assume independence only

in bulk, due to the necessary amplification and the resulting coverage nonuniformity in

single cell samples). That is
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L(ρ | R) ∝ P (R | ρ) =
∏
R∈R

P (R | ρ) ∝
∏
R∈R

L(ρ | R) (S 10)

both for bulk and single cell sequencing. Let SRi [g] be the nucleotide determined by

the sequencer for position g of read Ri and QRi [g] be the Phred quality score for the

nucleotide at that position of read Ri
h. Let further MRi [g] be the Phred alignment

quality scorei provided by the aligner. We now define Zi[g] (i ∈ {1, . . . , l}) to be the

collection of the observable variables for the alignment of one of l reads Ri ∈ R to a

genome position g. Omitting index g, this is the vector Zi = 〈SRi , QRi ,MRi〉 and drawing

on this information, we now introduce hyperparameters analogously to the model for

tumor-normal variant calling as outlined by Köster et al. [23] for Varlociraptor. These

will be the latent variables ωi ∈ {0, 1} to model correct placement of an alignment

(ωi = 1 if correct and ωi = 0 otherwise) and ξi ∈ {0, 1} to specify whether an alignment

Zi is associated with the alternative nucleotide (ξi = 1) or not (ξi = 0). Taken together,

they give three cases

(ωi, ξi) =


(1, 1) : Ri mapped correctly, alternative nucleotide

(1, 0) : Ri mapped correctly, reference nucleotide

(0, {0, 1}) : Ri not mapped correctly, nucleotide irrelevant

(S 11)

We thus model the two major sources of uncertainty on the level of the individual

alignment Zi, 1) alignment uncertainty and 2) typing uncertainty, by associating every

h As above, we now omit g for SRi and QRi for ease of notation and reading, as we will for MRi . Also
note that the value of QRi [g] can be adjusted by a base quality score recalibration that accounts for
systematic base calling errors, before using it as input to ProSolo.

i Also called mapping quality; represented by the MAPQ tag in the sequence alignment (SAM) format
specifications v1 (2a802cd) and by the MQ tag in the variant call format (VCF) specification v4.3
(2a802cd). As before, we will omit the position g from notation from this point on.
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alignment Zi with these two binary-valued, latent variables, reflecting uncertainty hy-

perparameters, ωi and ξi:

First,

ωi ∼ Bernoulli (πi) for i = 1, . . . , l (S 12)

where πi is the (Phred scaled) posterior probability proportional to MRi provided by

the aligner. We can compute it with

πi = 10−MRi
/10 (S 13)

Second,

ξi ∼ Bernoulli (ρ) for i = 1, . . . , l (S 14)

which reflects that sampling a fragment from the locus that bears the alternative nu-

cleotide agrees with the probability to sample a genome copy with the alternative nu-

cleotide from the pool of amplified DNA.

Whether ξi is 1 or 0 is generally not evident from the observed Zi, due to typing

uncertainty. We formally definej

Zi | ωi = 1, ξi = 0 ∼ a(Zi) and Zi | ωi = 1, ξi = 1 ∼ p(Zi) (S 15)

where a, p are probability distributions over correct SRi when the alternative nu-

cleotide is either absent or present in read Ri and a(·) and p(·) are the respective func-

tions to sample from this distribution for a particular read. With these probability

distributions, we can account for any number of factors for which we know how they

j If ωi = 0, that is the alignment is incorrect, Zi | ωi = 0 ∼ 1 reflects that Zi has no influence on the
posterior probability distribution of ρ.
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affect these probability distributions—but if we lack any further information for an al-

ternative nucleotide, we can assume QRi to be a specification of these distributions for

Ri, accounting for the uncertainties of the sequencing process. With x ∈ {A,C,G, T}

the alternative nucleotide under inspection, we can thus compute:

a(Zi) =


10−QRi

/10 if SRi = x

1− 10−QRi
/10 if SRi 6= x

(S 16)

p(Zi) = 1− a(Ri) (S 17)

1.4 Single cell latent variable model

By applying the Chapman-Kolmogorov equation with our binary hyperparameters to

the single cell casek, we get

L(ρs | Zsi ) ∝ P (Zsi | ρs) =

∫
ωs
i ,ξ

s
i

P (Zsi | ωsi , ξsi )× P (ωsi , ξ
s
i | ρs) d(ωsi , ξ

s
i ) (S 18)

which fans out to the following cases from equation S 11:

P (Zsi | ρs) = P (Zsi | ωsi = 0)× P (ωsi = 0 | ρs)

+ P (Zsi | ωsi = 1, ξsi = 0)× P (ωsi = 1, ξsi = 0 | ρs)

+ P (Zsi | ωsi = 1, ξsi = 1)× P (ωsi = 1, ξsi = 1 | ρs)

(S 19)

Knowing that the mapping probability of reads is independent from the given (dis-

torted) allele frequency ρs, and assuming a sampling probability of 1 for any mismapped

k We will only be looking at single cell samples in the following, as the case of ρb = θb is the simpler one
and analogous without the whole genome amplification considerations. Please also refer to the tumor
and normal sample derivations in Köster et al. [23], but note that we need no purity parameter, here.
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read, this becomes:

P (Zsi | ρs) = P (ωsi = 0)

+ P (Zsi | ωsi = 1, ξsi = 0)× P (ωsi = 1)× P (ξsi = 0 | ρs)

+ P (Zsi | ωsi = 1, ξsi = 1)× P (ωsi = 1)× P (ξsi = 1 | ρs)

(S 20)

With Equation S 12 for ωsi , Equation S 14 for ξsi and Equations S 16 and S 17 for

the conditional probabilities of the data given an absence or presence of the observed

nucleotide, we get:

P (Zsi | ρs) = (1− πsi )

+ as(Zsi )× πsi × (1− ρs)

+ ps(Zsi )× πsi × ρs

(S 21)

As the l reads are conditionally independent, given a particular (distorted) alternative

nucleotide frequency ρs (also see Equation S 10), we can calculate the likelihood of such

a particular ρs with:

L(ρs | Zs) ∝ P (Zs | ρs) =
l∏

i=1

P (Zsi | ρs) (S 22)

With the resulting likelihoods for ρs ∈ [0, 1], we can calculate the likelihood of a

particular θs:

L(θs | Zs) ∝ P (Zs | θs) =

l∑
k=0

{
P (Zs | ρs =

k

l
)× P (ρs =

k

l
| θs)

}
(S 23)

For θs ∈ {0, 12 , 1}, with equation S 5 specifying the cases of θs and Equation 2 further

specifying P (ρs | θs) for MDA, this gives us:
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Supplementary Table 1: Parameters of the multiple displacement amplification (MDA)
amplification bias model as presented in Supplementary Figure S5, panels C and D
of Lodato et al. [28]. Each of these scales linearly up to a site coverage of 60, with
the slopes and intercepts as given here.

parameter slope intersect

α -0.000027183 0.068567471

β 0.007454388 2.367486659

w 0.000548761 0.540396786

α1 0.057378844 0.669733191

α2 0.003233912 0.399261625

P (Zs | θs = 0) =
l∑

k=0

{
P (Zs | ρs =

k

l
)×BBl,α,β(ρs =

k

l
)

}

P (Zs | θs =
1

2
) =

l∑
k=0

{
P (Zs | ρs =

k

l
)×

[
w(l)×BBl,α1,α1(ρs =

k

l
)+

(1− w(l))×BBl,α2,α2(ρs =
k

l
)

]}
P (Zs | θs = 1) =

l∑
k=0

{
P (Zs | ρs =

k

l
)×BBl,β,α(ρs =

k

l
)

}
(S 24)

For the current implementation, we use the empirical values for α(l), β(l), w(l), α1(l), α2(l)

as deduced by Lodato et al. [28] (Supplementary Table 1). But as mentioned above, these

could be learned from a dataset at hand whenever high-confidence sets of heterozygous

and homozygous sites are available (e.g. by calling variants on a background bulk and

cross-referencing with dbSNP).
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Supplementary Figure 2: It depicts single cell events at a particular genomic site, de-
fined by combinations of ProSolo’s maximum likelihood estimates for possible true
alternative nucleotide frequencies in single cell sequencing (θ̃s) and bulk sequencing

samples (θ̃b) in our probabilistic model. The bulk is always assumed to be a combi-
nation of a maximum of two genotypes at a particular site, generating all possible
θ̃b (bottom panel). A tabular representation of the same event definitions is given
in Supplementary Table 2 below (this is a larger copy of Figure 3D in the main
manuscript, reproduced here for easier cross-reference with that table).
ADO – allele dropout, alt – alternative, err – error, het – heterozygous, hom – homozygous, ref –
reference
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Supplementary Table 2: Single cell events at a particular genomic site are defined by
combinations of ProSolo’s likelihood density estimates of the possible true alterna-
tive nucleotide frequency ranges in single cell sequencing (θ̃s) and bulk sequencing
samples (θ̃b) in our probabilistic model. A graphical representation of the same event
definitions is given in Supplementary Figure 2.

single cell event θ̃s(x) θ̃b(x) implicit single cell genotype

Ehom ref 0 [0, 12) homozygous ref

EADO to ref 0 [12 , 1) heterozygous

Eerr ref {0, 12} 1 homozygous alt

Eerr alt {12 , 1} 0 homozygous ref

Ehet
1
2 (0, 1) heterozygous

EADO to alt 1 (0, 12 ] heterozygous

Ehom alt 1 (12 , 1] homozygous alt

ADO – allele dropout, alt – alternative, err – error, het – heterozygous,

hom – homozygous, ref – reference

1.5 Bulk background: Accounting for Amplification Errors and Allele

Dropout

1.5.1 Defining the Event Space

Using the above model for a genome position g, we can compute the likelihood of any

combination of possible underlying alternative nucleotide frequencies in the single cell

(θ̃s) and the bulk sequencing sample (θ̃b), given the respective data. All the possible

combinations of allele frequencies in the two samples define a two-dimensional space of

allele frequency likelihood density estimates E (Equation 4, Supplementary Figure 2,

Supplementary Supplementary Table 2). We then define mutually exclusive sub-spaces

of E as single cell events, for example the dropout of an alternative allele across al-

lele frequencies EADO to ref = {0}θ̃s × [12 , 1)θ̃b , providing a set of events E. For these

definitions, we always assume that—regarding a particular genomic site—the bulk cell
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population can only consist of a maximum of two sub-populations that are exactly one

mutated allele apart from each other (Supplementary Figure 2, lower panel). At allele

frequencies θb ∈ {0, 0.5, 1}, we assume a homogeneous population of only homozygous

reference, heterozygous, or homozygous alternative cells, respectively. At frequencies

in between, we assume a mixture of heterozygous cells with homozygous reference cells

(θb ∈ (0, 0.5)), or with homozygous alternative cells (θb ∈ (0.5, 1)). For the above ex-

ample (EADO to ref = {0}θ̃s × [12 , 1)θ̃b), this means that we can resolve a contradiction

between the likelihood estimate at θ̃s = 0, which indicates a homozygous reference single

cell, and the likelihood density estimate across θ̃b ∈ [0.5, 1), which indicates that the bulk

does not contain any homozygous reference cells. Based on our assumption, we decide to

trust the bulk sample over the single cell sample, meaning that the bulk is a mixture of

a maximum of two sub-populations, and can only contain heterozygous and homozygous

alternative cells, rendering a homozygous reference single cell impossible and thus the

result of an allele dropout.

To evaluate whether this assumption of only two sub-populations in the bulk is safe to

make, we can examine all the possible ways in which this assumption may be violated.

This requires that we have a sequence of two mutational events affecting the same

genomic site, each generating a new sub-population. To know which types of mutational

event sequences to consider, we note that the same point mutation has been observed

to occur independently in different single cells from the same individual [21], possibly

due to selection for an advantageous effect of that mutation. However, the net effect of

such parallel evolution still restricts the cell bulk to two sub-populations with distinct

genotypesl. At the same time, we are not aware of cases where different cells from the

same population acquire different point mutations at the exact same locus, and expect

this to be highly unlikely. Instead, a third sub-population will usually be generated by

lAs we are looking at different single cells separately, this also means that we do not have to worry about
this kind of violation of the infinite sites assumption. Such parallel evolution only becomes problem-
atic for phylogenetic reconstruction approaches that assume infinite sites, which would assume that
each mutation only happens once in the tree.
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a loss of heterozygosity event on a larger scale, covering a mutated site [21, 42].

Thus, if we start with a homozygous reference bulk, a first event would introduce

an alternative allele mutation and a second event in that sub-population would lead

to the loss of either the reference allele or the alternative allele. Losing the recently

generated alternative allele leads to an allele frequency in that sub-population that is

similar to the homozygous reference genotype (it only has coverage of the reference

allele), and this sub-population is thus indistinguishable from the original homozygous

reference population. ProSolo will correctly identify any single cells with the loss event

as homozygous reference (Supplementary Figure 2).

However, losing the reference allele leads to a sub-population that only has coverage of

the alternative allele and is thus similar to a homozygous alternative genotype and clearly

distinguishable from the other two genotypes. While this type of event was not observed

in a systematic survey of multiple mutational hits per site [21], it has coincidentally been

observed in a recent study that explicitly modeled copy number alterations in single cells

for their phylogenetic reconstruction of cell lineages (mutation LINGO2:2 in Satas et al.

[42]). Thus, we expect this type of event to be rare, but possible. In this case, as the

alternative allele was only introduced in a sub-population and the loss of the reference

allele is only present in an even smaller sub-population of that, the bulk frequency of

this alternative allele will be well below 0.5. Here, the ProSolo model assumes the

homozygous alternative genotype of this sub-population impossible and instead calls

cells from that sub-population as heterozygous (Supplementary Figure 2). However,

this only concerns the genotype, while the presence of the mutation will be identified

correctly. As MonoVar is the only other variant calling software that can even genotype

beyond calling the presence or absence of a mutation, this could only be considered a

drawback compared to that tool.

As germline homozygous alternative sites are very rare compared to germline homozy-

gous reference sites (due to the reference genome being biased towards more common
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alleles), we expect the symmetric casem to be much less likely to be observed.

Finally, starting from a heterozygous germline genotype in the bulk will be more likely

than starting from a homozygous alternative genotype, but a lot less likely than starting

from a homozygous reference genotype. From this starting point, three sub-populations

regarding the same alternative allele can only be generated by two events in opposite

directions in distinct cells from that population: one point mutation or loss event towards

the reference and one point mutation or loss event towards the alternative allele, with the

loss events much more likely to affect any site than the point mutations. Whether the

resulting bulk alternative allele frequency then ends up above or below 0.5, depends on

which event happens earlier and/or grows faster within the population. As a result, the

homozygous genotype (reference or alternative) with the lower frequency will erroneously

be considered a heterozygous single cell genotype, but ProSolo will correctly call the more

frequent (and thus probably more relevant) homozygous genotype. However, we are not

aware of any such events being reported in the literature and expect them to be vary

rare.

We conclude that the assumption is reasonable to make and we only expect it to

lead to the misclassification of homozygous alternative single cell sites as heterozygous

when they have been generated by the introduction of an alternative allele via a point

mutation, followed by an allelic loss of the reference allele in some daughter cells. We

also discuss possible respective cases in the context of the tumor single cells from the

data of Wang et al. [48] (Supplement Section 2.5).

It should be possible to mitigate such cases with further extensions of the model to

account for copy number changes. As in Satas et al. [42], this would require separately

obtaining copy number profiles that are then provided as input to ProSolo, but we do not

yet see a standardized way of obtaining such profiles from single cell DNA-sequencing

data. So far, such copy number profiles seem to have usually been obtained with custom

mA mutation towards the reference with a subsequent complete loss of the originally homozygous alter-
native allele.
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scripts tailored to specific datasets (for example Baslan et al. [2], Satas et al. [42], Kuipers

et al. [22]), but when more generalized approaches for obtaining such profiles become

available, they could then be used to adjust the exact model setup for each site based

on the local copy number profile. Newer versions of varlociraptor, whose variant calling

functionality ProSolo uses in the background, already allow for a chromosome-specific

specification of copy numbersn. Thus, it should be possible to extend this to site-specific

copy numbers in the future and to extend the ProSolo model to arbitrary ploidies.

1.5.2 Posterior Probabilities of Events

Further assuming that there is no informative prior information about different allele fre-

quencies (i.e. assuming a flat prior across all possible allele frequencies in both samples),

we can then calculate the likelihood of such an event as the product of the likelihoods of

the allele frequency ranges in the two samples. For EADO to ref—and using Equation S 24

to calculate the likelihoods of the allele frequency ranges—this for example becomes:

P (Zs,Zb | EADO to ref) = P (Zs | θs = 0)× P (Zb | θb ∈ [
1

2
, 1))

=
l∑

k=0

{
P (Zs | ρs =

k

l
)×BBl,α,β(ρs =

k

l
)

}
×

n−1∑
m=n

2

P (Zb | θb =
m

n
)

(S 25)

Here, we use the fact that for the bulk sample without amplification, we can assume

that θb = ρb and thus use a simpler form of Equation S 23. Also, we take n to be the total

number of bulk reads and m to be the possible numbers of reads with the alternative

allele for this event—analogous to k and l for the single cell sample, and amounting to

only taking point estimates of the likelihoods at possible alternative allele counts given

nSee the ”ploidy” definition in this documentation section: https://varlociraptor.github.io/docs/
calling/#configuring-the-joint-prior-distribution
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the total coverage of the examined genomic site.

As all the defined events (Equation 5) are mutually exclusive (Supplementary Figure 2,

Supplementary Table 2), the sum of the likelihoods of all events yields the marginal

probability:

P (Zs,Zb) = P (Zs,Zb | E) =
∑
Ee∈E

P (Zs,Zb | Ee)

= P (Zs,Zb | Ehom ref) + P (Zs,Zb | Ehom alt) +

P (Zs,Zb | Ehet) +

P (Zs,Zb | Eerr alt) + P (Zs,Zb | EADO to alt) +

P (Zs,Zb | Eerr ref) + P (Zs,Zb | EADO to ref)

(S 26)

Then, using Equation S 22 for the likelihood of ρs in the single cell sample and the

equivalent relationship for the likelihood of θb in the bulk sample (with j as an index

running through all bulk sample reads), we get:

P (Zs,Zb | EADO to ref) =
l∑

k=0

{
l∏

i=1

P (Zsi | ρs =
k

l
)×BBl,α,β(ρs =

k

l
)

}
×

n−1∑
m=n

2

n∏
j=1

P (Zbj | θb =
m

n
)

(S 27)

Using Equation S 21 for the likelihood of an individual read in the single cell sample

given a ρs and the respective formulation for an individual read in the bulk sample given

a θb, this will calculate the likelihood of the ADO to ref event as:
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P (Zs,Zb | EADO to ref) =

l∑
k=0

{
l∏

i=1

(
(1− πsi ) + as(Zsi )× πsi × (1− k

l
) + ps(Zsi )× πsi ×

k

l

)
×

BBl,α,β(ρs =
k

l
)

}
×

n−1∑
m=n

2


n∏
j=1

(
(1− πbj) + ab(Zbj )× πbj × (1− m

n
) + pb(Zbj )× πbj ×

m

n

)

(S 28)

Analogously, the likelihoods for all of the events as specified in Supplementary Figure 2

can be computed and their sum according to Equation S 26 is the marginal probability.

We can use the marginal probability to calculate the posterior probability of the ADO to

ref event with:

P (EADO to ref | Zs,Zb) =

1∑
Ee∈E P (Zs,Zb | Ee)

×

l∑
k=0

{
l∏

i=1

(
(1− πsi ) + as(Zsi )× πsi × (1− k

l
) + ps(Zsi )× πsi ×

k

l

)
×

BBl,α,β(ρs =
k

l
)

}
×

n−1∑
m=n

2


n∏
j=1

(
(1− πbj) + ab(Zbj )× πbj × (1− m

n
) + pb(Zbj )× πbj ×

m

n

)

(S 29)

With analogous equations, we can compute the posterior probability for all of the

events defined by ProSolo (Supplementary Figure 2, Supplementary Table 2). Each of

them is reported in the output VCF or BCF file. Based on the implicit single cell geno-

types as given in Supplementary Table 2, we can then compute posterior probabilities

for genotypes in the single cell by summing the posterior probabilities of all the events
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that imply each genotype. For the heterozygous case (light blue fields in Supplementary

Figure 2), this would be:

P (heterozygouss | Zs,Zb) = P (EADO to ref | Zs,Zb) +

P (Ehet | Zs,Zb) +

P (EADO to alt | Zs,Zb)

(S 30)

The genotype with the maximum probability among the three possible genotypes is

then chosen. Similarly, we can also compute posterior probabilities for any compound

event. For example, the overall posterior probability of an allele dropout at a particular

site (ADO events in Supplementary Figure 2 and Supplementary Table 2) is:

P (allele dropout | Zs,Zb) = P (EADO to ref | Zs,Zb) +

P (EADO to alt | Zs,Zb)

(S 31)

Another example is the probability of the presence of any alternative allele at a site

(all blue fields in Supplementary Figure 2, Equation 10 in the main manuscript). This

posterior probability is the one used for the main benchmarking of ProSolo against the

other existing single cell specific variant callers (MonoVar, SCAN-SNV, SCcaller, and

SCIPhI), as SCcaller and SCIPhI only call the presence (vs. absence) of an alternative

nucleotide and this is thus the only measure we can compare all tools on.

1.6 Implementation

ProSolo is an easy-to-use command-line tool (following usability standards [46]) and its

source code is available at https://github.com/prosolo/prosolo, including instruc-

tions for an easy installation (via Bioconda [13]). The main contribution in terms of

software that ProSolo’s development provided, is the implementation of its comprehen-
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sive statistical model that jointly looks at a single-cell and a bulk sample. This was

implemented as a part of Varlociraptor, a variant calling library implemented in Rust

[23]. Varlociraptor already makes use of all available sources of information regarding

biases of normal sequencing data, induced by ambiguous alignments and sequencing er-

rors, but had to be extended to accommodate this type of sample combination and to

allow for accounting for amplification bias. Because Varlociraptor had originally been

specializing in indels and structural variants, implementing ProSolo also meant further

investment in expanding Varlociraptor’s capabilities for basic SNV analysis and required

some improvements in the handling of sequencing alignment data in the upstream library

rust-htslib [41], a Rust wrapper around htslib [16]. Further, we optimized Varlocirap-

tor’s calculations wherever possible, for example by reducing the number of redundant

likelihood calculations and by caching frequently reused values. And finally, numerical

issues required an addition to the upstream library rust-bio [19].

False Discovery Rate (FDR) Control of Event Probabilities Last—but not

least—ProSolo can control the false discovery rate of any set of single cell events that

a user defines. At any scale of high throughput sequencing data (from targeted panels

over whole exome sequencing to whole genome sequencing), we generate a large amount

of event calls and thus have to control for false discoveries, e.g. by controlling the false

discovery rate [3]. Using Varlociraptor’s functionality [23], we can estimate thresholds on

our posterior probabilities based on the approach described by Müller et al. [31, 32]. For

ProSolo, we extended Varlociraptor’s capabilities from estimating such thresholds for

the posterior probability of a single event to estimating thresholds for any combination

of the above defined events. For example, to control the false discovery rate for allele

dropout events, we jointly obtain a threshold for the combination of the two ADO

events in Figure 3D. Or, to control the false discovery rate in identifying the presence

of an alternative allele, we jointly obtain a threshold for the combination of all the
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respective events in Equation 10. This functionality, like the improvements mentioned

in Section 1.6, is now also available in Varlociraptor’s subcommands.

2 Supplementary Note 2: Benchmarking

All code used for benchmarking is available at: https://www.github.com/prosolo/

benchmarking_prosolo.

2.1 Datasets and Ground Truths

We have performed our benchmarking analyses on two datasets, one previously pub-

lished for the evaluation of SCcaller by Dong et al. [11] and one generated especially

for this Benchmarking (see Figure 4 in the main manuscript). For them, we generated

different kinds of ground truths:

Whole genome sequencing of almost identical kin-cells from a cell-line [11].

The first dataset is from the publication of a previous variant caller for single cell se-

quencing data generated using MDA, SCcaller (Dong et al. [11]; Figure 4a). They started

with one initial cell from a cell line and grew it in several steps (a complete overview

of their setup is given in Figure 1 of Dong et al. [11]). After an initial mini-expansion,

they selected one single cell as the founder for their secondary IL expansion into 20-30

cells. From this they extracted two single cells (IL-11 and IL-12) that were sequenced

after multiple displacement amplification (MDA). Both cells have a minimum coverage

of five of at least 80% of genomic sites (with only about 90% of the used reference

genome represented, as this includes a largely uncovered chromosome Y and alternative

haplotype contigs which would only be covered if the particular haplotype is present),

with IL-11 having a more even coverage that leads to more sites with a usable cover-

age (Supplementary Figure 3A). The rest of the kindred cells from that IL clone was
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then used as a bulk sequencing sample without MDA (IL-1C), showing a coverage pro-

file similar to the whole genome amplified single cells (Supplementary Figure 3A). We

generated the ground truth genotypes for this dataset from the kindred clone IL-1C,

which should be only very few cell divisions away from the single cells, and thus have

almost no difference in the somatic mutations acquired. The ground truth genotype

was generated separately for variant sites and homozygous reference sites: for variant

sites, GATK HaplotypeCaller was run, followed by variant quality score recalibration;

for homozygous reference sites, we used bcftools mpileup to identify sites with a coverage

above 25 but no alternative nucleotide present. This bulk sample (IL-1C) was only used

as a ground truth and was not provided as input to any of the software compared here.

Three more distant clones (C1, C2, C3 in Figure 4a), grown from the cells after the ini-

tial mini-expansion, were jointly used as a further bulk sample for SCcaller and ProSolo

(see Software and Parameters below). With three separate bulk sequencing runs, their

joint coverage of about 50 for 80% of genomic sites is much higher than for the MDA

single cells and the unamplified IL-1C bulk (Clones in Supplementary Figure 3A).

Whole exome sequencing of five human granulocytes with a pedigree ground

truth. For the second benchmarking dataset, Blood was taken from a patient after

informed consent and granulocytes were sorted out in several steps: Initially, CD3- cells

were captured via Magnetic-Activated Cell Sorting (MACS); among them, CD66b+

granulocytes were filtered out via Fluorescence Activated Cell Sorting (FACS) (Fig-

ures 4b and 4). Single cells from that cell population were isolated using a Fluidigm

C1 microfluidics chip and subjected to multiple displacement amplification (MDA) using

the GE Healthcare GenomiPhi Kit in its version adapted to that microfluidic chip. With

a panel of 16 custom primer pairs covering different genes across chromosomes (Supple-

mentary Table 3) used in a quantitative real-time PCR, we selected granulocytes where
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Supplementary Figure 3: Sequencing coverage of targeted genomic sites for multiple
displacement amplified (MDA) single cells and respective bulk samples (continued
on following page). Panel A shows the coverage of the single cells (IL-11, IL-12), the
kindred ground truth clone (IL-1c) and the more distant background bulk (Clones
C1, C2, and C3 joined into one sample) of the dataset from Dong et al. [11]. Panel
B shows the coverage of the single cells (PAG1, PAG2, PAG5, PAG9, PAG10) and
the background bulk (PNG) of the granulocyte data generated for this evaluation.
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Supplementary Figure 3: Sequencing coverage of targeted genomic sites for multiple
displacement amplified (MDA) single cells and respective bulk samples (continued
from previous page). Panel C shows the coverage of the single cells (a1 to a8,
h1 to h8, and TNBC-n1 to TNBC-n16), and the bulk samples (TNBC-Pop-Tumor
and TNBC-Pop-Normal) that were used as ground truth for the normal single cells
(with validated somatic variants added) and as ground truth for the tumor single
cells (with validated somatic variants removed), respectively Wang et al. [48].
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Supplementary Table 3: Primers used for selection of well amplified single cell samples
via quantitative real-time PCR. These were taken from Table S3 in Zong et al. [56].

chromosome forward primer reverse primer

chr1 AGGAAAGGCATACTGGAGGGACAT TTAGGGATGGCACCACACTCTTGA

chr2 TCCCAGAGAAGCATCCTCCATGTT CACCACACTGCCTCAAATGTTGCT

chr3 TCAAGTTGCCAGCTGTGGCTGTAT AGAAGGGCATTTCCTGTCAGTGGA

chr4 ATGGGCAAATCCAGAAGAGTCCAG CCATTCACTTCCTTGGAAAGGTAGCC

chr5 AATAGCGTGCAGTTCTGGGTAGCA TTCACATCCTGGGAGGAACAGCAT

chr6 TGAATGCCAGGGTGAGACCTTTGA TGTTCATTATCCCACGCCAGGACT

chr7 ACCAAAGGAAAGCCAGCCAGTCTA ACTCCACAGCTCCCAAGCATACAA

chr9 TCCCAGCTCTCTCTCTTGCATCTT AGTGAAGCTGGTGTATGCAGAGGT

chr12 AGAGGGCTGCTTTATGCAGGTG CTACATTTGGGTCTTTGCTGCCATG

chr13 AGCAGCCCCAGGCAGAT CGGAGAGGACGGTCACGTTTAC

chr14 CGGAGAGGACGGTCACGTTTAC CGTGGGAGTTTTGAAATGCGATGT

chr15 CCTGTCTCTGCTCCTGCG TGCACACATGCACAGTGGAG

chr16 CTCCAAGGTTCTGCAGCCTC GGTATGACTACACATTCAGGCTGG

chr17 GTGGTACATAGTGCATGGTCCG GGCGACATACCCCAACTTCATAAG

chr18 CGTTCTTAGGACCAAAGGGCTG CCAGCATCCATGTCTCTGCAC

chr19 GCCCAGAGCGCCTGA CCAGCCCCTGGACCACT

at least 15 of these loci were properly amplified. For those cells, we performed whole

exome capture using the Agilent SureSelectXT Human All Exon V5+UTRs Kit. The

paired-end sequencing library (2x101bp) was then prepared with the TruSeq V3 Kit and

sequenced on a HiSeq 2500. From the remaining sorted cell population, we extracted

bulk DNA and submitted it to the same whole exome capture and DNA sequencing

without MDA.

For the ground truth of this dataset, we could leverage previously published bulk

whole exome sequencing data from the same person, their parents and three siblings

(Hoell et al. [14]; Figure 4b). For ground truth alternative allele calls, we ran three

pedigree-aware variant callers on the family whole exome data. To be able to run them
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Supplementary Figure 4: 59 CD66b+ granulocytes were sorted out from a total popu-
lation of 35779 CD3-T cell depleted peripheral blood cells (gate C in the right-most
panel) and from these, five single cells were chosen where whole genome amplification
had yielded DNA for at least 15 out of 16 control loci.

reproducibly, we made all three of them available via bioconda [13]:

• BEAGLE 4.0 [6], bioconda version: beagle=4.0 06Jun17=1

• polymutt [24], bioconda version: polymutt=0.18=0

• FamSeq in MCMC (-method 3) mode [37, 38]), bioconda version: famseq=1.0.3=0

From their calls, we created a consensus by only including sites where either all callers

agree on a genotype or where a maximum of one caller has a missing (as opposed to

different genotype) call, while the other two callers agree on the genotype (Supplemen-

tary Figure 5). The use of the full pedigree ensures high confidence genotypes—however,

please bear in mind that these represent the germline genotype. Single cells will have

accumulated somatic genotypes that differ from the germline and we are bound to mis-

interpret those as false positive calls in our ground truth comparison. At the same time,

the number of such somatic variants will be small compared to the number of germline
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Supplementary Figure 5: Constructing the germline ground truth genotype for our gran-
ulocytes dataset from the consensus of three pedigree-aware callers. Variants were
called on a previously generated whole exome bulk sequencing data set of the per-
son’s family (Figure 4), which is separate from the single cell and bulk whole exome
sequencing data generated for this study. Variants were called using beagle, FamSeq
and polymutt with total counts of individual tools (bottom left bar plot) and tool
intersections of sites called (top bar plot) in grey. Black fractions of bars represent
the sites selected for our consensus: sites where either all callers agree upon a geno-
type or at least two callers agree upon a particular genotype and the third tool has
a missing genotype (i.e. doesn’t contradict the genotype called by the other two).

variants, and should hence keep our overall ground truth comparison valid.

Single nucleus exome sequencing of 16 normal and 16 tumor cells from a

triple negative breast cancer (TNBC) [48]. The third dataset is a published

dataset from a TNBC patient, with both tumor and matched normal cells available. For

each, 16 cells and a bulk sample were whole exome sequenced (Figure 4c). For the 32

single cells, library preparation was performed on isolated single nuclei [48]. In addition,

Wang et al. [48] provide a list of 373 non-synonymous clonal and 94 non-synonymous
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Supplementary Figure 6: The number of clonal variants with a respective alternative
allele frequency, stratified by the genotype (hom for homozygous alternative and het
for heterozygous) provided by Wang et al. [48] for their somatic ground truth list.
We consider the peak around 0.4 to represent genuine heterozygous variants and the
peak around 0.7 to represent genuine homozygous alternative variants, with a tumor
sample purity in the duplex sequencing experiment of somewhere around those 0.7.
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subclonal somatic variants (Supplementary Tables 6 and 7 in Wang et al. [48]) whose

presence they validated with deep targeted duplex sequencing. As they provide a du-

plex sequencing based alternative allele frequency, we examined the alternative allele

frequency distribution of the non-synonymous clonal variants, stratified by the specified

zygosity (Supplementary Figure 6). This clearly shows two alternative allele frequency

peaks, one at around 0.4 and the other at roughly double the alternative allele frequency

around 0.7. These two peaks should correspond to heterozygous (0.4) and homozygous

alternative variants (0.7), respectively. As these are supposed to be clonal variants in

the tumor, the remaining fraction of 0.3 beyond the homozygous alternative variants

peak (from 0.7 to 1) should be contamination with normal cells (without these somatic

variants). This indicates a duplex sample tumor purity of around 0.7. Unexpectedly, we

also see the 0.7 peak in variants that Wang et al. [48] classified as heterozygous and the

0.4 peak in variants that Wang et al. [48] classified as homozygous alternative (Supple-

mentary Figure 6). It is unclear from Wang et al. [48] and its supplementary material

how the original variant classifications were generated, we assume that this is based on

the genotypes obtained for the single cells. But as the single cells were genotyped with

standard variant calling software (GATK UnifiedGenotyper), they very likely suffer from

considerable allelic dropout and we thus reclassified the clonal variants’ genotypes based

on the duplex sequencing. If the alternative allele frequency determined by the ultra-

deep duplex sequencing was below 0.6, we classified the variant as heterozygous, and

as homozygous alternative if this frequency was above (or equal to) 0.6 (Supplementary

Figure 6). Then, depending on the single cell, we used two different ground truths for

two separate evaluations:

1. For the tumor single cells, we constructed a ground truth from the normal bulk

sample (as the tumor bulk sample was used for calling with ProSolo) using the

same methodology as used for the cell line data (GATK HaplotypeCaller for variant

sites, bcftools mpileup for non-variant sites). Please bear in mind that this ground
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truth will mostly only contain germline variants and only few somatic mutations

that appeared early enough in the patient’s life to rise to high somatic frequencies.

Thus, similar caveats as for the germline ground truth in the granulocyte dataset

apply. To mitigate this to a certain degree, we added the 373 clonal validated

somatic variants, as these are expected to be present in all tumor single cells.

2. For the normal single cells, we constructed a ground truth from the tumor bulk

sample (as the normal bulk sample was used for calling with ProSolo) using the

same methodology as used for the cell line data (GATK HaplotypeCaller for variant

sites, bcftools mpileup for non-variant sites). To reduce the presence of false-

positive somatic variants in this ground truth, we removed all 467 validated somatic

variants (clonal and subclonal) from the ground truth.

Further, we determined the of the validated somatic variants for all software run on this

dataset.

2.2 Software and Parameters

ProSolo was compared against the available tools for single nucleotide variant calling in

single cell sequencing data from multiple displacement amplified (MDA) DNA, MonoVar

[55], SCAN-SNV [29], SCcaller [11], and SCIPhI [44].

For ProSolo (version 0.6.1 installed via bioconda), each single cell was called against

the respective cell’s bulk (the joined clones 1, 2 and 3 for the [11] dataset, PNG for

our own dataset, see Figure 4). Candidate sites to call were generated using bcftools

mpileup, taking all sites where at least one read covered a non-reference nucleotide in

the single cell or its respective bulk. We ran two different modes of the software: Call-

ing sites with a minimum read coverage of 1 in the single cell sample (default mode in

Figure 1) or including zero-coverage sites, effectively imputing genotypes at these sites

from the bulk sample (imputation). The different filter thresholds used represent the
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false discovery rate (--fdr) that we can control for (Section 1.6).

For MonoVar (version 0.0.1, which is commit e0cf2db cleaned up for the bioconda

version we created), parameters were set as recommended in the software repository

README [54]. We ran two different modes of the software, with consensus filtering

between cells of a population (-c 1) and without the filtering (-c 0). The different

filter thresholds used represent the parameter -t being varied. However, turning on

the consensus filtering did not cause any substantial changes, possibly due to the low

number of cells sequenced (Supplementary Figure 7). Varying the parameter -t did not

cause any substantial changes in MonoVar results, either.

SCAN-SNV [29] was installed via the install instruction in the repository on 2019-

10-30o and patched locally to make it run. The pipeline was then run with parameters

set as recommended in the software repository README.md and the command line help,

with the only changes made for a better comparability with the other tools. Namely,

we tried to call as sensitively as possible by setting: --min-sc-alt 1 --min-sc-dp 1

--min-bulk-dp 1. However, the default pipeline only provides calls for somatic vari-

ants (variants only found in single cells, not in the bulk, as opposed to all the present

alternative alleles), heavily filtering candidate sites before calling. We thus attempted

a fairer alternative allele calling comparison by modifying the pipeline to remove the

filter that eliminates alternative alleles also seen in the bulk sample and the filter that

eliminates known dbsnp variationp. The different filter thresholds used represent the

--fdr parameter, which—according to the authors—does not formally control the false

o This are the install instructions at the repository state at https://github.com/parklab/

scan-snv/blob/62b7dcbc21e6cac64dc384abdfa708120e33819c/README.md. This includes the fol-
lowing packages and versions from the custom conda channel https://anaconda.org/jluquette:
r-scansnv 0.1, scansnv 0.9, r-fastghquad 1.0 and natefoo-slurm-drmaa 1.2.0. Further, it re-
quires manual registration of the java executable for gatk 3.8.

p I.e. we edited the snakemake rule scansnv somatic sites to exclude the following requirements:
tab[,bulk.alt] == 0 & tab[,bulk.idx] == ’0/0’ & tab$dbsnp == ’.’.
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discovery rate [29]. For the third dataset, added following a suggestion from peer-review,

we had to recreate the conda environment for SCAN-SNV, following newer advice in the

issues of the repositoryq. While this allowed us to run the pipeline, the custom rule for

ground truth comparison ran into unsolvable version conflicts. After multiple days of

debugging attempts, we decided to exclude SCAN-SNV from the analysis of this dataset,

also given its performance on the other datasets.

For SCcaller (version 1.2, as available on bioconda), default parameters were set as

recommended in the software repository README [10]. We ran four different modes

of the software, varying two things: 1. For the heterozygous candidate sites that SC-

caller requires as input, we either used dbSNP [43, 33] entries or generated them from

the bulk background sample that was also used for calling in ProSolo, running GATK

HaplotypeCaller. As the dbSNP-derived heterozygous candidate sites consistently out-

performed those generate from the bulk background sample, only results using dbSNP

are reported in the figures, to provide a cleaner comparison. 2. In addition to the recom-

mended settings that require a minimum coverage of 10 (default, --min 10 --minvar 4

--RD 20), we also ran SCcaller with reduced coverage requirements to increase sensitiv-

ity for a fairer comparison with ProSolo (sensitive, --min 4 --minvar 1 --RD 10), thus

including sites with a minimum read coverage of 4 and down to one read covering the

alternative nucleotide. The three filtering thresholds used represent the filtering levels

available for the -a cutoff command-line parameter. The filtering threshold gave cer-

tain leverage over the precision-recall trade-off and reducing the coverage requirements

improved the sensitivity of results (Supplementary Figure 7).

For SCIPhI (version 0.1.4, as available on bioconda), we ran two different modes:

1. The default parameters of the command line tool (default). 2. Fewer iterations

qsee: https://github.com/parklab/scan-snv/issues/4#issuecomment-596296645
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(-l 400000, because of the excessive run time) and more sensitive by turning off all

heuristic filters (--cwm 1 --mnp 1 --ms 1 --bns 0 --bnc 0 --ncf 0 --mnc 1). On

the whole exome dataset with five cells, SCIPhI ran for three weeks for each of these

modes. On the whole genome dataset with two cells, an initial run of SCIPhI was

killed due to a server problem after running for more than eight weeks. An attempt

to restart from intermediate data using the --il command line parameter had the

model estimations escalating towards unrealistic values, and the crash was thus left

unrecoverable. A rerun on a server with more performant CPUs led to the sensitive mode

finishing after 5 weeks and the default mode after 7.5 weeks. On the third dataset, added

after a suggestion during peer-review, we only ran SCIPhI with default parameters and

reduced the iterations to -l 80000 (and the number of iterations for the mutation to cell

assignment to --ls 40000) to finish analysis in a reasonable time-frame. No guidance

is given for those parameters, but the optimization score seemed to have mostly settled

with this amount iterations. With these parameters, this analysis finished within a week

for both the tumor cell and the normal cell datasets of Wang et al. [48]. As no option for

filtering or thresholding based on sensitivity vs. specificity is available from SCIPhI itself,

we parsed output with custom scripts to extract what must be a posterior probability of

the presence of a variant at a particular site into a format that ProSolo’s false discovery

rate control mechanism can handle. This is the value in the last (fourth) FORMAT

field, which according to the header annotation is either the GQ or the PL field (five

FORMAT fields are specified, but only four values per sample are provided). Judging

from the source coder, this field contains a PHRED scaled posterior probability of the

site not being a variants. We parsed this into the probability of a variant being present

and passed it into prosolo control-fdr to attempt controlling the false discovery rate

rFor the full relevant source code, see here: https://github.com/cbg-ethz/SCIPhI/blob/

34975f7050f86325f361c58e8146883af4a2d289/src/output.h#L202-L216
sThis is 1 minus a value that i is used for determining genotypes by SCIPhI with

a fixed cutoff of 0.95 a few lines above: https://github.com/cbg-ethz/SCIPhI/blob/

34975f7050f86325f361c58e8146883af4a2d289/src/output.h#L205
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(Figures 7 and 14).

For scVILP (has no versioningt; install instructions had to be amendedu and manually

fixing parsing and dependency issuesv), we tried two modes:

1. Default parameters as suggested in the README of the software: https://

github.com/mae6/scVILP#identify-the-candidate-loci.

2. A more sensitive identification of candidates by turning off heuristic filters (-ms 1

-nmc 1) during the execution of loci identify.py.

However, scVILP was not able to handle any of our three benchmarking datasets, with

the Gurobi solver that it uses always crashing with an out of memory error, even when

provided with more than a Tebibyte of RAM. We documented details of runs and crashes

for the developers of the tool in an issue in their code repository: https://github.com/

mae6/scVILP/issues/5.

2.3 Alternative Allele Calling

The most precise single cell variant callers to date, SCcaller and SCIPhI, can only call

the presence vs. the absence of an alternative allele (i.e. the heterozygous and the

homozygous alternative genotypes called jointly). We have thus focused on this for the

main part of our benchmarking.

For ProSolo, the posterior probability of the presence of an alternative allele is calcu-

lated with Equation 10, which represent the blue Event areas in Figures 3D and 2.

Calculations of precision and recall were based on true positives (TP, alternative allele

present in the ground truth and called by the respective software), false positives (FP,

the respective software calls the presence of an alternative allele that does not exist in

tWe used the repository at this commit: https://github.com/mae6/scVILP/tree/

ef38bc422d44daafe043c7dcb28112a1f1ee2fe6
uPull request to amend install instructions: https://github.com/mae6/scVILP/pull/4
vPull request to allow handling of mitochondrial chromosome: https://github.com/mae6/scVILP/

pull/1; Pull request to fix impossible import of cdecimal by upgrading to decimal https://github.

com/mae6/scVILP/pull/2
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the ground truth at that site), and false negatives (FN, the respective software makes no

call or calls a homozygous reference genotype at a ground truth site with an alternative

allele), using the formulas:

p =
TP

TP + FP

r =
TP

TP + FN

(S 32)

The whole genome cell line dataset (Figure 4a) seems much less challenging than the

other dataset: all methods achieve high precision in alternative allele calling (Figures 7a

and 1a), at recall rates of 45% and higher. In comparison with all other tools, ProSolo

achieves the most striking increases in recall of nearly 10%. For example, for a precision

above .99, its maximum recall is .766 compared to .705 for MonoVar, .687 for SCIPhI

and .610 for SCcaller. SCAN-SNV achieves up to .992 precision, but only .0001 recall.

This can be explained by it aiming at somatic mutations, while the vast majority of

SNVs in a genome will be germline variantsw.

Although a relative increase in recall of about 10% at utmost precision is certainly

remarkable, ProSolo demonstrates its power on the second (whole exome) dataset. This

dataset is considerably more challenging than the first one. See Figures 1b and 7b

for respective results. For this dataset, only SCcaller, SCIPhI and ProSolo achieved a

precision above .99, with ProSolo reaching a 20% increase of recall to .178, compared

to SCIPhI’s .146, and SCcaller with .072 (Figures 1b and 7b). In comparison, MonoVar

achieved a maximum precision of only .962. However, this was at a much higher recall

(.141) than for example SCcaller (.095 at a precision of .972). SCcaller’s decreased recall

on this dataset might be due to its estimation of local allelic bias by also taking biases

at neighboring sites into account—in whole exome data the number of neighboring sites

wE.g. see this comment in the issues of the respective repository: https://github.com/parklab/

scan-snv/issues/5#issuecomment-628107370
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Supplementary Figure 7: Global view of the precision-recall plots for alternative allele
calling across different software modes and filtering thresholds (for zoomed in view
on the most interesting areas of the plot, see main manuscript Figure 1). a Precision
and recall average of two whole genome sequenced single cells IL-11 and IL-12 against
their kindred clone IL-1c as ground truth genotypes. b Precision and recall average of
five whole exome sequenced single granulocytes against their pedigree-based germline
genotype ground truth.
-b The germline ground truth induces an artificial increase of recall for SCIPhI’s
sensitive and ProSolo’s imputation mode; these modes should thus be disregarded
for a fair comparison on the granulocyte dataset in panel b.
c Precision and recall average of 16 tumor and 16 normal single cells sequence at the
whole exome level.
Used thresholds are not comparable between tools. They were applied via the following command
line options: MonoVar --t; ProSolo --fdr; SCAN-SNV --fdr; SCcaller -a cutoff; SCIPhI prosolo
--fdr. Software modes: MonoVar with consensus filtering (default) or without (no consensus);
ProSolo with minimum coverage 1 in single cell (default), or imputing zero coverage sites based on
bulk sample (imputation); SCcaller with recommended settings (default) or with a more sensitive
calling; SCIPhI with default parameters (default) or all heuristics off (sensitive).
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available for this estimation will be limited and might lead to less reliable estimates. On

this dataset, SCAN-SNV’s recall increased to .0016% at a decreased maximum precision

of .897. Most likely, this decreased precision is an artefact of using the germline genotype

as ground truth. At the sites with somatic mutations in single cells, which SCAN-

SNV focuses on, this ground truth will instead contain the germline genotype and will

incorrectly classify alternative alleles as false positives. Due to this effect, we also expect

the calculated precision of all the other tools to be an underestimate, but against the

backdrop of large numbers of sites where the single cells harbour the germline genotype,

the effect will be much smaller. The same ground truth caveat also applies—inversely—

for the recall of SCIPhI’s sensitive mode and ProSolo’s imputation mode. Whenever

coverage of a site is missing in a single cell, SCIPhI may impute the genotype with

the last common ancestor genotype of the most closely related cells, while ProSolo will

impute to the majority genotype in the bulk sample. While both strategies provide

a biologically meaningful imputation that will be more useful than post-hoc modes of

imputation, we expect that a number of imputed sites were incorrectly classified as true

positives with this germline ground truth. As this will lead to an overestimation of the

recall, we have excluded both SCIPhI’s sensitive mode and ProSolo’s imputation mode

from the discussion of this dataset—however, their results are nevertheless displayed in

all respective figures.

For the third dataset of single nucleus whole exome sequencing data of 32 cells from

a TNBC patient (16 tumor cells, 16 normal cells), we analysed tumor and normal cells

separately (Figure 1c). On the tumor cells, ProSolo is the only tool to achieve a precision

above .99 (at a recall of .319). On the normal cells, both ProSolo and SCIPhI achieve a

precision above .99. Here, SCIPhI outcompetes ProSolo with a maximum recall of .650

compared to ProSolo’s .548. While ProSolo can achieve a similar recall (.625, see --fdr

threshold of 0.2 in Supplementary Figure 7c), this comes at a reduced precision. This

reflects the inherent uncertainty of the single cell data and showcases a key difference in
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Supplementary Figure 8: Cell-specific precision-recall plots across different filtering
threshold levels for the whole genome dataset.
Used thresholds are not comparable between tools. They were applied via the following command
line options: MonoVar --t; ProSolo --fdr; SCAN-SNV --fdr; SCcaller -a cutoff; SCIPhI none

available. Software modes: MonoVar with consensus filtering (default) or without (no consensus);
ProSolo with minimum coverage 1 in single cell (default), or imputing zero coverage sites based on
bulk sample (imputation); SCcaller with recommended settings (default) or with a more sensitive
calling; SCIPhI with default parameters (default) or all heuristics off (sensitive).
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Supplementary Figure 9: Cell-specific precision-recall plots across different filtering
threshold levels for the whole exome dataset.
-b The germline ground truth induces an artificial increase of recall for SCIPhI’s sensitive and
ProSolo’s imputation mode; these modes should thus be disregarded for a fair comparison on the
granulocyte dataset.
Used thresholds are not comparable between tools. They were applied via the following command
line options: MonoVar --t; ProSolo --fdr; SCAN-SNV --fdr; SCcaller -a cutoff; SCIPhI none

available. Software modes: MonoVar with consensus filtering (default) or without (no consensus);
ProSolo with minimum coverage 1 in single cell (default), or imputing zero coverage sites based on
bulk sample (imputation); SCcaller with recommended settings (default) or with a more sensitive
calling; SCIPhI with default parameters (default) or all heuristics off (sensitive).
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nucleus exome sequencing dataset Wang et al. [48]. Note cells TNBC-n13 and TNBC-
n14 as clear outliers.
For the thresholds used, see caption of Supplementary Figure 7.
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nucleus exome sequencing dataset Wang et al. [48]. Note cell h1 as a clear outlier.
For the thresholds used, see caption of Supplementary Figure 7.
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the approaches of ProSolo and SCIPhI. Where ProSolo models each cell and each genomic

site separately, SCIPhI’s model integrates information across all sites in all cells at once.

While this can clearly help recover recall, this can also lead to false positive somatic

variant calls (Supplementary Figure 13) and has clear implications for model complexity

and software runtime. As all other tools, including ProSolo, are parallelizable over

genomic regions and were thus able to process both datasets within days on a multicore

machine, we do not report more detailed runtimes for them. However, it should be

noted that SCIPhI took from 1 week (with iterations reduced below software defaults)

on the single nucleus whole exome dataset up to 7.5 weeks on the whole genome dataset,

running on a single core without any possibility of parallelization. And where adding

breadth of coverage (i.e. more genomic sites) or more cells simply means adding more

parallel processes in most tools, this will further increase SCIPhI’s wall time. In addition,

with more cells added, the space of possible tree topologies that SCIPhI explores grows

exponentially, further increasing runtimes.

In contrast to the whole genome dataset and the granulocyte whole exome dataset,

this dataset showed more variation across cells. To document this, without further con-

flating the general precision-recall plots, we include per-cell precision-recall plots, here.

This shows two outlier cells among the single normal cells, TNBC-n13 and TNBC-n14

(Supplementary Figure 10), and one drastic outlier among the single tumor cells, h1

(Supplementary Figure 10). With h1 at a clearly reduced overall coverage (Supplemen-

tary Figure 3C), these outliers—and further more subtle variation across cells—probably

reflect variation in the data generation processes rather than biological differences in ge-

nomic variation across cells.
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2.4 Estimating the bulk contribution to ProSolo results via

downsampling

To estimate the importance of bulk data in ProSolo’s single nucleotide variant calling

model, we performed a downsampling analysis with the whole exome sequencing dataset

of five granulocytes. In addition to the full bulk coverage of around 40X at 80% of

exome sites (compare Supplementary Figure 3B), we downsampled the bulk sample to

around 28X, 16X, 4X, and 0X (Supplementary Figure 12). From this analysis, we can

see that even a very minimal coverage of 4X will result in very precise variation calls

for any false discovery rate control at 0.1 or below. Only removing the bulk entirely

(0X), will significantly impact ProSolo’s precision. This is to be expected, as the model

does not have any data available to compensate for the uncertainty of amplification bias

that the empirical bias distributions account for in the single cell data. In line with this

increased uncertainty in variation calls, false discovery rates below 0.2 will remove all

calls (Supplementary Figure 12), while the recall remains very high in unfiltered calls.

2.5 Recall of validated somatic variants from Wang et al. [48]

For the tumor cells from the Wang et al. [48] dataset, we could further determine the

recall of non-synonymous somatic variants they had validated via deep targeted duplex

sequencing and provided in their Supplementary Tables 6 and 7 (specifying clonal and

subclonal variants, respectively). Clonal variants were assumed to be present in all 16

tumor cells, with the number of single cells with the subclonal somatic variant present

provided by Wang et al. [48]. While SCIPhI and SCcaller have a better recall of het-

erozygous genotype calls, neither of them can call homozygous alternative genotypes

(Supplementary Figure 13). On the clonal variants, MonoVar has a higher homozygous

alternative recall than ProSolo, but ProSolo has a higher heterozygous recall. On the

subclonal variants, three things are notable:

1. ProSolo has lower recall than the other tools, indicating that the depth of coverage
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Supplementary Figure 12: Precision and recall average of five whole exome sequenced
single granulocytes against their pedigree-based germline genotype ground truth,
including the results of ProSolo after downsampling from the maximum coverage of
50X to 35X, 20X, 5X or 0X. The left panel includes all bulk coverages, the right
panel focuses on the differences in non-zero bulk coverages.
-b The germline ground truth induces an artificial increase of recall for SCIPhI’s
sensitive and ProSolo’s imputation mode; these modes should thus be disregarded
for a fair comparison on the granulocyte dataset.
Used thresholds are not comparable between tools. They were applied via the following command
line options: MonoVar --t; ProSolo --fdr; SCAN-SNV --fdr; SCcaller -a cutoff; SCIPhI none

available. Software modes: MonoVar with consensus filtering (default) or without (no consensus);
ProSolo with minimum coverage 1 in single cell (default), or imputing zero coverage sites based on
bulk sample (imputation); SCcaller with recommended settings (default) or with a more sensitive
calling; SCIPhI with default parameters (default) or all heuristics off (sensitive).
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Supplementary Figure 13: Recall of validated non-synonymous somatic mutations in the
single tumor cells of Wang et al. [48] stratified across genotypes (”0/1” for heterozy-
gous and ”1/1” for homozygous alternative) and clonality (clonal vs. subclonal).
The expected number of variants with a somatic variant present in the respective
number of single tumor cells is given in grey. Clonal somatic variants are always
expected to be present in all 16 single tumor cells.
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Supplementary Table 4: Genomic sites where any tool calls the presence of a variant in at
least three more cells than the number reported in Wang et al. [48]. ”Wang duplex
freq” gives the alternative allele frequency from the targeted duplex bulk sequencing
(deep coverage and high accuracy) in Wang et al. [48]. All variants in this table are
reported as heterozygous by Wang et al. [48]. Results are from each software’s best
performing software mode without any threshold-based filtering.
∗ MonoVar called 5 cells as heterozygous and 4 cells as homozygous alternative

number of cells with variant (out of 16)

chromosome position Wang
duplex
freq

Wang MonoVar ProSolo SCcaller SCIPhI

chr16 1537917 0.102820 3 3 0 4 12

chr16 15149761 0.057895 2 3 0 3 12

chr16 66643819 0.189566 5 6 6 6 15

chr17 77809062 0.001294 2 3 0 3 15

chr2 74435818 0.091089 3 4 0 3 12

chr5 55204134 0.233289 6 ∗9 11 10 15

chr9 19298104 0.131816 4 6 0 6 15

chr9 80046280 0.000269 2 2 0 2 15

chr9 117853210 0.001309 4 3 3 4 15
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in the tumor bulk sample (around 35X for 80% of the exome, see Supplementary

Figure 3C) is not sufficient to pick up low-frequency variants and the bulk sample

thus further decreases the likelihood of such low frequency variants in the single

cells. Thus, while the downsampling analysis above suggests that a very low bulk

coverage is sufficient for ProSolo’s model to perform well, this seems to be restricted

to higher frequency mutations. Assuming an evenly mixed cell population (thus

ignoring any population structure or in turn assuming an even sampling of all

relevant subclones), the bulk coverage of 35X should allow for the discovery of

variant alleles present at a frequency of at least 2.86% of sampled alleles. Judging

by the frequency detected in the targeted duplex sequencing of Wang et al. [48],

this should render the detection of 52 of the 94 subclonal variants impossible,

which corresponds to the number of missed subclonal variants in Supplementary

Figure 13. As a consequence, if the aim is to detect lower frequency mutations, we

simply recommend a deeper sequencing of the bulk sample.

2. SCIPhI calls nine heterozygous mutations in 12 or 15 cells (Supplementary Table 4

and Supplementary Figure 13), while the maximum frequency for any of the het-

erozygous subclonal mutations detected in the deeply sequenced tumor bulk was

0.233, more in the range of the maximum number of six out of 16 cells that Wang

et al. [48] found any of the subclonal variants in. Also, when able to detect the

variant, all other tools report a maximum excess of two cells with the mutation

compared to Wang et al. [48]. The only exception is a mutation on chromosome

five, where all tools agree on a much larger number of cells with the mutation

(9-11) than originally reported by Wang et al. (6), but SCIPhI still clearly exceeds

that consensus (15). Altogether, these numbers suggest that SCIPhI’s model over-

imputes mutations by aggregating information across cells.

3. None of the tools calls any of the six homozygous alternative variants. SCcaller
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and SCIPhI do not genotype and thus can only determine the presence or absence

of an alternative allele. We chose to represent this as a heterozygous alternative

genotype, as is this will be the correct choice in the majority of cases. For MonoVar,

this is surprising, as all these homozygous alternative variants should be present in

three cells, which should allow MonoVar to recover them even when enforcing an

occurrence in a minimum of three independent single cells. For ProSolo, this seems

to be due to the low bulk coverage of these variants. The low coverage of these

variants in the duplex sequencing means that the alternative allele is probably not

covered in the low coverage bulk tumor sample at all, and ProSolo accordingly

assigns a homozygous reference genotype. However, if the bulk coverage were

higher, ProSolo might still suffer from its assumption of a maximum of two different

genotypes at a site in the bulk sample. This can lead to erroneously mis-calling

homozygous alternative sites as heterozygous, when they are the result of a point

mutation followed by a loss of the reference allele in a daughter cell (Supplementary

Section 1.5.1). However, an even simpler explanation (for all tools) could be that

the ground truth genotype was called with GATK UnifiedGenotyper, a variant

caller that is not adapted to single cell DNA-sequencing data, and may have thus

suffered from allele dropout of the reference allele to generate these homozygous

alternative genotypes. This could mean that these homozygous alternative ground

truth are not correct to begin with.

2.6 False Discovery Rate Control of Alternative Allele Calling

Finally, a feature where ProSolo clearly stands out, is the control over the false discovery

rate. As can be seen in Figure 1 (and Supplementary Figure 7), ProSolo provides flexible

control over precision vs. recall via specifying a false discovery rate of interest. While

no other tool provides a formal control over the easily interpretable false discovery rate,

several of the tools provide other types of thresholds which we varied in attempts to
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Supplementary Figure 14: False discovery rate (FDR, 1−precision) as calculated based on
the ground truth, compared to the theoretical FDR we controlled for using ProSolo,
for a the whole genome cell-line data set, b the whole exome data set with the
pedigree ground truth and c the whole exome cancer data set. The diagonal indicates
identity of the ground truth FDR with the FDR that was controlled for. Any points
underneath it indicate overly conservative FDR control, any points above it indicate
an FDR control that is too lenient.
Used thresholds are not comparable between tools. They were applied via the following command
line options: MonoVar --t; ProSolo --fdr; SCAN-SNV --fdr; SCcaller -a cutoff; SCIPhI none

available. Software modes: MonoVar with consensus filtering (default) or without (no consensus);
ProSolo with minimum coverage 1 in single cell (default), or imputing zero coverage sites based on
bulk sample (imputation); SCcaller with recommended settings (default) or with a more sensitive
calling; SCIPhI with default parameters (default) or all heuristics off (sensitive).
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achieve higher precision or recall. However, none of them provide control over similar

ranges of precision and recall. In addition, we ran the standard false discovery rate

control implemented in ProSolo on the posterior probabilities provided by SCIPhI, but

this did not provide any substantial control over the false discovery rate (Figures 1 and

14). Thus, ProSolo is the only tool that provides the user with the choice of either

aiming for more discoveries at the cost of a higher rate of false discoveries, or at aiming

for a more limited number of discoveries with higher confidence in each of them.

Further, Supplementary Figure 14a demonstrates, that ProSolo provides a rigorous

control over the false discovery rate on the whole genome dataset. The only exception—

in both default and imputation mode—is when attempting to control for a false discovery

rate below 0.0001. This indicates, that ProSolo’s model still needs refinement in its

resolution for sites with a very high likelihood of an alternative allele present. The same

trend can be seen on the other datasets (Supplementary Figure 14b and c), but for any

attempt to control for a false discovery rate below 0.02 or 0.005. This is within the

common range of values often chosen as a false discovery rate to control for in practice

and not being able to actually achieve the false discovery rate control at such values is

usually unacceptable. However, as also discussed above, we generally expect the precision

(of all tools) to be underestimated on the whole exome granulocyte dataset: using the

germline genotypes as ground truth results in misclassifying actual somatic variants

in single cells as false positives. This underestimation of precision on this dataset in

turn means an overestimation of the false discovery rate (1 − precision), and is thus

to be expected. A similar effect is to be expected for the tumor cells in the TNBC

dataset, as these will very likely contain more than the clonal somatic variants validated

in the original publication [48]. Further, the artefact of using a germline ground truth

on the granulocyte dataset also shows in the discrepancy in the ground-truth based

false discovery rate between ProSolo’s default and imputation mode when controlling

for higher false discovery rates. As expected, imputation turned out less precise in the
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whole genome dataset (Supplementary Figure 14a). In contrast, imputation seems to

have improved precision for the whole exome dataset (Supplementary Figure 14b). This

would suggest that the larger call set from ProSolo’s imputation mode (with a higher

recall) is also more precise than the smaller call set from the default mode. However,

this increase in precision is most likely explained by an imputation towards the majority

genotype in the bulk sample that will usually favor the germline genotype at a site, no

matter what the actual single cell genotype would be. Taken together, this indicates that

the false discovery rate that we can calculate with the given germline ground truth for

the whole exome dataset is higher than the actual value would be with a more accurate

(somatic) ground truth available.

2.7 Allele dropout rate calculations

Leveraging our ground truths and using three different ways to calculate the allele

dropout rate, we can confirm the general validity of the respective event definitions

(Figure 3D) and evaluate limitations. For this, we will focus on the set of sites where

the respective ground truth call is heterozygous, as these are the sites where the dropout

of one of the alleles can be identified clearly.

The first way of calculating the allele dropout rate leverages the posterior probabilities

generated by the ProSolo model (Equation S 31). At each ground truth heterozygous site,

we sum up the probabilities of the two allele dropout events defined in ProSolo (”ADO

to alt” and ”ADO to ref” in Figure 3D) to obtain a total allele dropout probability (see

Equation S 31). Obtaining the expected value of the allele dropout rate then constitutes

adding those totals across all ground truth heterozygous sites with coverage and dividing

by their number. This gives us an expected allele dropout rate based on the data and

the ProSolo model (”expected value” in Figure 2):

56



∑
covered ground truth
heterozygous sites

P (allele dropout | Zs,Zb)

# covered ground truth heterozygous sites
(S 33)

The two ways to validate this expected allele dropout rate both depend on a com-

parison against the respective ground truth genotypes. One important difference in the

ground truth used here, compared to the ground truth used for alternative allele call-

ing, is that we further filtered the ground truth for the Dong et al. [11] dataset. For

this dataset, the basic ground truth was generated using GATK HaplotypeCaller and

variant quality score recalibration. However, this recalibration optimises on the pres-

ence (heterozgyous or homozygous alternative) vs. the absence (homozygous reference)

of an alternative allele and filtered genotypes will not reliably distinguish between het-

erozygous genotypes and homozygous alternative genotypes. We thus excluded all sites

where the genotype quality (GQ FORMAT field) is below a PHRED score of 30. This

corresponds to a 0.001 probability of having erroneously called the current genotype

over the second most likely genotype, and thus also filters for a clear distinguishability

between heterozygous and homozygous alternative genotypes. This is important both

for identifying allele dropout and for identifying exact genotypes as in Section 2.8.

The first validation of these rates from within ProSolo is to genotype all the ground

truth heterozygous sites with ProSolo. We take the most likely genotype (i.e. the geno-

type whose coloured event area in Figure 3D has the highest joint probability). Then,

every ground truth heterozygous site that ProSolo calls as homozygous is counted as a

dropout site and the number of dropout sites is divided by the total number of ground

truth heterozygous sites where the respective single cell had coverage. This gives an

allele dropout rate based on a comparison against the ground truth (”hom at ground

truth het” in Figure 2):
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# ground truth heterozygous sites called homozygous

# covered ground truth heterozygous sites
(S 34)

A second validation of these rates is another comparison against the ground truth,

but without using ProSolo in any way. For each single cell, using samtools mpileup,

we identify all heterozygous ground truth sites with a coverage of at least 7. Without

amplification bias we could be reasonably sure to sample both alleles of a heterozygous

site at coverage 7 (the probability to sample only one allele with a coverage of 7 would

be: 2 · 0.57 = 0.015625). We then count a site as an allele dropout, if there is one allele

(reference or alternative) with no read coverage at all. The allele dropout rate is the

fraction of allele dropout sites within the respective cell’s heterozygous ground truth

sites (”no alt/ref read at ground truth het” in Figure 2):

# ground truth heterozygous site with only one allele covered

# covered ground truth heterozygous sites
(S 35)

The expected allele dropout rates based on the ProSolo probabilities for allele dropout

fall into the range of previously published allele dropout rates [48, 15, 51, 27, 45, 40, 28]

(”published” in Figure 2). This analysis also shows that the ProSolo expected allele

dropout rates, based on the model’s probabilities, correspond with those based on the

comparison of ProSolo genotypes with the ground truth (Figure 2), demonstrating that

the explicit modelling of allele dropout events is useful for genotyping. However, in

that comparison, the expected allele dropout rate is consistently underestimated on our

own whole exome data (”granulocytes” in Figure 2), while it is slightly overestimated

for the data from Dong et al. [11] (”Dong 2017” in Figure 2). These deviations in the
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estimation in different directions suggest that the empirical distributions we currently

use do not fit all datasets. Instead, they most likely depend on the respective whole

genome amplification and library preparation procedures, as well as other possible batch

effects. This conclusion is further supported by the much lower naively calculated allele

dropout rate in the high coverage cells of the two datasets (IL-11 in Dong et al. [11],

PAG1 and PAG10 in our granulocytes, compare 3). Here, the empirical distributions

used seem to overestimate allele dropout and the performance of ProSolo could be further

improved with distributions tailored to the specific dropout profile of the experiment on

that individual cell. However, this overestimation of the allele dropout probability does

not seem to impact the genotyping resolution (see below, Figures 15 and 16).

2.8 Genotype calling

As a further performance comparison, we want to include a direct comparison of the

actual called genotypes against the ground truth genotypes of the respective data set.

As only ProSolo, MonoVar and SCAN-SNV provide actual genotype calls—a further re-

finement over the alternative allele calling described above—SCcaller and SCIPhI cannot

be included in this comparison. Further, the small numbers of calls made by SCAN-

SNV would not be interpretable in the figures provided, and we have thus also excluded

SCAN-SNV from this comparison.

Comparisons provided here are based on the software modes that achieved the highest

F1 score across most single cells for alternative allele calling (Figure 1c), with the F1

score defined as the harmonic mean of precision p and recall r (with β = 1 for the general

F score, see van Rijsbergen [47], Chinchor [7]):

Fβ = (β2 + 1)× pr

β2p+ r
(S 36)

.
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For ProSolo, this amounts to the default mode without imputation (which also ensures

a fair comparison against the germline-based ground truth) and controlling for a false

discovery rate of 0.2. For MonoVar, this means no consensus filtering and no filtering

via the --t thresholding parameter.

Plotting the overall precision and recall of ProSolo and MonoVar genotyping (Sup-

plementary Figure 15), demonstrates that the higher recall of ProSolo is limited to the

calling of heterozygous genotypes for the whole genome datasets (IL-11, IL-12 in Sup-

plementary Figure 15A). For the whole exome dataset, ProSolo achieves a higher recall

of both heterozygous and homozygous alternative ground truth genotypes (PAG cells

in Supplementary Figure 15A). However, the recall remains much lower in this dataset,

possibly due to the more uneven coverage of the respective cells and the lower coverage

of the background bulk sample (PNG in Supplementary Figure 3).

Wherever ProSolo generates more genotype calls—be they heterozygous or homozy-

gous alternative calls—it also makes more errors (Supplementary Figure 15B). In the

only case where ProSolo does not generate more calls than MonoVar—homozygous al-

ternative calls in the whole genome datasets—it also does not show a noticeable increase

in false genotype calls.

When looking at the exact genotype miscalls (Supplementary Figure 16), it becomes

apparent that the higher amount of miscalls at higher recall in ProSolo is biased for

heterozygous calls made by ProSolo (Supplementary Figure 16B): Heterozygous calls

made by ProSolo are more often at ground truth homozygous reference sites, whereas

heterozygous calls at ground truth homozygous alternative sites do not occur more of-

ten than for MonoVar. Thus, while MonoVar heterozygous calls are more likely to be

miscalled homozygous alternative sites than miscalled homozygous reference sites, the

inverse holds for ProSolo. This indicates, that both models are not yet well-balanced.

For ProSolo, a further improvement could be to adapt the amplification bias distribu-
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Supplementary Figure 15: Genotype calling precision and recall in comparison against
the respective ground truth genotypes (from IL-1c in the left plots; from PNG in
the plots on the right). MonoVar and ProSolo were run with the parameters that
maximised the F1 score alternative allele calling (Figure 1c). Facet labels at the top
of plots indicate the single cell. Facet labels on the right side of plots indicate the
genotype: ”1/1” for homozgyous alternative, ”0/1” for heterozygous. A Recall of
ground truth genotypes. Here, facet labels on the right side of plots indicate the
ground truth genotype compared against. ProSolo provides a genotype call at more
of the ground truth sites, with a slight but noticeable increase of false genotypes
provided at ground truth heterozygous sites. B Precision of called genotypes. Here,
facet labels on the right side of plots indicate the genotype of the caller. The higher
amount of calls by ProSolo (most noticeable for heterozygous calls for the whole
genome datasets, and homozygous alternative calls for the whole exome datasets)
trades off with a loss in precision.
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Supplementary Figure 16: Genotype calling comparison against the respective ground
truth genotypes (from IL-1c in the left plots; from PNG in the plots on the right).
MonoVar and ProSolo were run with the parameters that maximised the F1 score
alternative allele calling (Figure 1c). Panels A and B correspond to the respective
panels in Supplementary Figure 15, but with a finer resolution of the false geno-
types. Facets at the top of plots indicate the single cell. A Genotypes called by
the respective tool are indicated by the colouring, for the respective ground truth
genotypes as indicated by the facets on the right side of the plots. B Ground truth
genotypes are indicated by the colouring, for the genotypes called by the respective
tool as indicated by the facets on the right side of the plots. Both tools show visible
amounts of misclassification in most of the possible categories.
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tions currently used (see Section 1.2.2 for some suggestions). Also, learning distributions

from the data at hand could further improve precision and recall wherever data is more

uniformly distributed than in the dataset the current distributions are derived from [28].

Altogether, the genotype-level analysis also confirms that a higher and more uniform

coverage of the single cell data leads to higher precision and recall in the variant call-

ing, no matter which caller is used. E.g. for the—most evenly covered—whole genome

sequencing data (Supplementary Figure 3A), both callers achieve a very high recall of

ground truth homozygous alternative sites with a very high precision (left panels in

Figures 15 and 16). Also, for the whole exome data (right panels in Figures 15 and

16), recall is visibly higher for all genotypes across both tools in the samples with a

higher and more uniform coverage (PAG1 and PAG10, see Supplementary Figure 3),

and precision is noticeably higher in those samples for MonoVar.

2.9 Software and Resources used

All analysis code for both the main processing pipeline and the manuscript figures is

available at: https://github.com/prosolo/benchmarking_prosolo (or as preserved

by Zenodo at: https://doi.org/10.5281/zenodo.3769115). An overview and cita-

tions of software and resources beyond those mentioned in the methods section are

provided in Supplementary Table 5.
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Supplementary Table 5: Software and related resources used in this manuscript. All
software versions as installed with conda, except: Kaluza and Summit, which were
pre-installed on the fluorescence activated cell sorting machine; Brewer and Okabe
Ito, which are color palettes; bioconda, which is a package repository for the conda
(and mamba) package manager.

resource version purpose citation

bcftools 1.6 handle VCF / BCF files Danecek et al. [9]
1.10 rule-specific environment

BEAGLE 4.0 4.0 pedigree-aware variant calling Browning and Browning [6]

bioconda software package management Grüning et al. [13]

Brewer colorblind-friendly palettes Brewer [5]

conda 4.9.0 software package management

cutadapt 1.14 adapter trimming Martin [30]

bwa mem 0.7.15 read alignment / mapping Li [25]

FamSeq 1.0.3 pedigree-aware variant calling Peng et al. [37, 38]

ggplot2 3.3.0 result plots Wickham [49]

ggthemes 0.2.5 Okabe Ito palette Arnold et al. [1]

Inkscape 0.92.4 info-graphics, improved labels

Kaluza 2.1 FACS data analysis

mamba 0.6.4 software package management

MonoVar 0.0.1 single cell variant calling Zafar et al. [55]

mosdepth 0.2.5 coverage calculations Pedersen and Quinlan [36]

Okabe Ito colorblind-safe palette Okabe and Ito [35]

picardtools 2.9.2 mark duplicates

polymutt 0.18 pedigree-aware variant calling Li et al. [24]

ProSolo 0.6.1 single cell variant calling

RColorBrewer 1.1 2 Brewer palettes Neuwirth [34]

samtools 1.4.1 handle SAM / BAM files Li et al. [26]

SCAN-SNV 19-10-30 single cell variant calling Luquette et al. [29]

SCcaller 1.2 single cell variant calling Dong et al. [11]

SCIPhI 0.1.4 single cell variant calling Singer et al. [44]

Snakemake 5.4.0 workflow management Köster and Rahmann [20]

Summit 5.1.0 FACS data acquisition

tidyverse 1.1.1 ground truth comparisons Wickham et al. [50]
1.3.0 results data handling

trimmomatic 0.36 quality trimming Bolger et al. [4]

UpsetR set intersection plot 5 Conway et al. [8]

VGAM 1.1 1 distributions in R Yee [52, 53]64
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